|
Record |
Links |
|
Author |
Nord, M.; Webster, R.W.H.; Paton, K.A.; McVitie, S.; McGrouther, D.; MacLaren, I.; Paterson, G.W. |
|
|
Title |
Fast pixelated detectors in scanning transmission electron microscopy. Part I: data acquisition, live processing, and storage |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Microscopy And Microanalysis |
Abbreviated Journal |
Microsc Microanal |
|
|
Volume |
26 |
Issue |
4 |
Pages |
Pii S1431927620001713-666 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The use of fast pixelated detectors and direct electron detection technology is revolutionizing many aspects of scanning transmission electron microscopy (STEM). The widespread adoption of these new technologies is impeded by the technical challenges associated with them. These include issues related to hardware control, and the acquisition, real-time processing and visualization, and storage of data from such detectors. We discuss these problems and present software solutions for them, with a view to making the benefits of new detectors in the context of STEM more accessible. Throughout, we provide examples of the application of the technologies presented, using data from a Medipix3 direct electron detector. Most of our software are available under an open source licence, permitting transparency of the implemented algorithms, and allowing the community to freely use and further improve upon them. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000555537900004 |
Publication Date |
2020-07-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1431-9276 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.8 |
Times cited |
4 |
Open Access |
OpenAccess |
|
|
Notes |
; The performance of this work was mainly supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (grant no. EP/M009963/1). G.W.P. received additional support from the EPSRC under grant no. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 838001. The studentship of R.W.H.W. was supported by the EPSRC Doctoral Training Partnership grant no. EP/N509668/1. S.McV. was supported by EPSRC grant no. EP/M024423/1. I.M. was supported by EPSRC grant no. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (no. ST/P002471/1) with Quantum Detectors Ltd. as the industrial partner. D.McG. was also supported by EPSRC grant no. EP/M009963/1. As an inventor of intellectual property related to the MERLIN detector hardware, he is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under grant no. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; |
Approved |
Most recent IF: 2.8; 2020 IF: 1.891 |
|
|
Call Number |
UA @ admin @ c:irua:171185 |
Serial |
6518 |
|
Permanent link to this record |