|
Record |
Links |
|
Author |
Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A. |
|
|
Title |
Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
Plasma sources science and technology |
Abbreviated Journal |
Plasma Sources Sci T |
|
|
Volume |
26 |
Issue |
26 |
Pages |
015003 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
We present a 3D and 2D Cartesian quasi-neutral plasma model for a low current argon gliding arc discharge, including strong interactions between the gas flow and arc plasma column.
The 3D model is applied only for a short time of 0.2 ms due to its huge computational cost. It mainly serves to verify the reliability of the 2D model. As the results in 2D compare well with those in 3D, they can be used for a better understanding of the gliding arc basic characteristics. More specifically, we investigate the back-breakdown phenomenon induced by an artificially controlled plasma channel, and we discuss its effect on the gliding arc characteristics. The
back-breakdown phenomenon, or backward-jump motion of the arc, as observed in the experiments, results in a drop of the gas temperature, as well as in a delay of the arc velocity with respect to the gas flow velocity, allowing more gas to pass through the arc, and thus increasing the efficiency of the gliding arc for gas treatment applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000419253000001 |
Publication Date |
2016-11-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1361-6595 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.302 |
Times cited |
9 |
Open Access |
OpenAccess |
|
|
Notes |
This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). S R Sun thanks the financial support from the China Scholarship Council. |
Approved |
Most recent IF: 3.302 |
|
|
Call Number |
PLASMANT @ plasmant @ c:irua:138993 |
Serial |
4337 |
|
Permanent link to this record |