toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Covaci, L.; Berciu, M. doi  openurl
  Title Polaron formation in the presence of Rashba spin-orbit coupling: implications for spintronics Type A1 Journal article
  Year 2009 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 102 Issue 18 Pages 186403  
  Keywords A1 Journal article  
  Abstract We study the effects of the Rashba spin-orbit coupling on polaron formation, using a suitable generalization of the momentum average approximation. While previous work on a parabolic band model found that spin-orbit coupling increases the effective mass, we show that the opposite holds for a tight-binding model, unless both the spin-orbit and the electron-phonon couplings are weak. It is thus possible to lower the effective mass of the polaron by increasing the spin-orbit coupling. We also show that when the spin-orbit coupling is large as compared to the phonon energy, the polaron retains only one of the spin-polarized bands in its coherent spectrum. This has major implications for the propagation of spin-polarized currents in such materials, and thus for spintronic applications.  
  Address Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000265948600049 Publication Date 2009-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 0031-9007 ISBN Additional Links  
  Impact Factor 8.462 Times cited 25 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ Serial 4434  
Permanent link to this record
 

 
Author Kurttepeli, M.; Locus, R.; Verboekend, D.; de Clippel, F.; Breynaert, E.; Martens, J.; Sels, B.; Bals, S. pdf  url
doi  openurl
  Title Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly Type A1 Journal article
  Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 234 Issue 234 Pages 186-195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The incorporation of aluminum into the silica columns of hierarchical mesoporous materials (HMMs) was studied. The HMMs were synthesized by a combination of hard and soft templating methods, forming mesoporous SBA-15-type silica columns inside the pores of anodic aluminum oxide membranes via evaporation induced self-assembly (EISA). By adding Al-isopropoxide to the EISA-mixture a full tetrahedral incorporation of Al and thus the creation of acid sites was achieved, which was proved by nuclear magnetic resonance spectroscopy. Electron microscopy showed that the use of Al-isopropoxide as an Al source for the HMMs led to a change in the mesopore ordering of silica material from circular hexagonal (donut-like) to columnar hexagonal and a 37% increase in specific surface (BET surface). These results were confirmed by a combination of nitrogen physisorption and small-angle X-ray scattering experiments and can be attributed to a swelling of the P123 micelles with isopropanol. The columnar mesopore ordering of silica is advantageous towards the pore accessibility and therefore preferential for many possible applications including catalysis and adsorption on the acid tetrahedral Al-sites. (C) 2016 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000383291400020 Publication Date 2016-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access OpenAccess  
  Notes ; The Belgian government (Belgian Science Policy Office, Belspo) is acknowledged for financing the Interuniversity Attraction Poles (IAP-PAI). S. B. acknowledges the financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). D. V. acknowledges the Flanders Research Foundation (FWO). ; ecas_Sara Approved Most recent IF: 3.615  
  Call Number UA @ lucian @ c:irua:137108 Serial 4404  
Permanent link to this record
 

 
Author Balasubramaniam, Y.; Pobedinskas, P.; Janssens, S.D.; Sakr, G.; Jomard, F.; Turner, S.; Lu, Y.G.; Dexters, W.; Soltani, A.; Verbeeck, J.; Barjon, J.; Nesládek, M.; Haenen, K.; doi  openurl
  Title Thick homoepitaxial (110)-oriented phosphorus-doped n-type diamond Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 109 Issue 109 Pages 062105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The fabrication of n-type diamond is essential for the realization of electronic components for extreme environments. We report on the growth of a 66 mu m thick homoepitaxial phosphorus-doped diamond on a (110)-oriented diamond substrate, grown at a very high deposition rate of 33 mu m h(-1). A pristine diamond lattice is observed by high resolution transmission electron microscopy, which indicates the growth of high quality diamond. About 2.9 x 10(16) cm(-3) phosphorus atoms are electrically active as substitutional donors, which is 60% of all incorporated dopant atoms. These results indicate that P-doped (110)-oriented diamond films deposited at high growth rates are promising candidates for future use in high-power electronic applications. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000383183600025 Publication Date 2016-08-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 20 Open Access  
  Notes This work was financially supported by the EU through the FP7 Collaborative Project “DIAMANT,” the “H2020 Research and Innovation Action Project” “GreenDiamond” (No. 640947), and the Research Foundation-Flanders (FWO) (Nos. G.0C02.15N and VS.024.16N). J.V. acknowledges funding from the “Geconcentreerde Onderzoekacties” (GOA) project “Solarpaint” of the University of Antwerp. The TEM instrument was partly funded by the Hercules fund from the Flemish Government. We particularly thank Dr. J. E. Butler (Naval Research Laboratory, USA) for the sample preparation by laser slicing for TEM analysis, Dr. J. Pernot (Universite Grenoble Alpes/CNRS-Institut Neel, France) for helpful discussions, Ms. C. Vilar (Universite de Versailles St. Quentin en Yvelines, France) for technical help on SEM-CL experiments, and Dr. S. S. Nicley (Hasselt University, Belgium) for improving the language of the text. P.P. and S.T. are Postdoctoral Fellows of the Research Foundation-Flanders (FWO). Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:137160 Serial 4407  
Permanent link to this record
 

 
Author Verduyckt, J.; Van Hoof, M.; De Schouwer, F.; Wolberg, M.; Kurttepeli, M.; Eloy, P.; Gaigneaux, E.M.; Bals, S.; Kirschhock, C.E.A.; De Vos, D.E. url  doi
openurl 
  Title PdPb-catalyzed decarboxylation of proline to pyrrolidine : highly selective formation of a biobased amine in water Type A1 Journal article
  Year 2016 Publication ACS catalysis Abbreviated Journal Acs Catal  
  Volume 6 Issue 6 Pages 7303-7310  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Amino acids have huge potential as platform chemicals in the biobased industry. Pd-catalyzed decarboxylation is a very promising route for the valorization of these natural compounds derived from protein waste or fermentation. We report that the highly abundant and nonessential amino acid L-proline is very reactive in the Pd-catalyzed decarboxylation. Full conversions are obtained with Pd/C and different Pd/MeOx catalysts; this allowed the identification of the different side reactions and the mapping of the reaction network. Due to the high reactivity of pyrrolidine, the selectivity for pyrrolidine was initially low. By carefully modifying Pd/ZrO2 with Pb in a controlled manner-via two incipient wetness impregnation steps-the selectivity increased remarkably. Finally, a thorough investigation of the reaction parameters resulted in an increased activity of this modified catalyst and an even further enhanced selectivity under a low H-2 pressure of 4 bar at 235 degrees C in water. This results in a very selective and sustainable production route for the highly interesting pyrrolidine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000387306100005 Publication Date 2016-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.614 Times cited 27 Open Access OpenAccess  
  Notes ; J.V. and F.D.S. thank Fonds Wetenschappelijk Onderzoek (FWO) and Agency for Innovation by Science and Technology (IWT) for doctoral fellowships. D.D.V. acknowledges IWT and FWO for research project funding. D.D.V. and C.E.A.K. acknowledge the Flemish government for long-term structural funding through Methusalem. D.D.V. and S.B. acknowledge Belspo (IAP-PAI 7/05) for financial support. S.B. is grateful for funding by the European Research Council (ERC starting grant no. 335078-COLOURATOMS). The authors also thank the Department of Chemistry, University of Cologne, Germany for use of their XRD equipment. Finally, the assistance of Karel Duerinckx, Werner Wouters, Walter Vermandel, Ivo Stassen, Dries Jonckheere, Sabina Accardo and Bart Bueken with 11-1 NMR, pressure reactors, CO chemisorption, N<INF>2</INF> physisorption, SEM, gas phase FTIR and high-throughput XRD, respectively, is very much appreciated. ; ecas_Sara Approved Most recent IF: 10.614  
  Call Number UA @ lucian @ c:irua:139171 Serial 4445  
Permanent link to this record
 

 
Author Grzelczak, M.; Sanchez-Iglesias, A.; Heidari, H.; Bals, S.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L.M. url  doi
openurl 
  Title Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles Type A1 Journal article
  Year 2016 Publication ACS Omega Abbreviated Journal  
  Volume 1 Issue 1 Pages 177-181  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is commonly agreed that the crystalline structure of seeds dictates the crystallinity of final nanoparticles in a seeded-growth process. Although the formation of monocrystalline particles does require the use of single-crystal seeds, twin planes may stem from either single-or polycrystalline seeds. However, experimental control over twin-plane formation remains difficult to achieve synthetically. Here, we show that a careful interplay between kinetics and selective surface passivation offers a unique handle over the emergence of twin planes (in decahedra and triangles) during the growth over single-crystalline gold nanoparticles of quasi-spherical shape. Twinning can be suppressed under conditions of slow kinetics in the presence of silver ions, yielding single-crystalline particles with high-index facets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391203300002 Publication Date 2016-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 2470-1343;2470-1343; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 18 Open Access OpenAccess  
  Notes ; This work was supported by the Spanish Ministerio de Economia y Competitividad MINECO (grants: MAT2013-46101-R, MAT2013-49375-EXP, MAT2013-45168-R). Financial support is acknowledged by the European Research Council (ERC Advanced Grant # 267867, PLASMAQUO; ERC Starting Grant #335078-COLOURATOM). ; ecas_Sara Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:140398 Serial 4446  
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A. pdf  url
doi  openurl
  Title Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type A1 Journal article
  Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 159 Issue 159 Pages 179-188  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000388053600021 Publication Date 2016-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 32 Open Access OpenAccess  
  Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial 4450  
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C. pdf  url
openurl 
  Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
  Year 2016 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys  
  Volume 49 Issue 5 Pages 054002-54019  
  Keywords A1 Journal article; Plasma, laser ablation and surface modeling – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record  
  Impact Factor 2.588 Times cited Open Access  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ lucian @ c:irua:129798 Serial 4467  
Permanent link to this record
 

 
Author Krstajić, P.M.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Plasmons and their interaction with electrons in trilayer graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 19 Pages 195423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The interaction between electrons and plasmons in trilayer graphene is investigated within the Overhauser approach resulting in the “plasmaron” quasiparticle. This interaction is cast into a field theoretical problem, and its effect on the energy spectrum is calculated using improved Wigner-Brillouin perturbation theory. The plasmaron spectrum is shifted with respect to the bare electron spectrum by ΔE(k)∼150−200meV for ABC stacked trilayer graphene and for ABA trilayer graphene by ΔE(k)∼30−150 meV[ ΔE(k) ∼1 −5meV] for the hyperbolic (linear) part of the spectrum. The shift in general increases with the electron concentration and electron momentum. The dispersion of plasmarons is more pronounced in ABC stacked than in ABA stacked trilayer graphene, because of the different energy band structure and their different plasmon dispersion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000327239200003 Publication Date 2013-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1098-0121 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by the ESF-EuroGRAPHENE project CON-GRAN, and by the Serbian Ministry of Education and Science, within the Project No. TR 32008. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number CMT @ cmt @ c:irua:112702 Serial 4489  
Permanent link to this record
 

 
Author Benetti, G.; Cavaliere, E.; Canteri, A.; Landini, G.; Rossolini, G.M.; Pallecchi, L.; Chiodi, M.; Van Bael, M.J.; Winckelmans, N.; Bals, S.; Gavioli, L. pdf  url
doi  openurl
  Title Direct synthesis of antimicrobial coatings based on tailored bi-elemental nanoparticles Type A1 Journal article
  Year 2017 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 5 Issue 5 Pages 036105  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Ultrathin coatings based on bi-elemental nanoparticles (NPs) are very promising to limit the surface-related spread of bacterial pathogens, particularly in nosocomial environments. However, tailoring the synthesis, composition, adhesion to substrate, and antimicrobial spectrum of the coating is an open challenge. Herein, we report on a radically new nanostructured coating, obtained by a one-step gas-phase deposition technique, and composed of bi-elemental Janus type Ag/Ti NPs. The NPs are characterized by a cluster-in-cluster mixing phase with metallic Ag nano-crystals embedded in amorphous TiO2 and present a promising antimicrobial activity including also multidrug resistant strains. We demonstrate the flexibility of the method to tune the embedded Ag nano-crystals dimension, the total relative composition of the coating, and the substrate type, opening the possibility of tailoring the dimension, composition, antimicrobial spectrum, and other physical/chemical properties of such multi-elemental systems. This work is expected to significantly spread the range of applications of NPs coatings, not only as an effective tool in the prevention of healthcare-associated infections but also in other technologically relevant fields like sensors or nano-/micro joining.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398951000014 Publication Date 2017-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 21 Open Access OpenAccess  
  Notes We thank Urs Gfeller for the XRF measurements, Francesco Banfi for valuable discussions on the manuscript and Giulio Viano for his valuable support in the microbiological analysis. The authors acknowledge the financial support of Universita Cattolica del Sacro Cuore through D.2.2 and D.3.1 grants and from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). REFERENCES Approved Most recent IF: 4.335  
  Call Number EMAT @ emat @ c:irua:141723UA @ admin @ c:irua:141723 Serial 4479  
Permanent link to this record
 

 
Author Tunca, B.; Lapauw, T.; Karakulina, O.M.; Batuk, M.; Cabioc’h, T.; Hadermann, J.; Delville, R.; Lambrinou, K.; Vleugels, J. pdf  url
doi  openurl
  Title Synthesis of MAX Phases in the Zr-Ti-Al-C System Type A1 Journal article
  Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 56 Issue 56 Pages 3489-3498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti)n+1AlCn system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350–1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl2, ZrAl3, and Zr2Al3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard’s law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard’s law around the (Zr0.33,Ti0.67)3Al1.2C1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M6X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397171100045 Publication Date 2017-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 26 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0431.10N.F ; Agentschap voor Innovatie door Wetenschap en Technologie, 131081 ; European Atomic Energy Community, 604862 ; SCK-CEN Academy for Nuclear Science and Technology; Hercules Foundation, Project/Award no: AKUL/1319 Project/Award no: ZW09-09 ; Approved Most recent IF: 4.857  
  Call Number EMAT @ emat @ c:irua:141794 Serial 4491  
Permanent link to this record
 

 
Author Belov, I.; Vanneste, J.; Aghaee, M.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Synthesis of Micro- and Nanomaterials in CO2and CO Dielectric Barrier Discharges: Synthesis of Micro- and Nanomaterials… Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600065  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Dielectric Barrier Discharges operating in CO and CO2 form solid products at atmospheric pressure. The main differences between both plasmas and their deposits were analyzed, at similar energy input. GC measurements revealed a mixture of CO2, CO, and O2 in the CO2 DBD exhaust, while no O2 was found in the CO plasma. A coating of nanoparticles composed of Fe, O, and C was produced by the CO2 discharge, whereas, a microscopic dendrite-like carbon structure was formed in the CO plasma. Fe3O4 and Fe crystalline phases were found in the CO2 sample. The CO

deposition was characterized as an amorphous structure, close to polymeric CO (p-CO). Interestingly, p-CO is not formed in the CO2 plasma, in spite of the significant amounts of CO produced (up to 30% in the reactor exhaust).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397476000007 Publication Date 2016-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 10 Open Access Not_Open_Access  
  Notes European Union Seventh Framework Programme FP7-PEOPLE-2013-ITN, 606889 ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:141759 Serial 4487  
Permanent link to this record
 

 
Author Laroussi, M.; Bogaerts, A.; Barekzi, N. pdf  url
doi  openurl
  Title Plasma processes and polymers third special issue on plasma and cancer Type Editorial
  Year 2016 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 13 Issue 13 Pages 1142-1143  
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393131600001 Publication Date 2016-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:141546 Serial 4474  
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P. pdf  openurl
  Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.  
  Address  
  Corporate Author Thesis  
  Publisher Masarykova univ Place of Publication Brno Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141553 Serial 4526  
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. pdf  doi
openurl 
  Title Two-dimensional hexagonal tin : ab initio geometry, stability, electronic structure and functionalization Type A1 Journal article
  Year 2014 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 1 Issue Pages 021004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the structural, mechanical and electronic properties of the two-dimensional (2D) allotrope of tin: tinene/stanene using first-principles calculation within density functional theory, implemented in a set of computer codes. Continuing the trend of the group-IV 2D materials graphene, silicene and germanene; tinene is predicted to have a honeycomb lattice with lattice parameter of a(0) = 4.62 angstrom and a buckling of d(0) = 0.92 angstrom. The electronic dispersion shows a Dirac cone with zero gap at the Fermi energy and a Fermi velocity of v(F) = 0.97 x 10(6) m s(-1); including spin-orbit coupling yields a bandgap of 0.10 eV. The monolayer is thermally stable up to 700 K, as indicated by first-principles molecular dynamics, and has a phonon dispersion without imaginary frequencies. We explore applied electric field and applied strain as functionalization mechanisms. Combining these two mechanisms allows for an induced bandgap up to 0.21 eV, whilst retaining the linear dispersion, albeit with degraded electronic transport parameters.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000353650400004 Publication Date 2014-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 58 Open Access  
  Notes Approved Most recent IF: 6.937; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:134432 Serial 4530  
Permanent link to this record
 

 
Author Martens, J.A.; Bogaerts, A.; De Kimpe, N.; Jacobs, P.A.; Marin, G.B.; Rabaey, K.; Saeys, M.; Verhelst, S. pdf  url
doi  openurl
  Title The Chemical Route to a Carbon Dioxide Neutral World Type A1 Journal article
  Year 2017 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 10 Issue 10 Pages 1039-1055  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Excessive CO2 emissions in the atmosphere from anthropogenic activity can be divided into point sources and diffuse sources. The capture of CO2 from flue gases of large industrial installations and its conversion into fuels and chemicals with fast catalytic processes seems technically possible. Some emerging technologies are already being demonstrated on an industrial scale. Others are still being tested on a laboratory or pilot scale. These emerging chemical technologies can be implemented in a time window ranging from 5 to 20 years. The massive amounts of energy needed for capturing processes and the conversion of CO2 should come from low-carbon energy sources, such as tidal, geothermal, and nuclear energy, but also, mainly, from the sun. Synthetic methane gas that can be formed from CO2 and hydrogen gas is an attractive renewable energy carrier with an existing distribution system. Methanol offers advantages as a liquid fuel and is also a building block for the chemical industry. CO2 emissions from diffuse sources is a difficult problem to solve, particularly for CO2 emissions from road, water, and air transport, but steady progress in the development of technology for capturing CO2 from air is being made. It is impossible to ban carbon from the entire energy

supply of mankind with the current technological knowledge, but a transition to a mixed carbon–hydrogen economy can reduce net CO2 emissions and ultimately lead to a CO2-neutral world.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398182800002 Publication Date 2017-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.226 Times cited 75 Open Access OpenAccess  
  Notes This paper is written by members of the Royal Flemish Academy of Belgium for Science and the Arts (KVAB) and external experts. KVAB is acknowledged for supporting the writing and publishing of this viewpoint. Valuable suggestions made by colleagues Jan Kretzschmar, Stan Ulens, and Luc Sterckx are highly appreciated. Special thanks go to Mr. Bert Seghers and Mrs. N. Boelens of KVAB for practical assistance. Mr. Tim Lacoere is acknowledged for graphic design and layout of the figures, and Steven Heylen and Elke Verheyen are acknowledged for data collection and editorial assistance. Approved Most recent IF: 7.226  
  Call Number PLASMANT @ plasmant @ c:irua:141916 Serial 4532  
Permanent link to this record
 

 
Author Mulkers, J.; Van Waeyenberge, B.; Milošević, M.V. url  doi
openurl 
  Title Effects of spatially engineered Dzyaloshinskii-Moriya interaction in ferromagnetic films Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 144401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Dzyaloshinskii-Moriya interaction (DMI) is a chiral interaction that favors formation of domain walls. Recent experiments and ab initio calculations show that there are multiple ways to modify the strength of the interfacially induced DMI in thin ferromagnetic films with perpendicular magnetic anisotropy. In this paper we reveal theoretically the effects of spatially varied DMI on the magnetic state in thin films. In such heterochiral 2D structures we report several emergent phenomena, ranging from the equilibrium spin canting at the interface between regions with different DMI, over particularly strong confinement of domain walls and skyrmions within high-DMI tracks, to advanced applications such as domain tailoring nearly at will, design of magnonic waveguides, and much improved skyrmion racetrack memory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399382100003 Publication Date 2017-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 60 Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G098917N ; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:141917 Serial 4534  
Permanent link to this record
 

 
Author Willhammar, T.; Sentosun, K.; Mourdikoudis, S.; Goris, B.; Kurttepeli, M.; Bercx, M.; Lamoen, D.; Partoens, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L.M.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 8 Pages 14925  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Copper chalcogenides find applications in different domains including photonics, photothermal therapy and photovoltaics. CuTe nanocrystals have been proposed as an alternative to noble metal particles for plasmonics. Although it is known that deviations from stoichiometry are a prerequisite for plasmonic activity in the near-infrared, an accurate description of the material and its (optical) properties is hindered by an insufficient understanding of the atomic structure and the influence of defects, especially for materials in their nanocrystalline form. We demonstrate that the structure of Cu1.5±xTe nanocrystals canbe determined using electron diffraction tomography. Real-space high-resolution electron tomography directly reveals the three-dimensional distribution of vacancies in the structure. Through first-principles density functional theory, we furthermore demonstrate that the influence of these vacancies on the optical properties of the nanocrystals is determined. Since our methodology is applicable to a variety of crystalline nanostructured materials, it is expected to provide unique insights concerning structure–property correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397799700001 Publication Date 2017-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 37 Open Access OpenAccess  
  Notes The work was financially supported by the European Research Council through an ERC Starting Grant (#335078-COLOURATOMS). T.W. acknowledges the Swedish Research Council for an international postdoc grant. We acknowledge financial support of FWO-Vlaanderen through project G.0216.14N, G.0369.15N and a postdoctoral research grant to B.G. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government–Department EWI. The work was further supported by the Spanish MINECO (MAT2013-45168-R). S.M. thanks the Action ooSupporting Postdoctoral Researchers44 of the Operational Program ‘Education and Lifelong Learning’ (Action’s Beneficiary: General Secretariat for Research and Technology of Greece), which was co-financed by the European Social Fund (ESF) and the Greek State. (ROMEO:green; preprint:; postprint:can ; pdfversion:can); ECAS_Sara Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:142203UA @ admin @ c:irua:142203 Serial 4538  
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V. doi  openurl
  Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
  Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater  
  Volume 26 Issue 38 Pages 6554-6559  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)  
  Abstract The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343763200004 Publication Date 2014-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1521-4095 ISBN Additional Links  
  Impact Factor 19.791 Times cited 34 Open Access  
  Notes Approved Most recent IF: 19.791; 2014 IF: NA  
  Call Number EMAT @ emat @ Serial 4541  
Permanent link to this record
 

 
Author N. Gauquelin, E. Benckiser, M. K. Kinyanjui, M. Wu, Y. Lu, G. Christiani, G. Logvenov, H.-U. Habermeier, U. Kaiser, B. Keimer, and G. A. Botton url  doi
openurl 
  Title Atomically resolved EELS mapping of the interfacial structure of epitaxially strained LaNiO3/LaAlO3 superlattices Type A1 Journal Article
  Year 2014 Publication Physical Review B Abbreviated Journal  
  Volume 90 Issue Pages 195140  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The interfacial atomic structure of a metallic LaNiO3/LaAlO3 superlattice grown on a LaSrAlO4 substrate was

investigated using a combination of atomically resolved electron energy loss spectroscopy (EELS) at the Al K,

Al L2,3, Sr L2,3, Ni L2,3, La M4,5, and O K edges as well as hybridization mapping of selected features of the O

K-edge fine structure.We observe an additional La1−xSrxAl1−yNiyO3 layer at the substrate-superlattice interface,

possibly linked to diffusion of Al and Sr into the growing film or a surface reconstruction due to Sr segregation.

The roughness of the LaNiO3/LaAlO3 interfaces is found to be on average around one pseudocubic unit cell. The

O K-edge EELS spectra revealed reduced spectral weight of the prepeak derived from Ni-O hybridized states in

the LaNiO3 layers. We rule out oxygen nonstoichiometry of the LaNiO3 layers and discuss changes in the Ni-O

hybridization due to heterostructuring as possible origin.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345467000003 Publication Date 2014-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 17 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4544  
Permanent link to this record
 

 
Author M. K. Kinyanjui, N. Gauquelin, E. Benckiser, H. –U. Habermeier, B. Keimer, U. Kaiser and G.A. Botton doi  openurl
  Title Local lattice distortion and anisotropic modulation in Epitaxially Strained LaNiO3/LaAlO3 hetero-structures Type A1 Journal Article
  Year 2014 Publication Applied Physics Letters Abbreviated Journal  
  Volume 104 Issue Pages 221909  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Using a complementary combination of x-ray diffraction and atomically resolved imaging we investigated the lattice structure of epitaxial LaNiO3/LaAlO3 superlattices grown on a compressive-strain inducing LaSrAlO4 (001) substrate. A refinement of the structure obtained from the x-ray data revealed the monoclinic I 2/c 1 1 space group. The (Ni/Al)O6 octahedral rotation angle perpendicular to the superlattice plane is enhanced, and the one parallel to the plane is reduced with respect to the corresponding bulk values. High-angle annular dark field imaging was used to determine the lattice parameters within the superlattice unit cell. High-resolution electron microscopy images of the oxygen atoms are consistent with the x-ray results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000337161700029 Publication Date 2014-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN ISBN Additional Links  
  Impact Factor Times cited 22 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number EMAT @ emat @ Serial 4545  
Permanent link to this record
 

 
Author Guzzinati, G.; Béché, A.; Lourenço-Martins, H.; Martin, J.; Kociak, M.; Verbeeck, J. pdf  url
doi  openurl
  Title Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 8 Pages 14999  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Plasmonics, the science and technology of the interaction of light with metallic objects, is fundamentally changing the way we can detect, generate and manipulate light. Although the field is progressing swiftly, thanks to the availability of nanoscale manufacturing and analysis methods, fundamental properties such as the plasmonic excitations’ symmetries cannot be accessed directly, leading to a partial, sometimes incorrect, understanding of their properties. Here we overcome this limitation by deliberately shaping the wave function of an electron beam to match a plasmonic excitations’ symmetry in a modified transmission electron microscope. We show experimentally and theoretically that this offers selective detection of specific plasmon modes within metallic nanoparticles, while excluding modes with other symmetries. This method resembles the widespread use of polarized light for the selective excitation of plasmon modes with the advantage of locally probing the response of individual plasmonic objects and a far wider range of symmetry selection criteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399084300001 Publication Date 2017-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 84 Open Access OpenAccess  
  Notes ; We thank F.J. Garcia de Abajo and D.M. Ugarte for interesting and fruitful discussion. This work was supported by funding from the European Research Council under the 7th Framework Program (FP7) ERC Starting Grant 278510 VORTEX. Financial support from the European Union under the Framework 7 program under a contract for an Integrated Infrastructure Initiative (Reference number 312483 ESTEEM2) is also gratefully acknowledged. Aluminum nanostructures were fabricated using the Nanomat nanofabrication facility. ; Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @ c:irua:142205UA @ admin @ c:irua:142205 Serial 4548  
Permanent link to this record
 

 
Author Tennyson, J.; Rahimi, S.; Hill, C.; Tse, L.; Vibhakar, A.; Akello-Egwel, D.; Brown, D.B.; Dzarasova, A.; Hamilton, J.R.; Jaksch, D.; Mohr, S.; Wren-Little, K.; Bruckmeier, J.; Agarwal, A.; Bartschat, K.; Bogaerts, A.; Booth, J.-P.; Goeckner, M.J.; Hassouni, K.; Itikawa, Y.; Braams, B.J.; Krishnakumar, E.; Laricchiuta, A.; Mason, N.J.; Pandey, S.; Petrovic, Z.L.; Pu, Y.-K.; Ranjan, A.; Rauf, S.; Schulze, J.; Turner, M.M.; Ventzek, P.; Whitehead, J.C.; Yoon, J.-S. url  doi
openurl 
  Title QDB: a new database of plasma chemistries and reactions Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 055014  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract One of the most challenging and recurring problems when modeling plasmas is the lack of data on the key atomic and molecular reactions that drive plasma processes. Even when there are data for some reactions, complete and validated datasets of chemistries are rarely available. This hinders research on plasma processes and curbs development of industrial applications. The QDB project aims to address this problem by providing a platform for provision, exchange, and validation of chemistry datasets. A new data model developed for QDB is presented. QDB collates published data on both electron scattering and heavy-particle reactions. These data are formed into reaction sets, which are then validated against experimental data where possible. This process produces both complete chemistry sets and identifies key reactions that are currently unreported in the literature. Gaps in the datasets can be filled using established theoretical methods. Initial validated chemistry sets for SF6/CF4/O2 and SF6/CF4/N2/H2 are presented as examples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398394500001 Publication Date 2017-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 18 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:142206 Serial 4549  
Permanent link to this record
 

 
Author Smolin, S.Y.; Choquette, A.K.; Wilks, R.G.; Gauquelin, N.; Félix, R.; Gerlach, D.; Ueda, S.; Krick, A.L.; Verbeeck, J.; Bär, M.; Baxter, J.B.; May, S.J. pdf  doi
openurl 
  Title Energy Level Alignment and Cation Charge States at the LaFeO3/LaMnO3(001) Heterointerface Type A1 Journal article
  Year 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 4 Issue 4 Pages 1700183  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electronic properties of LaFeO 3 /LaMnO 3 epitaxial heterojunctions are investigated to determine the valence and conduction band offsets and the nominal Mn and Fe valence states at the interface. Studying a systematic series of (LaFeO 3 ) n /(LaMnO 3 ) m bilayers (m ≈ 50) epitaxially grown in the (001) orientation using molecular beam epitaxy, layer-resolved electron energy loss spectroscopy reveals a lack of significant interfacial charge transfer, with a nominal 3+ valence state observed for both Mn and Fe across the interface. Through a combination of variable angle spectroscopic ellipsometry and hard X-ray photoelectron spectroscopy, type I energy level alignments are obtained at the LaFeO 3 /LaMnO 3 interface with positive valence and conduction band offsets of (1.20 ± 0.07) eV and (0.5–0.7 ± 0.3) eV, respectively, with minimal band bending. Variable temperature resistivity measurements reveal that the bilayers remain insulating and that the presence of the heterojunction does not result in a conducting interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000406068400011 Publication Date 2017-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 14 Open Access Not_Open_Access  
  Notes The authors thank Dmytro Nykypanchuk for assistance with the near- infrared ellipsometry measurement of the LaMnO 3 film. S.Y.S., A.K.C., J.B.B, and S.J.M. acknowledge funding from the National Science Foundation under grant number ECCS-1201957. S.Y.S. acknowledges additional funding from the German Academic Exchange Service (DAAD) through the Research Internships in Science and Engineering (RISE) professional program 2015 ID 5708457. A.L.K. was funded by the National Science Foundation under grant number DMR-1151649. J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Ellipsometry measurements of the LaMnO 3 film were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-ACO2-98CH10886. S.U. would like to thank the staff of HiSOR, Hiroshima University, and JAEA/Spring-8 for the development of HAXPES at BL15XU of SPring-8. The HAXPES measurements were performed with approval of NIMS Synchrotron X-ray Station (Proposal No. 2015B4601), and were partly supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors also thank HZB for the allocation of synchrotron radiation beamtime for HAXPES/XANES measurements. R.G.W., R.F, and M.B. are grateful to the Impuls- und Vernetzungsfonds of the Helmholtz Association (VH-NG-423).; National Science Foundation, ECCS-1201957 DMR-1151649 ; Deutscher Akademischer Austauschdienst, 2015 ID 5708457 ; GOA project; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Flemish Government; U.S. Department of Energy, DE-ACO2-98CH10886 ; Vernetzungsfonds of the Helmholtz Association, VH-NG-423 ; Approved Most recent IF: 4.279  
  Call Number EMAT @ emat @ c:irua:142346UA @ admin @ c:irua:142346 Serial 4553  
Permanent link to this record
 

 
Author Ghidelli, M.; Idrissi, H.; Gravier, S.; Blandin, J.-J.; Raskin, J.-P.; Schryvers, D.; Pardoen, T. pdf  url
doi  openurl
  Title Homogeneous flow and size dependent mechanical behavior in highly ductile Zr 65 Ni 35 metallic glass films Type A1 Journal article
  Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 131 Issue 131 Pages 246-259  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Motivated by recent studies demonstrating a high strength – high ductility potential of nano-scale metallic glass samples, the mechanical response of freestanding Zr65Ni35 film with sub-micron thickness has been investigated by combining advanced on-chip tensile testing and electron microscopy. Large deformation up to 15% is found for specimen thicknesses below 500 nm with variations depending on specimen size and frame compliance. The deformation is homogenous until fracture, with no evidence of shear banding. The yield stress is doubled when decreasing the specimen cross-section, reaching ~3 GPa for small cross-sections. The fracture strain variation is related to both the stability of the test device and to the specimen size. The study concludes on clear disconnect between the mechanisms controlling the onset of plasticity and the fracture process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000402343400023 Publication Date 2017-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 42 Open Access OpenAccess  
  Notes This work has been funded by the Belgian Science Policy through the IAP 7/21 project. We acknowledge IDS-FunMat for the PhD financial support.We thank the Renatech network and the PTA (Plateforme Technologique Amont) in Grenoble (France) for TFMG deposition facilities. The WINFAB infrastructure at the UCL and the help of R. Vayrette and M. Coulombier for the on-chip tests. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 5.301  
  Call Number EMAT @ emat @ c:irua:142642 Serial 4562  
Permanent link to this record
 

 
Author Han, F.W.; Xu, W.; Li, L.L.; Zhang, C.; Dong, H.M.; Peeters, F.M. url  doi
openurl 
  Title Electronic and transport properties of n-type monolayer black phosphorus at low temperatures Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 95 Issue 95 Pages 115436  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of the electronic and transport properties of monolayer black phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic systems as advanced electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000399140700012 Publication Date 2017-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes National Natural Science Foundation of China, 11574319 11304316 11304317 11604380 ; Ministry of Science and Technology of the People's Republic of China, 2011YQ130018 ; Chinese Academy of Sciences; Approved Most recent IF: 3.836  
  Call Number CMT @ cmt @ c:irua:142431 Serial 4564  
Permanent link to this record
 

 
Author Georgieva, V.; Berthelot, A.; Silva, T.; Kolev, S.; Graef, W.; Britun, N.; Chen, G.; van der Mullen, J.; Godfroid, T.; Mihailova, D.; van Dijk, J.; Snyders, R.; Bogaerts, A.; Delplancke-Ogletree, M.-P. pdf  url
doi  openurl
  Title Understanding Microwave Surface-Wave Sustained Plasmas at Intermediate Pressure by 2D Modeling and Experiments: Understanding Microwave Surface-Wave Sustained Plasmas … Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600185  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract An Ar plasma sustained by a surfaguide wave launcher is investigated at intermediate pressure (200–2667 Pa). Two 2D self-consistent models (quasi-neutral and plasma bulk-sheath) are developed and benchmarked. The complete set of electromagnetic and fluid equations and the boundary conditions are presented. The transformation of fluid equations from a local reference frame, that is, moving with plasma or when the gas flow is zero, to a laboratory reference frame, that is,

accounting for the gas flow, is discussed. The pressure range is extended down to 80 Pa by experimental measurements. The electron temperature decreases with pressure. The electron density depends linearly on power, and changes its behavior with pressure depending on the product of pressure and radial plasma size.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403074000012 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 8 Open Access Not_Open_Access  
  Notes Federaal Wetenschapsbeleid; European Marie Curie RAPID project; European Union's Seventh Framework Programme, 606889 ; Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @ c:irua:142807 Serial 4568  
Permanent link to this record
 

 
Author Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M. url  doi
openurl 
  Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 11 Pages 6277-6285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404808000110 Publication Date 2017-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 12 Open Access OpenAccess  
  Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @ c:irua:143192 Serial 4569  
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Mattelaer, F.; Cott, D.J.; Vereecken, P.; Dendooven, J.; Detavernier, C.; Bals, S. url  doi
openurl 
  Title Heterogeneous TiO2/V2O5/Carbon Nanotube Electrodes for Lithium-Ion Batteries Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 8055-8064  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Vanadium pentoxide (V2O5) is proposed and investigated as a cathode material for lithium-ion (Li-ion) batteries. However, the dissolution of V2O5 during the charge/discharge remains as an issue at the V2O5–electrolyte interface. In this work, we present a heterogeneous nanostructure with carbon nanotubes supported V2O5/titanium dioxide (TiO2) multilayers as electrodes for thin-film Li-ion batteries. Atomic layer deposition of V2O5 on carbon nanotubes provides enhanced Li storage capacity and high rate performance. An additional TiO2 layer leads to increased morphological stability and in return higher electrochemical cycling performance of V2O5/carbon nanotubes. The physical and chemical properties of TiO2/V2O5/carbon nanotubes are characterized by cyclic voltammetry and charge/discharge measurements as well as electron microscopy. The detailed mechanism of the protective TiO2 layer to improve the electrochemical cycling stability of the V2O5 is unveiled.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000396186000021 Publication Date 2017-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 28 Open Access OpenAccess  
  Notes European Research Council, 239865 335078 ; Fonds Wetenschappelijk Onderzoek; Agentschap voor Innovatie door Wetenschap en Technologie, 18142 ; Bijzonder Onderzoeksfonds, GOA – 01G01513 ; This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865 and No. 335078), by IWT-Flanders (SBO project IWT 18142 “SoS-Lion”) and by the Special Research Fund BOF of Ghent University (GOA – 01G01513); colouratoms (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @ c:irua:142446UA @ admin @ c:irua:142446 Serial 4572  
Permanent link to this record
 

 
Author Bliokh, K.Y.; Ivanov, I.P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M.A.; Schattschneider, P.; Nori, F.; Verbeeck, J. url  doi
openurl 
  Title Theory and applications of free-electron vortex states Type A1 Journal article
  Year 2017 Publication Physics reports Abbreviated Journal Phys Rep  
  Volume 690 Issue 690 Pages 1-70  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000406169900001 Publication Date 2017-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 0370-1573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.425 Times cited 210 Open Access OpenAccess  
  Notes AFOSR, FA9550-14-1-0040 ; CREST, JPMJCR1676 ; Portuguese Fundação para a Ciência e a Tecnologia (FCT), IF/00989/2014/CP1214/CT0004 ; Austrian Science Fund, I543-N20 ; ERC, 278510 VORTEX ; We acknowledge discussions with Mark R. Dennis and Andrei Afanasev. This work was supported by the RIKEN Interdisciplinary Theoretical Science Research Group (iTHES) Project, the Multi-University Research Initiative (MURI) Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-14-1-0040), Grant-in-Aid for Scientific Research (A), Core Research for Evolutionary Science and Technology (CREST), the John Templeton Foundation, the Australian Research Council, the Portuguese Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) (contract IF/00989/2014/CP1214/CT0004 under the IF2014 Program), contracts UID/FIS/00777/2013 and CERN/FIS-NUC/0010/2015 (partially funded through POCTI, COMPETE, QREN, and the European Union), Austrian Science Fund Grant No. I543-N20, the European Research Council under the 7th Framework Program (FP7) (ERC Starting Grant No. 278510 VORTEX), and FWO PhD Fellowship grants (Aspirant Fonds Wetenschappelijk OnderzoekVlaanderen). Approved Most recent IF: 17.425  
  Call Number EMAT @ emat @ c:irua:143262 Serial 4574  
Permanent link to this record
 

 
Author Ishikawa, K.; Karahashi, K.; Ichiki, T.; Chang, J.P.; George, S.M.; Kessels, W.M.M.; Lee, H.J.; Tinck, S.; Um, J.H.; Kinoshita, K. pdf  url
doi  openurl
  Title Progress and prospects in nanoscale dry processes: How can we control atomic layer reactions? Type A1 Journal article
  Year 2017 Publication Japanese journal of applied physics Abbreviated Journal Jpn J Appl Phys  
  Volume 56 Issue 56 Pages 06HA02  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this review, we discuss the progress of emerging dry processes for nanoscale fabrication. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands in achieving atomic-level control of material selectivity and physicochemical reactions involving ion bombardment. The discussion encompasses major challenges shared across the plasma science and technology community. Focus is placed on advances in the development of fabrication technologies for emerging materials, especially metallic and intermetallic compounds and multiferroic, and two-dimensional (2D) materials, as well as state-of-the-art techniques used in nanoscale semiconductor manufacturing with a brief summary of future challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425887900001 Publication Date 2017-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue (down) Edition  
  ISSN 0021-4922 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.384 Times cited 18 Open Access OpenAccess  
  Notes The authors would like to thank Drs. Masanobu Honda, Miyako Matsui, Tomohiro Okumura, Tetsuya Tatsumi, Satoshi Hamaguchi, Hiroto Ohtake, Yoshinobu Ohya, Kazunori Shinoda, Masaru Izawa, Hisataka Hayashi, Toshio Hayashi, Makoto Sekine, and Masaru Hori, and all members of the Program and Publication Committee of the 38th International Symposium on Dry Process 2016 held in Sapporo, Japan, as well as Nicholas Altieri and Jeffrey Chang at UCLA for proofreading and providing feedback on the manuscript. Approved Most recent IF: 1.384  
  Call Number PLASMANT @ plasmant @ c:irua:143872 Serial 4576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: