|
Record |
Links |
|
Author |
Tunca, B.; Lapauw, T.; Karakulina, O.M.; Batuk, M.; Cabioc’h, T.; Hadermann, J.; Delville, R.; Lambrinou, K.; Vleugels, J. |
|
|
Title |
Synthesis of MAX Phases in the Zr-Ti-Al-C System |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Inorganic chemistry |
Abbreviated Journal |
Inorg Chem |
|
|
Volume |
56 |
Issue |
56 |
Pages |
3489-3498 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
This study reports on the synthesis and characterization of MAX phases in the (Zr,Ti)n+1AlCn system. The MAX phases were synthesized by reactive hot pressing and pressureless sintering in the 1350–1700 °C temperature range. The produced ceramics contained large fractions of 211 and 312 (n = 1, 2) MAX phases, while strong evidence of a 413 (n = 3) stacking was found. Moreover, (Zr,Ti)C, ZrAl2, ZrAl3, and Zr2Al3 were present as secondary phases. In general, the lattice parameters of the hexagonal 211 and 312 phases followed Vegard’s law over the complete Zr-Ti solid solution range, but the 312 phase showed a non-negligible deviation from Vegard’s law around the (Zr0.33,Ti0.67)3Al1.2C1.6 stoichiometry. High-resolution scanning transmission electron microscopy combined with X-ray diffraction demonstrated ordering of the Zr and Ti atoms in the 312 phase, whereby Zr atoms occupied preferentially the central position in the close-packed M6X octahedral layers. The same ordering was also observed in 413 stackings present within the 312 phase. The decomposition of the secondary (Zr,Ti)C phase was attributed to the miscibility gap in the ZrC-TiC system. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000397171100045 |
Publication Date |
2017-03-20 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0020-1669 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.857 |
Times cited |
26 |
Open Access |
OpenAccess |
|
|
Notes |
Fonds Wetenschappelijk Onderzoek, G.0431.10N.F ; Agentschap voor Innovatie door Wetenschap en Technologie, 131081 ; European Atomic Energy Community, 604862 ; SCK-CEN Academy for Nuclear Science and Technology; Hercules Foundation, Project/Award no: AKUL/1319 Project/Award no: ZW09-09 ; |
Approved |
Most recent IF: 4.857 |
|
|
Call Number |
EMAT @ emat @ c:irua:141794 |
Serial |
4491 |
|
Permanent link to this record |