|
Record |
Links |
|
Author |
Clima, S.; Garbin, D.; Opsomer, K.; Avasarala, N.S.; Devulder, W.; Shlyakhov, I.; Keukelier, J.; Donadio, G.L.; Witters, T.; Kundu, S.; Govoreanu, B.; Goux, L.; Detavernier, C.; Afanas'ev, V.; Kar, G.S.; Pourtois, G. |
|
|
Title |
Ovonic threshold-switching GexSey chalcogenide materials : stoichiometry, trap nature, and material relaxation from first principles |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Physica Status Solidi-Rapid Research Letters |
Abbreviated Journal |
Phys Status Solidi-R |
|
|
Volume |
|
Issue |
|
Pages |
1900672 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Density functional theory simulations are used to identify the structural factors that define the material properties of ovonic threshold switches (OTS). They show that the nature of mobility-gap trap states in amorphous Ge-rich Ge50Se50 is related to Ge-Ge bonds, whereas in Se-rich Ge30Se70 the Ge valence-alternating-pairs and Se lone-pairs dominate. To obtain a faithful description of the electronic structure and delocalization of states, it is required to combine hybrid exchange-correlation functionals with large unit-cell models. The extent of localization of electronic states depends on the applied external electric field. Hence, OTS materials undergo structural changes during electrical cycling of the device, with a decrease in the population of less exothermic Ge-Ge bonds in favor of more exothermic Ge-Se. This reduces the amount of charge traps, which translates into coordination changes, an increase in mobility-gap, and subsequently changes in the selector-device electrical parameters. The threshold voltage drift process can be explained by natural evolution of the nonpreferred Ge-Ge bonds (or “chains”/clusters thereof) in Ge-rich GexSe1-x. The effect of extrinsic doping is shown for Si and N, which introduce strong covalent bonds into the system, increase both mobility-gap and crystallization temperature, and decrease the leakage current. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000512431100001 |
Publication Date |
2020-01-28 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1862-6254 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.8 |
Times cited |
3 |
Open Access |
|
|
|
Notes |
; This work was carried out in the framework of the imec Core CMOS-Emerging Memory Program. Financial support from EU H2020-NMBPTO-IND-2018 project “INTERSECT” (Grant No. 814487) is acknowledged. ; |
Approved |
Most recent IF: 2.8; 2020 IF: 3.032 |
|
|
Call Number |
UA @ admin @ c:irua:166492 |
Serial |
6575 |
|
Permanent link to this record |