|
Record |
Links |
|
Author |
De Bie, C.; van Dijk, J.; Bogaerts, A. |
|
|
Title |
The Dominant Pathways for the Conversion of Methane into Oxygenates and Syngas in an Atmospheric Pressure Dielectric Barrier Discharge |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
The journal of physical chemistry: C : nanomaterials and interfaces |
Abbreviated Journal |
J Phys Chem C |
|
|
Volume |
119 |
Issue |
119 |
Pages |
22331-22350 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
A one-dimensional fluid model for a dielectric barrier discharge in CH4/O2 and CH4/CO2 gas mixtures is developed. The model describes the gas-phase chemistry for partial oxidation and for dry reforming of methane. The spatially averaged densities of the various plasma species are presented as a function of time and initial gas mixing ratio. Besides, the conversion of the inlet gases and the selectivities of the reaction products are calculated. Syngas, higher hydrocarbons, and higher oxygenates are typically found to be important reaction products. Furthermore, the main underlying reaction pathways for the formation of syngas, methanol, formaldehyde, and other higher oxygenates are determined. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000362385700010 |
Publication Date |
2015-09-10 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1932-7447;1932-7455; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.536 |
Times cited |
46 |
Open Access |
|
|
|
Notes |
This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. The authors also acknowledge financial support from the IAP/7 (Interuniversity Attraction Pole) program “PSI-Physical Chemistry of Plasma- Surface Interactions” by the Belgian Federal Office for Science Policy (BELSPO) and from the Fund for Scientific Research Flanders (FWO). |
Approved |
Most recent IF: 4.536; 2015 IF: 4.772 |
|
|
Call Number |
c:irua:128774 |
Serial |
3960 |
|
Permanent link to this record |