|   | 
Details
   web
Records
Author Zhuge, X.; Jinnai, H.; Dunin-Borkowski, R.E.; Migunov, V.; Bals, S.; Cool, P.; Bons, A.-J.; Batenburg, K.J.
Title Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 175 Issue 175 Pages 87-96
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new

iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the

proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403342500008 Publication Date 2017-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 22 Open Access OpenAccess
Notes (up) This work has been supported in part by the Stichting voor de Technische Wetenschappen (STW) through a personal grant (Veni,13610), and was in part by ExxonMobil Chemical Europe Inc. The authors further acknowledge financial support from the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). R.D.B. is grateful for funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ ERC grant agreement number 320832. Thomas Altantzis is gratefully acknowledged for acquiring the Anatase nanosheets dataset. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.843
Call Number EMAT @ emat @ c:irua:141218UA @ admin @ c:irua:141218 Serial 4485
Permanent link to this record
 

 
Author Caglak, E.; Govers, K.; Lamoen, D.; Labeau, P.-E.; Verwerft, M.
Title Atomic scale analysis of defect clustering and predictions of their concentrations in UO2+x Type A1 Journal article
Year 2020 Publication Journal Of Nuclear Materials Abbreviated Journal J Nucl Mater
Volume 541 Issue Pages 152403
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The physical properties of uranium dioxide vary greatly with stoichiometry. Oxidation towards hyperstoichiometric UO2 – UO2+x – might be encountered at various stages of the nuclear fuel cycle if oxidative conditions are met; the impact of stoichiometry changes upon physical properties should therefore be properly assessed to ensure safe and reliable operations. These physical properties are intimately linked to the arrangement of atomic defects in the crystalline structure. The evolution of the defect concentration with environmental parameters – oxygen partial pressure and temperature – were evaluated by means of a point defect model where the reaction energies are derived from atomic-scale simulations. To this end, various configurations and net charge states of oxygen interstitial clusters in UO2 have been calculated. Various methodologies have been tested to determine the optimum cluster configurations and a rigid lattice approach turned out to be the most useful strategy to optimize defect configuration structures. Ultimately, results from the point defect model were discussed and compared to experimental measurements of stoichiometry dependence on oxygen partial pressure and temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000575165800006 Publication Date 2020-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access OpenAccess
Notes (up) This work is dedicated to the memory of Prof. Alain Dubus, ULB, Bruxelles, Belgium. Financial support from the SCK CEN is gratefully acknowledged. Approved Most recent IF: 3.1; 2020 IF: 2.048
Call Number EMAT @ emat @c:irua:172464 Serial 6402
Permanent link to this record
 

 
Author Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D.
Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 118 Issue 118 Pages 352-362
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383292000042 Publication Date 2016-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes (up) This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714
Call Number EMAT @ emat @ c:irua:137171 Serial 4334
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C.
Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 49 Issue 49 Pages 054002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma–biomolecule interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368944100003 Publication Date 2015-12-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 11 Open Access
Notes (up) This work is financially supported by the Fund for Scientific Research Flanders (FWO) and the Francqui Foundation. The calculations were carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 2.588
Call Number c:irua:131571 Serial 3985
Permanent link to this record
 

 
Author Yusupov, M.; Van der Paal, J.; Neyts, E.C.; Bogaerts, A.
Title Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes Type A1 Journal article
Year 2017 Publication Biochimica et biophysica acta : G : general subjects Abbreviated Journal Bba-Gen Subjects
Volume 1861 Issue 1861 Pages 839-847
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Background: Strong electric fields are knownto affect cell membrane permeability,which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on howthis affects the cell membrane permeability.

Method: We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.

Results and conclusions:Weshow howoxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.

General significance: This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000397366200012 Publication Date 2017-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-4165 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.702 Times cited Open Access OpenAccess
Notes (up) This work is financially supported by the Fund for Scientific Research Flanders (FWO; grant numbers: 1200216N and 11U5416N). The work was carried out using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flem Approved Most recent IF: 4.702
Call Number PLASMANT @ plasmant @ c:irua:140095 Serial 4413
Permanent link to this record
 

 
Author Ji, G.; Tan, Z.; Lu, Y.; Schryvers, D.; Li, Z.; Zhang, D.
Title Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 112 Issue 112 Pages 129-133
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Heterogeneous Al/Al4C3/Al2O3/diamond{111}, Al/nanolayered Al4C3/diamond{111} and Al12W particle/Al4C3/Al2O3/diamond{111} multi-interfaces have been developed at the nanoscale in a W-coated diamond/Al composite produced by vacuum hot pressing. The formation of nanoscale Al4C3 crystals is strongly associated with local O enrichment and can be further promoted by Al12W interfacial particles. The latter effectively contributes to enhance interfacial chemical bonding reducing interfacial thermal resistance and, in turn, enhancing thermal conductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370109200015 Publication Date 2015-12-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 7 Open Access
Notes (up) This work is financially supported by the FWO project of Belgium (No. U2 FA 070100/3506), the travel funding BQR (No. R8DIV AUE) provided by Université Lille 1, the National Natural Science Foundation of China (Grant No. 51401123) and the China Postdoctoral Science Foundation (Grant No. 2014 M561469) for Dr. Z.Q. Tan. Dr. W.G. Grünewald (LeicaMicrosystems, Germany) is also thanked for the assistance of surface preparation. Approved Most recent IF: 2.714
Call Number c:irua:129976 Serial 3987
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
Title Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 065023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368117100028 Publication Date 2015-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 12 Open Access
Notes (up) This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:129214 Serial 3952
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A.
Title Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 015003
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present a 3D and 2D Cartesian quasi-neutral plasma model for a low current argon gliding arc discharge, including strong interactions between the gas flow and arc plasma column.

The 3D model is applied only for a short time of 0.2 ms due to its huge computational cost. It mainly serves to verify the reliability of the 2D model. As the results in 2D compare well with those in 3D, they can be used for a better understanding of the gliding arc basic characteristics. More specifically, we investigate the back-breakdown phenomenon induced by an artificially controlled plasma channel, and we discuss its effect on the gliding arc characteristics. The

back-breakdown phenomenon, or backward-jump motion of the arc, as observed in the experiments, results in a drop of the gas temperature, as well as in a delay of the arc velocity with respect to the gas flow velocity, allowing more gas to pass through the arc, and thus increasing the efficiency of the gliding arc for gas treatment applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419253000001 Publication Date 2016-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 9 Open Access OpenAccess
Notes (up) This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). S R Sun thanks the financial support from the China Scholarship Council. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:138993 Serial 4337
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A.
Title Investigations of discharge and post-discharge in a gliding arc: a 3D computational study Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 055017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study we quantitatively investigate for the first time the plasma characteristics of an argon gliding arc with a 3D model. The model is validated by comparison with available experimental data from literature and a reasonable agreement is obtained for the calculated gas temperature and electron density. A complete arc cycle is modeled from initial ignition to arc decay. We investigate how the plasma characteristics, i.e., the electron temperature, gas temperature,

reduced electric field, and the densities of electrons, Ar+ and Ar2+ ions and Ar(4s) excited states, vary over one complete arc cycle, including their behavior in the discharge and post-discharge. These plasma characteristics exhibit a different evolution over one arc cycle, indicating that either the active discharge stage or the post-discharge stage can be beneficial for certain applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399278100002 Publication Date 2017-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 11 Open Access OpenAccess
Notes (up) This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). SR Sun thanks the financial support from the China Scholarship Council (CSC). Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:142204 Serial 4550
Permanent link to this record
 

 
Author Tang, Y.; Chen, Z.; Borbely, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.; Wang, H.W.
Title Quantitative study of particle size distribution in an in-situ grown Al-TiB2 composite by synchrotron X-ray diffraction and electron microscopy Type A1 Journal article
Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 102 Issue 102 Pages 131-136
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Synchrotron X-ray diffraction and transmission electron microscopy (TEM) were applied to quantitatively characterize the average particle size and size distribution of free-standing TiB2 particles and TiB2 particles in an insitu grown Al–TiB2 composite. The detailed evaluations were carried out by X-ray line profile analysis using the restrictedmoment method and multiplewhole profile fitting procedure (MWP). Both numericalmethods indicate that the formed TiB2 particles are well crystallized and free of crystal defects. The average particle size determined from different Bragg reflections by the restricted moment method ranges between 25 and 55 nm, where the smallest particle size is determined using the 110 reflection suggesting the highest lateral-growth velocity of (110) facets. TheMWP method has shown that the in-situ grown TiB2 particles have a very low dislocation density (~1011 m−2) and their size distribution can be described by a log-normal distribution. Good agreement was found between the results obtained from the restricted moment and MWP methods, which was further confirmed by TEM.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000355335200017 Publication Date 2015-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 41 Open Access
Notes (up) This work is financially supported by the National Natural Science Foundation of China (Grant No. 51201099 and No. 51301108) and the China Postdoctoral Science Foundation (Grant No. 2013T60443 and No. 2012M520891). The authors are grateful for the project 2013BB03 supported by NPL, CAEP. Many thanks are also due to the faculty of BL14B beamline at the Shanghai Synchrotron Radiation Facility for their help on synchrotron experiments. Approved Most recent IF: 2.714; 2015 IF: 1.845
Call Number c:irua:126443 Serial 2764
Permanent link to this record
 

 
Author Bliokh, K.Y.; Karimi, E.; Padgett, M.J.; Alonso, M.A.; Dennis, M.R.; Dudley, A.; Forbes, A.; Zahedpour, S.; Hancock, S.W.; Milchberg, H.M.; Rotter, S.; Nori, F.; Ozdemir, S.K.; Bender, N.; Cao, H.; Corkum, P.B.; Hernandez-Garcia, C.; Ren, H.; Kivshar, Y.; Silveirinha, M.G.; Engheta, N.; Rauschenbeutel, A.; Schneeweiss, P.; Volz, J.; Leykam, D.; Smirnova, D.A.; Rong, K.; Wang, B.; Hasman, E.; Picardi, M.F.; Zayats, A.V.; Rodriguez-Fortuno, F.J.; Yang, C.; Ren, J.; Khanikaev, A.B.; Alu, A.; Brasselet, E.; Shats, M.; Verbeeck, J.; Schattschneider, P.; Sarenac, D.; Cory, D.G.; Pushin, D.A.; Birk, M.; Gorlach, A.; Kaminer, I.; Cardano, F.; Marrucci, L.; Krenn, M.; Marquardt, F.
Title Roadmap on structured waves Type A1 Journal article
Year 2023 Publication Journal of optics Abbreviated Journal
Volume 25 Issue 10 Pages 103001-103079
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Structured waves are ubiquitous for all areas of wave physics, both classical and quantum, where the wavefields are inhomogeneous and cannot be approximated by a single plane wave. Even the interference of two plane waves, or of a single inhomogeneous (evanescent) wave, provides a number of nontrivial phenomena and additional functionalities as compared to a single plane wave. Complex wavefields with inhomogeneities in the amplitude, phase, and polarization, including topological----- structures and singularities, underpin modern nanooptics and photonics, yet they are equally important, e.g. for quantum matter waves, acoustics, water waves, etc. Structured waves are crucial in optical and electron microscopy, wave propagation and scattering, imaging, communications, quantum optics, topological and non-Hermitian wave systems, quantum condensed-matter systems, optomechanics, plasmonics and metamaterials, optical and acoustic manipulation, and so forth. This Roadmap is written collectively by prominent researchers and aims to survey the role of structured waves in various areas of wave physics. Providing background, current research, and anticipating future developments, it will be of interest to a wide cross-disciplinary audience.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001061350200001 Publication Date 2023-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-8978 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.1 Times cited 7 Open Access Not_Open_Access: Available from 30.03.2024
Notes (up) This work is funded by the Royal Society and EPSRC under the Grant Number EP/M01326X/1.M A A acknowledges funding from the Excellence Initiative of Aix Marseille University-A*MIDEX, a French Investissements d'Avenir' programme, and from the Agence Nationale de Recherche (ANR) through project ANR-21-CE24-0014-01.M R D acknowledges support from the EPSRC Centre for Doctoral Training in Topological Design(EP/S02297X/1).S R acknowledges support by the Austrian Science Fund (FWF, Grant P32300 WAVELAND) and by the European Commission (Grant MSCA-RISE 691209 NHQWAVE). FN is supported in part by NTT Research, and S K OE by the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) Award No. FA9550-21-1-0202.The authors thank their co-workers Yaron Bromberg, Hasan Yilmaz, and collaborators Joerg Bewersdorf and Mengyuan Sun for their contributions to the works presented here. They also acknowledge financial support from the Office of Naval Research (N00014-20-1-2197) and the National Science Foundation (DMR-1905465).H R acknowledges a support from the Australian Research Council DECRA Fellowship DE220101085. Y K acknowledges a support from the Australian Research Council (Grant DP210101292).M G S acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, from the Institution of Engineering and Technology (IET) under the A F Harvey Research Prize 2018, and from Instituto de Telecomunicacoes under project UIDB/50008/2020. N E acknowledges partial support from Simons Foundation/Collaboration on Extreme Wave Phenomena Based on Symmetries, and from the US Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) grant number FA9550-21-1-0312.We acknowledge funding by the Alexander von Humboldt Foundation in the framework of the Alexander von Humboldt Professorship endowed by the Federal Ministry of Education and Research. Moreover, financial support from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 899275 (DAALI) is gratefully acknowledged.D L acknowledges a support from the National Research Foundation, Singapore and A*STAR under its CQT Bridging Grant. D A S acknowledges support from the Australian Research Council (FT230100058).The authors gratefully acknowledge financial support from the Israel Science Foundation (ISF), the U.S. Air Force Office of Scientific Research (FA9550-18-1-0208) through their program on Photonic Metamaterials, the Israel Ministry of Science, Technology and Space. The fabrication was performed at the Micro-Nano Fabrication & Printing Unit(MNF & PU), Technion.This work was supported by the European Research Council projects iCOMM (789340) and Starting Grant ERC-2016-STG-714151-PSINFONI.Our work in this area has been funded by the National Science Foundation, the Office of Naval Research, and the Simons Foundation.This work was supported by the Australian Research Council Discovery Project DP190100406.J V acknowledges funding from the eBEAM Project supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 101017720 (FET-Proactive EBEAM), FWO Project G042820N Exploring adaptive optics in transmission electron microscopy' and European Union's Horizon 2020 Research Infrastructure-Integrating Activities for Advanced Communities Grant Agreement No. 823717-ESTEEM3. P S acknowledges the support of the Austrian Science Fund under Project Nr. P29687-N36.; The authors would like to thank their many collaborators including Wangchun Chen, Charles W Clark, Lisa DeBeer-Schmitt, Huseyin Ekinci, Melissa Henderson, Michael Huber, Connor Kapahi, Ivar Taminiau, and Kirill Zhernenkov. The authors would also like to acknowledge their funding sources: the Canadian Excellence Research Chairs (CERC) program, the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada First Research Excellence Fund (CFREF).E K acknowledges the support of Canada Research Chairs, Ontario's Early Research Award, and NRC-uOttawa Joint Centre for Extreme Quantum Photonics (JCEP) via the High Throughput and Secure Networks Challenge Program at the National Research Council of Canada. Approved Most recent IF: 2.1; 2023 IF: 1.741
Call Number UA @ admin @ c:irua:199327 Serial 8925
Permanent link to this record
 

 
Author Wu, L.; Kolmeijer, K.E.; Zhang, Y.; An, H.; Arnouts, S.; Bals, S.; Altantzis, T.; Hofmann, J.P.; Costa Figueiredo, M.; Hensen, E.J.M.; Weckhuysen, B.M.; van der Stam, W.
Title Stabilization effects in binary colloidal Cu and Ag nanoparticle electrodes under electrochemical CO₂ reduction conditions Type A1 Journal article
Year 2021 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 13 Issue 9 Pages 4835-4844
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Nanoparticle modified electrodes constitute an attractive way to tailor-make efficient carbon dioxide (CO2) reduction catalysts. However, the restructuring and sintering processes of nanoparticles under electrochemical reaction conditions not only impedes the widespread application of nanoparticle catalysts, but also misleads the interpretation of the selectivity of the nanocatalysts. Here, we colloidally synthesized metallic copper (Cu) and silver (Ag) nanoparticles with a narrow size distribution (<10%) and utilized them in electrochemical CO2 reduction reactions. Monometallic Cu and Ag nanoparticle electrodes showed severe nanoparticle sintering already at low overpotential of -0.8 V vs. RHE, as evidenced by ex situ SEM investigations, and potential-dependent variations in product selectivity that resemble bulk Cu (14% for ethylene at -1.3 V vs. RHE) and Ag (69% for carbon monoxide at -1.0 V vs. RHE). However, by co-deposition of Cu and Ag nanoparticles, a nanoparticle stabilization effect was observed between Cu and Ag, and the sintering process was greatly suppressed at CO2 reducing potentials (-0.8 V vs. RHE). Furthermore, by varying the Cu/Ag nanoparticle ratio, the CO2 reduction reaction (CO2RR) selectivity towards methane (maximum of 20.6% for dense Cu-2.5-Ag-1 electrodes) and C-2 products (maximum of 15.7% for dense Cu-1-Ag-1 electrodes) can be tuned, which is attributed to a synergistic effect between neighbouring Ag and Cu nanoparticles. We attribute the stabilization of the nanoparticles to the positive enthalpies of Cu-Ag solid solutions, which prevents the dissolution-redeposition induced particle growth under CO2RR conditions. The observed nanoparticle stabilization effect enables the design and fabrication of active CO2 reduction nanocatalysts with high durability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000628024200011 Publication Date 2021-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 24 Open Access OpenAccess
Notes (up) This work is funded by the Strategic UU-TU/e Alliance project ‘Joint Centre for Chemergy Research’ (budget holder B. M. W.). S. B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S. A. and T. A. acknowledge funding from the University of Antwerp Research fund (BOF). We thank Eric Hellebrand (Faculty of Geosciences, Utrecht University) for the assistance in SEM measurements. Dr Ramon Oord (ARC Chemical Building Blocks Consortium, Faculty of Science, Utrecht University) is acknowledged for assisting with the grazing incidence XRD measurements; sygma Approved Most recent IF: 7.367
Call Number UA @ admin @ c:irua:176723 Serial 6737
Permanent link to this record
 

 
Author Lak, A.; Cassani, M.; Mai, B.T.; Winckelmans, N.; Cabrera, D.; Sadrollahi, E.; Marras, S.; Remmer, H.; Fiorito, S.; Cremades-Jimeno, L.; Litterst, F.J.; Ludwig, F.; Manna, L.; Teran, F.J.; Bals, S.; Pellegrino, T.
Title Fe2+Deficiencies, FeO Subdomains, and Structural Defects Favor Magnetic Hyperthermia Performance of Iron Oxide Nanocubes into Intracellular Environment Type A1 Journal article
Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
Volume 18 Issue 18 Pages 6856-6866
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Herein, by studying a stepwise phase transformation of 23 nm FeO-Fe3O4 core-shell nanocubes into Fe3O4, we identify a composition at which the magnetic heating performance of the nanocubes is not affected by the medium viscosity and aggregation. Structural and magnetic characterizations reveal the transformation of the FeO-Fe3O4 nanocubes from having stoichiometric phase compositions into Fe2+ deficient Fe3O4 phases. The resultant nanocubes contain tiny compressed and randomly distributed FeO sub-domains as well as structural defects. This phase transformation causes a tenfold increase in the magnetic losses of the nanocubes, which remains exceptionally insensitive to the medium viscosity as well as aggregation unlike similarly sized single-phase magnetite nanocubes. We observe that the dominant relaxation mechanism switches from Néel in fresh core-shell nanocubes to Brownian in partially oxidized nanocubes and once again to Néel in completely treated nanocubes. The Fe2+ deficiencies and structural defects appear to reduce the magnetic energy barrier and anisotropy field, thereby driving the overall relaxation into Néel process. The magnetic losses of the particles remain unchanged through a progressive internalization/association to ovarian cancer cells. Moreover, the particles induce a significant cell death after being exposed to hyperthermia treatment. Here, we present the largest heating performance that has been reported to date for 23 nm iron oxide nanoparticles under cellular and intracellular conditions. Our findings clearly demonstrate the positive impacts of the Fe2+ deficiencies and structural defects in the Fe3O4 structure on the heating performance under cellular and intracellular conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451102100028 Publication Date 2018-11-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 51 Open Access OpenAccess
Notes (up) This work is partially funded by the European Research Council (starting grant ICARO, Contract No. 678109 and COLOURATOM-335078), Spanish Ministry of Economy and Competitiveness (MAT2016-81955-REDT, SEV-2016-0686, MAT2017-85617-R) Comunidad de Madrid (NANOFRONTMAG-CM, S2013/MIT-2850), the European COST Action TD1402 (RADIOMAG), and Ramon y Cajal subprogram (RYC-2011-09617). Financial support from the Deutsche Forschungsgemeinschaft, DFG Priority Program 1681 (LU800/4-3). S.B. and N.W. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Project funding G038116N. A.L. acknowledges the Alexander von Humboldt Foundation for the Postdoctoral Research Fellow funding. Mr Emilio J. Artés from the Advanced Instrumentation Unit (iMdea Nanociencia) is acknowledged for his technical assistance. L. M acknowledges the predoctoral fellowship funded from Comunidad de Madrid (PEJD-2017-PRE/IND-4189). Authors thank Tiziano Catelani and Doriana Debellis for the preparation of TEM cell samples (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_Sara Approved Most recent IF: 12.712
Call Number EMAT @ emat @c:irua:155439UA @ admin @ c:irua:155439 Serial 5072
Permanent link to this record
 

 
Author Filippousi, M.; Turner, S.; Leus, K.; Siafaka, P.I.; Tseligka, E.D.; Vandichel, M.; Nanaki, S.G.; Vizirianakis, I.S.; Bikiaris, D.N.; Van Der Voort, P.; Van Tendeloo, G.
Title Biocompatible Zr-based nanoscale MOFs coated with modified poly(epsilon-caprolactone) as anticancer drug carriers Type A1 Journal article
Year 2016 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut
Volume 509 Issue 509 Pages 208-218
Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)
Abstract Nanoscale Zr-based metal organic frameworks (MOFs) UiO-66 and UiO-67 were studied as potential anticancer drug delivery vehicles. Two model drugs were used, hydrophobic paclitaxel and hydrophilic cisplatin, and were adsorbed onto/into the nano MOFs (NMOFs). The drug loaded MOFs were further encapsulated inside a modified poly(epsilon-caprolactone) with d-alpha-tocopheryl polyethylene glycol succinate polymeric matrix, in the form of microparticles, in order to prepare sustained release formulations and to reduce the drug toxicity. The drugs physical state and release rate was studied at 37 degrees C using Simulated Body Fluid. It was found that the drug release depends on the interaction between the MOFs and the drugs while the controlled release rates can be attributed to the microencapsulated formulations. The in vitro antitumor activity was assessed using HSC-3 (human oral squamous carcinoma; head and neck) and U-87 MG (human glioblastoma grade IV; astrocytoma) cancer cells. Cytotoxicity studies for both cell lines showed that the polymer coated, drug loaded MOFs exhibited better anticancer activity compared to free paclitaxel and cisplatin solutions at different concentrations.
Address EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000378949800022 Publication Date 2016-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-5173 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.649 Times cited 37 Open Access
Notes (up) This work is performed within the framework of the IAP-P7/05. S.T. Gratefully acknowledges the Fund for Scientific Research Flanders (FWO). K.L. acknowledges the financial support from the Ghent University BOF postdoctoral grant 01P06813T and UGent GOA Grant 01G00710. Approved Most recent IF: 3.649
Call Number c:irua:134039 Serial 4088
Permanent link to this record
 

 
Author Jain, N.; Hao, Y.; Parekh, U.; Kaltenegger, M.; Pedrazo-Tardajos, A.; Lazzaroni, R.; Resel, R.; Geerts, Y.H.; Bals, S.; Van Aert, S.
Title Exploring the effects of graphene and temperature in reducing electron beam damage: A TEM and electron diffraction-based quantitative study on Lead Phthalocyanine (PbPc) crystals Type A1 Journal article
Year 2023 Publication Micron Abbreviated Journal
Volume 169 Issue Pages 103444
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution transmission electron microscopy (TEM) of organic crystals, such as Lead Phthalocyanine (PbPc), is very challenging since these materials are prone to electron beam damage leading to the breakdown of the crystal structure during investigation. Quantification of the damage is imperative to enable high-resolution imaging of PbPc crystals with minimum structural changes. In this work, we performed a detailed electron diffraction study to quantitatively measure degradation of PbPc crystals upon electron beam irradiation. Our study is based on the quantification of the fading intensity of the spots in the electron diffraction patterns. At various incident dose rates (e/Å2/s) and acceleration voltages, we experimentally extracted the decay rate (1/s), which directly correlates with the rate of beam damage. In this manner, a value for the critical dose (e/Å2) could be determined, which can be used as a measure to quantify beam damage. Using the same methodology, we explored the influence of cryogenic temperatures, graphene TEM substrates, and graphene encapsulation in prolonging the lifetime of the PbPc crystal structure during TEM investigation. The knowledge obtained by diffraction experiments is then translated to real space high-resolution TEM imaging of PbPc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000965998800001 Publication Date 2023-03-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.4 Times cited 1 Open Access OpenAccess
Notes (up) This work is supported by FWO and FNRS within the 2Dto3D network of the EOS (Excellence of Science) program (grant number 30489208) and ERC-CoGREALNANO-815128 (to Prof. Dr. Sara Bals). N.J. would like to thank Dr. Kunal S. Mali and Dr. Da Wang for useful and interesting discussions on sample preparation procedures. Approved Most recent IF: 2.4; 2023 IF: 1.98
Call Number EMAT @ emat @c:irua:196069 Serial 7379
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V.
Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal
Volume 337 Issue Pages 122977
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056527600001 Publication Date 2023-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record
Impact Factor 22.1 Times cited Open Access Not_Open_Access
Notes (up) This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V.
Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal
Volume 337 Issue Pages 122977
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056527600001 Publication Date 2023-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record
Impact Factor 22.1 Times cited Open Access Not_Open_Access
Notes (up) This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved Most recent IF: 22.1; 2023 IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Green, R.J.; Verbeeck, J.; Rijnders, G.; Koster, G.
Title Asymmetric Interfacial Intermixing Associated Magnetic Coupling in LaMnO3/LaFeO3 Heterostructures Type A1 Journal article
Year 2021 Publication Frontiers in physics Abbreviated Journal Front. Phys.
Volume 9 Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structural and magnetic properties of LaMnO<sub>3</sub>/LaFeO<sub>3</sub>(LMO/LFO) heterostructures are characterized using a combination of scanning transmission electron microscopy, electron energy-loss spectroscopy, bulk magnetometry, and resonant x-ray reflectivity. Unlike the relatively abrupt interface when LMO is deposited on top of LFO, the interface with reversed growth order shows significant cation intermixing of Mn<sup>3+</sup>and Fe<sup>3+</sup>, spreading ∼8 unit cells across the interface. The asymmetric interfacial chemical profiles result in distinct magnetic properties. The bilayer with abrupt interface shows a single magnetic hysteresis loop with strongly enhanced coercivity, as compared to the LMO plain film. However, the bilayer with intermixed interface shows a step-like hysteresis loop, associated with the separate switching of the “clean” and intermixed LMO sublayers. Our study illustrates the key role of interfacial chemical profile in determining the functional properties of oxide heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000745284500001 Publication Date 2021-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424X ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited 1 Open Access OpenAccess
Notes (up) This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). The X-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. NG and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. RG was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:185176 Serial 6901
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Green, R.J.; Lee, J.H.; Piamonteze, C.; Spreitzer, M.; Jannis, D.; Verbeeck, J.; Bibes, M.; Huijben, M.; Rijnders, G.; Koster, G.
Title Spatially controlled octahedral rotations and metal-insulator transitions in nickelate superlattices Type A1 Journal article
Year 2021 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 21 Issue 3 Pages 1295-1302
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The properties of correlated oxides can be manipulated by forming short-period superlattices since the layer thicknesses are comparable with the typical length scales of the involved correlations and interface effects. Herein, we studied the metal-insulator transitions (MITs) in tetragonal NdNiO3/SrTiO3 superlattices by controlling the NdNiO3 layer thickness, n in the unit cell, spanning the length scale of the interfacial octahedral coupling. Scanning transmission electron microscopy reveals a crossover from a modulated octahedral superstructure at n = 8 to a uniform nontilt pattern at n = 4, accompanied by a drastically weakened insulating ground state. Upon further reducing n the predominant dimensionality effect continuously raises the MIT temperature, while leaving the antiferromagnetic transition temperature unaltered down to n = 2. Remarkably, the MIT can be enhanced by imposing a sufficiently large strain even with strongly suppressed octahedral rotations. Our results demonstrate the relevance for the control of oxide functionalities at reduced dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000619638600014 Publication Date 2021-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 19 Open Access OpenAccess
Notes (up) This work is supported by the international M-ERA.NET project SIOX (project 4288). J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. D.J. acknowledges funding from FWO Project G093417N from the Flemish fund for scientific research. M.S. acknowledges funding from Slovenian Research Agency (Grants J2-9237 and P2-0091). R.J.G. acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. This work received support from the ERC CoG MINT (No. 615759) and from a PHC Van Gogh grant. M.B. thanks the French Academy of Science and the Royal Netherlands Academy of Arts and Sciences for supporting his stays in The Netherlands. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 823717 -ESTEEM3. Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:176753 Serial 6736
Permanent link to this record
 

 
Author Birkholzer, Y.A.; Sotthewes, K.; Gauquelin, N.; Riekehr, L.; Jannis, D.; van der Minne, E.; Bu, Y.; Verbeeck, J.; Zandvliet, H.J.W.; Koster, G.; Rijnders, G.
Title High-strain-induced local modification of the electronic properties of VO₂ thin films Type A1 Journal article
Year 2022 Publication ACS applied electronic materials Abbreviated Journal
Volume 4 Issue 12 Pages 6020-6028
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000890974900001 Publication Date 2022-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited 2 Open Access OpenAccess
Notes (up) This work received financial support from the project Green ICT (grant number 400.17.607) of the research program NWA, which is financed by the Dutch Research Council (NWO), Research Foundation Flanders (FWO grant number G0F1320N), and the European Union’s Horizon 2020 research and innovation program within a contract for Integrating Activities for Advanced Communities (grant number 823717 − ESTEEM3). The K2 camera was funded through the Research Foundation Flanders (FWO-Hercules grant number G0H4316N – “Direct electron detector for soft matter TEM”).; esteem3reported; esteem3jra Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:192712 Serial 7309
Permanent link to this record
 

 
Author Savchenko, T.M.; Buzzi, M.; Howald, L.; Ruta, S.; Vijayakumar, J.; Timm, M.; Bracher, D.; Saha, S.; Derlet, P.M.; Béché, A.; Verbeeck, J.; Chantrell, R.W.; Vaz, C.A.F.; Nolting, F.; Kleibert, A.
Title Single femtosecond laser pulse excitation of individual cobalt nanoparticles Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 20 Pages 205418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the magnetic, structural, and chemical stability of individual magnetic nanoparticles excited by single femtosecond laser pulses. We find that the energy transfer from the fs laser pulse to the nanoparticles is limited by the Rayleigh scattering cross section, which in combination with the light absorption of the supporting substrate and protective layers determines the increase in the nanoparticle temperature. We investigate individual Co nanoparticles (8 to 20 nm in size) as a prototypical model system, using x-ray photoemission electron microscopy and scanning electron microscopy upon excitation with single femtosecond laser pulses of varying intensity and polarization. In agreement with calculations, we find no deterministic or stochastic reversal of the magnetization in the nanoparticles up to intensities where ultrafast demagnetization or all-optical switching is typically reported in thin films. Instead, at higher fluences, the laser pulse excitation leads to photo-chemical reactions of the nanoparticles with the protective layer, which results in an irreversible change in the magnetic properties. Based on our findings, we discuss the conditions required for achieving laser-induced switching in isolated nanomagnets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000589602000005 Publication Date 2020-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited 1 Open Access OpenAccess
Notes (up) This work received funding by the Swiss National Foundation (SNF) (Grants No. 200021160186 and No. 2002153540), the Swiss Nanoscience Institute (SNI) (Grant No. SNI P1502), the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 737093 (FEMTOTERABYTE), and the COST Action CA17123 (MAGNETOFON). Part of this work was performed at the SIM beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. Part of the simulations were undertaken on the VIKING cluster, which is a high-performance compute facility provided by the University of York. We kindly acknowledge Anja Weber from PSI for preparation of substrates with marker structures. A.B. and Jo Verbeeck acknowledge funding through FWO Project No. G093417N (“Compressed sensing enabling low dose imaging in transmission electron microscopy”) from the Flanders Research Fund. Jo Verbeeck acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717 – ESTEEM3. S.S. acknowledges ETH Zurich Post-Doctoral fellowship and Marie Curie actions for people COFUND program.; esteem3JRA; esteem3reported Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number EMAT @ emat @c:irua:174273 Serial 6669
Permanent link to this record
 

 
Author Verdierre, G.; Gauquelin, N.; Jannis, D.; Birkhölzer, Y.A.; Mallik, S.; Verbeeck, J.; Bibes, M.; Koster, G.
Title Epitaxial growth of the candidate ferroelectric Rashba material SrBiO3by pulsed laser deposition Type A1 Journal article
Year 2023 Publication APL materials Abbreviated Journal
Volume 11 Issue 3 Pages 031109
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Among oxides, bismuthates have been gaining much interest due to their unique features. In addition to their superconducting properties, they show potential for applications as topological insulators and as possible spin-to-charge converters. After being first investigated in their bulk form in the 1980s, bismuthates have been successfully grown as thin films. However, most efforts have focused on BaBiO<sub>3</sub>, with SrBiO<sub>3</sub>receiving only little attention. Here, we report the growth of epitaxial films of SrBiO<sub>3</sub>on both TiO<sub>2</sub>-terminated SrTiO<sub>3</sub>and NdO-terminated NdScO<sub>3</sub>substrates by pulsed laser deposition. SrBiO<sub>3</sub>has a pseudocubic lattice constant of ∼4.25 Å and grows relaxed on NdScO<sub>3</sub>. Counter-intuitively, it grows with a slight tensile strain on SrTiO<sub>3</sub>despite a large lattice mismatch, which should induce compressive strain. High-resolution transmission electron microscopy reveals that this occurs as a consequence of structural domain matching, with blocks of 10 SrBiO<sub>3</sub>unit planes matching blocks of 11 SrTiO<sub>3</sub>unit planes. This work provides a framework for the synthesis of high quality perovskite bismuthates films and for the understanding of their interface interactions with homostructural substrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000953363800004 Publication Date 2023-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X ISBN Additional Links UA library record; WoS full record
Impact Factor 6.1 Times cited Open Access OpenAccess
Notes (up) This work received support from the ERC Advanced grant (Grant No. 833973) “FRESCO” and funding from the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 823717—ESTEEM3, Van Gogh travel grant, Nuffic, The Netherlands (CF No. 42582SB).; esteem3reported; esteem3TA Approved Most recent IF: 6.1; 2023 IF: 4.335
Call Number EMAT @ emat @c:irua:196135 Serial 7377
Permanent link to this record
 

 
Author Lu, Y.; Cheng, X.; Tian, G.; Zhao, H.; He, L.; Hu, J.; Wu, S.-M.; Dong, Y.; Chang, G.-G.; Lenaerts, S.; Siffert, S.; Van Tendeloo, G.; Li, Z.-F.; Xu, L.-L.; Yang, X.-Y.; Su, B.-L.
Title Hierarchical CdS/m-TiO 2 /G ternary photocatalyst for highly active visible light-induced hydrogen production from water splitting with high stability Type A1 Journal article
Year 2018 Publication Nano energy Abbreviated Journal Nano Energy
Volume 47 Issue Pages 8-17
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Hierarchical semiconductors are the most important photocatalysts, especially for visible light-induced hydrogen production from water splitting. We demonstrate herein a hierarchical electrostatic assembly approach to hierarchical CdS/m-TiO2/G ternary photocatalyst, which exhibits high photoactivity and excellent photostability (more than twice the activity of pure CdS while 82% of initial photoactivity remained after 15 recycles during 80 h irradiation). The ternary nanojunction effect of the photocatalyst has been investigated from orbitals hybrid, bonding energy to atom-stress distortion and nano-interface fusion. And a coherent separation mechanism of charge carriers in the ternary system has been proposed at an atomic/nanoscale. This work offers a promising way to inhibit the photocorrosion of CdS and, more importantly, provide new insights for the design of ternary nanostructured photocatalysts with an ideal heterojunction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000430057000002 Publication Date 2018-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.343 Times cited 58 Open Access Not_Open_Access
Notes (up) This work supported by National Key R&D Program of China (2017YFC1103800), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52), National Natural Science Foundation of China (U1663225, U1662134, 51472190, 51611530672, 21711530705, 51503166, 51602236, 21706199), International Science & Technology Cooperation Program of China (2015DFE52870), Natural Science Foundation of Hubei Province (2016CFA033, 2017CFB487), Open 22 Project Program of State Key Laboratory of Petroleum Pollution Control (PPC2016007) CNPC Research Institute of Safety and Environmental Technology., China Postdoctoral Science Foundation (2016M592400), Fundamental Research Funds for the Central Universities (WUT: 2017IVB012). Approved Most recent IF: 12.343
Call Number EMAT @ lucian @c:irua:150720 Serial 4925
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Connétable, D.; Fivel, M.; Tanguy, D.; Delmelle, R.; Turner, S.; Malet, L.; Godet, S.; Pardoen, T.; Proost, J.; Schryvers, D.; Idrissi, H.
Title Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films Type A1 Journal article
Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 111 Issue 111 Pages 253-261
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375812100027 Publication Date 2016-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 14 Open Access
Notes (up) This work was carried out in the framework of the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. The support of the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations” for B. Amin-Ahmadi is also gratefully acknowledged. This work was granted access to the HPC resources of CALMIP (CICT Toulouse, France) under the allocations 2014-p0912 and 2014-p0749. Approved Most recent IF: 5.301
Call Number c:irua:132678 Serial 4054
Permanent link to this record
 

 
Author De Bie, C.; van Dijk, J.; Bogaerts, A.
Title The Dominant Pathways for the Conversion of Methane into Oxygenates and Syngas in an Atmospheric Pressure Dielectric Barrier Discharge Type A1 Journal article
Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 119 Issue 119 Pages 22331-22350
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A one-dimensional fluid model for a dielectric barrier discharge in CH4/O2 and CH4/CO2 gas mixtures is developed. The model describes the gas-phase chemistry for partial oxidation and for dry reforming of methane. The spatially averaged densities of the various plasma species are presented as a function of time and initial gas mixing ratio. Besides, the conversion of the inlet gases and the selectivities of the reaction products are calculated. Syngas, higher hydrocarbons, and higher oxygenates are typically found to be important reaction products. Furthermore, the main underlying reaction pathways for the formation of syngas, methanol, formaldehyde, and other higher oxygenates are determined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362385700010 Publication Date 2015-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 46 Open Access
Notes (up) This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. The authors also acknowledge financial support from the IAP/7 (Interuniversity Attraction Pole) program “PSI-Physical Chemistry of Plasma- Surface Interactions” by the Belgian Federal Office for Science Policy (BELSPO) and from the Fund for Scientific Research Flanders (FWO). Approved Most recent IF: 4.536; 2015 IF: 4.772
Call Number c:irua:128774 Serial 3960
Permanent link to this record
 

 
Author Schoeters, B.; Leenaerts, O.; Pourtois, G.; Partoens, B.
Title Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO2 nanowires Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 104306
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO2 core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the host atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO2 NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO2 core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000361636900031 Publication Date 2015-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes (up) This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:128729 Serial 4056
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Molegraaf, H.; Kuiper, B.; Siemons, W.; Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Takamura, Y.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G.
Title Experimental evidence for oxygen sublattice control in polar infinite layer SrCuO2 Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 9 Pages 096102-96105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A recent theoretical study [ Phys. Rev. B 85 121411(R) (2012)] predicted a thickness limit below which ideal polar cuprates turn nonpolar driven by the associated electrostatic instability. Here we demonstrate this possibility by inducing a structural transformation from the bulk planar to chainlike structure upon reducing the SrCuO2 repeat thickness in SrCuO2/SrTiO3 superlattices with unit-cell precision. Our results, based on structural investigation by x-ray diffraction and high resolution scanning transmission electron microscopy, demonstrate that the oxygen sublattice can essentially be built by design. In addition, the electronic structure of the chainlike structure, as studied by x-ray absorption spectroscopy, shows the signature for preferential hole occupation in the Cu 3d3z2-r2 orbital, which is different from the planar case.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000323610800023 Publication Date 2013-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 29 Open Access
Notes (up) This work was carried out with financial support from AFOSR and EOARD project (Project No. FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS and ERC Starting Grant No. 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This work was partially funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure No. 312483-ESTEEM2. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Y. T. acknowledges support from the National Science Foundation (DMR-0747896). W. S. was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. D. S. thanks Z. Zhong from Vienna University of Technology, Austria for scientific discussion. ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:109452UA @ admin @ c:irua:109452 Serial 1140
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Takamura, Y.; Siemons, W.; Verbeeck, J.; Van Tendeloo, G.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G.
Title Direct structural and spectroscopic investigation of ultrathin films of tetragonal CuO: Six-fold coordinated copper Type A1 Journal article
Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 105 Issue 1 Pages 17003-17005
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Unlike other 3d transition metal monoxides (MnO, FeO, CoO, and NiO), CuO is found in a low-symmetry distorted monoclinic structure rather than the rocksalt structure. We report here of the growth of ultrathin CuO films on SrTiO3 substrates; scanning transmission electron microscopy was used to show the stabilization of a tetragonal rocksalt structure with an elongated c-axis such that c/a similar to 1.34 and the Cu-O-Cu bond angle similar to 180 degrees, pointing to metastable six-fold coordinated Cu. X-ray absorption spectroscopy demonstrates that the hole at the Cu site for the CuO is localized in 3d(x2-y2) orbital unlike the well-studied monoclinic CuO phase. The experimental confirmation of the tetragonal structure of CuO opens up new avenues to explore electronic and magnetic properties of six-fold coordinated Cu. Copyright (C) EPLA, 2014
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000331197100015 Publication Date 2014-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited 15 Open Access
Notes (up) This work was carried out with financial support from the AFOSR and EOARD projects (project No.: FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No. 246791 – COUNTATOMS, ERC Starting Grant 278510 VORTEX, Grant No. NMP3-LA-2010-246102 IFOX and an Integrated Infrastructure Initiative, reference No. 312483-ESTEEM2. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. YT acknowledges support from the National Science Foundation (DMR-0747896). WS was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. ECASJO_; Approved Most recent IF: 1.957; 2014 IF: 2.095
Call Number UA @ lucian @ c:irua:115806UA @ admin @ c:irua:115806 Serial 722
Permanent link to this record
 

 
Author De Keukeleere, K.; Cayado, P.; Meledin, A.; Vallès, F.; De Roo, J.; Rijckaert, H.; Pollefeyt, G.; Bruneel, E.; Palau, A.; Coll, M.; Ricart, S.; Van Tendeloo, G.; Puig, T.; Obradors, X.; Van Driessche, I.
Title Superconducting YBa2Cu3O7-δNanocomposites Using Preformed ZrO2Nanocrystals: Growth Mechanisms and Vortex Pinning Properties Type A1 Journal article
Year 2016 Publication Advanced Electronic Materials Abbreviated Journal
Volume 2 Issue 2 Pages 1600161
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Although high temperature superconductors are promising for power applications, the production of low-cost coated conductors with high current densities—at high magnetic fields—remains challenging. A superior superconducting YBa2Cu3O7–δ nanocomposite is fabricated via chemical solution deposition (CSD) using preformed nanocrystals (NCs). Preformed, colloidally stable ZrO2 NCs are added to the trifluoroacetic acid based precursor solution and the NCs' stability is confirmed up to 50 mol% for at least 2.5 months. These NCs tend to disrupt the epitaxial growth of YBa2Cu3O7–δ, unless a thin seed layer is applied. A 10 mol% ZrO2 NC addition proved to be optimal, yielding a critical current density JC of 5 MA cm−2 at 77 K in self-field. Importantly, this new approach results in a smaller magnetic field decay of JC(H//c) for the nanocomposite compared to a pristine film. Furthermore, microstructural analysis of the YBa2Cu3O7–δ nanocomposite films reveals that different strain generation mechanisms may occur compared to the spontaneous segregation approach. Yet, the generated nanostrain in the YBa2Cu3O7–δ nanocomposite results in an improvement of the superconducting properties similar to the spontaneous segregation approach. This new approach, using preformed NCs in CSD coatings, can be of great potential for high magnetic field applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386624100003 Publication Date 2016-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199160X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 26 Open Access
Notes (up) This work was financially supported by a BOF research fund of Ghent University (BOF11/DOC/286), FWO Flanders (F08512), and Eurotapes, a collaborative project funded by the European Community’s Seven Framework Program (EU-FP7 NMP-LA-2012-280432). We also acknowledge MINECO and FEDER funds for MAT2014-51778-C2-1-R and the Center of Excellence award Severo Ochoa SEV-2015-0496, and SGR753 from the Generalitat of Catalunya. MC acknowledges RyC contract 2013-12448 Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:135171 Serial 4118
Permanent link to this record
 

 
Author Conings, B.; Bretschneider, S.A.; Babayigit, A.; Gauquelin, N.; Cardinaletti, I.; Manca, J.V.; Verbeeck, J.; Snaith, H.J.; Boyen, H.-G.
Title Structure-property relations of methylamine vapor treated hybrid perovskite CH3NH3PbI3 films and solar cells Type A1 Journal article
Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 9 Issue 9 Pages 8092-8099
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The power conversion efficiency of halide perovskite solar cells is heavily dependent on the perovskite layer being sufficiently smooth and pinhole-free. It has been shown that these features can be obtained even when starting out from rough and discontinuous perovskite film, by briefly exposing it to methylamine (MA) vapor. The exact underlying physical mechanisms of this phenomenon are, however, still unclear. By investigating smooth, MA treated films, based on very rough and discontinuous reference films of methylammonium triiode (MAPbI3), considering their morphology, crystalline features, local conductive properties, and charge carrier lifetime, we unravel the relation between their characteristic physical qualities and their performance in corresponding solar cells. We discover that the extensive improvement in photovoltaic performance upon MA treatment is a consequence of the induced morphological enhancement of the perovskite layer, together with improved electron injection into TiO2, which in fact compensates for an otherwise compromised bulk electronic quality, simultaneously caused by the MA treatment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000396186000025 Publication Date 2017-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 43 Open Access OpenAccess
Notes (up) This work was financially supported by BOF (Hasselt University) and the Research Fund Flanders (FWO). B.C. is a postdoctoral research fellow of the FWO. A.B. is financially supported by FWO and Imec. J.V. and N.G. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and FWO project G.0044.13N “Charge ordering”. The Qu-Ant-EM microscope used for this study was partly funded by the Hercules fund from the Flemish Government. The authors thank Tim Vangerven for Urbach energy determination, and Johnny Baccus and Jan Mertens for technical support. Approved Most recent IF: 7.504
Call Number EMAT @ emat @ c:irua:140849 Serial 4422
Permanent link to this record