toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Croitoru, M.D.; van Dyck, D.; Van Aert, S.; Bals, S.; Verbeeck, J. pdf  doi
openurl 
  Title An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images Type A1 Journal article
  Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 106 Issue 10 Pages 933-940  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Vision lab  
  Abstract We propose an improved image simulation procedure for atomic-resolution annular dark-field scanning transmission electron microscopy (STEM) based on the multislice formulation, which takes thermal diffuse scattering fully into account. The improvement with regard to the classical frozen phonon approach is realized by separating the lattice configuration statistics from the dynamical scattering so as to avoid repetitive calculations. As an example, the influence of phonon scattering on the image contrast is calculated and investigated. STEM image simulation of crystals can be applied with reasonable computing times to problems involving a large number of atoms and thick or large supercells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000240397200006 Publication Date 2006-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 18 Open Access  
  Notes Fwo; Fwo-V Approved Most recent IF: 2.843; 2006 IF: 1.706  
  Call Number UA @ lucian @ c:irua:87604UA @ admin @ c:irua:87604 Serial 876  
Permanent link to this record
 

 
Author Beyers, E.; Biermans, E.; Ribbens, S.; de Witte, K.; Mertens, M.; Meynen, V.; Bals, S.; Van Tendeloo, G.; Vansant, E.F.; Cool, P. pdf  doi
openurl 
  Title Combined TiO2/SiO2 mesoporous photocatalysts with location and phase controllable TiO2 nanoparticles Type A1 Journal article
  Year 2009 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 88 Issue 3/4 Pages 515-524  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Combined TiO2/SiO2 mesoporous materials were prepared by deposition of TiO2 nanoparticles synthesised via the acid-catalysed solgel method. In the first synthesis step a titania solution is prepared, by dissolving titaniumtetraisopropoxide in nitric acid. The influences of the initial titaniumtetraisopropoxide concentration and the temperature of dissolving on the final structural properties were investigated. In the second step of the synthesis, the titania nanoparticles were deposited on a silica support. Here, the influence of the temperature during deposition was studied. The depositions were carried out on two different mesoporous silica supports, SBA-15 and MCF, leading to substantial differences in the catalytic and structural properties. The samples were analysed with N2-sorption, X-ray diffraction (XRD), electron probe microanalysis (EPMA) and transmission electron microscopy (TEM) to obtain structural information, determining the amount of titania, the crystal phase and the location of the titania particles on the mesoporous material (inside or outside the mesoporous channels). The structural differences of the support strongly determine the location of the nanoparticles and the subsequent photocatalytic activity towards the degradation of rhodamine 6G in aqueous solution under UV irradiation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000266513400032 Publication Date 2008-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 69 Open Access  
  Notes Goa-Bof; Fwo Approved Most recent IF: 9.446; 2009 IF: 5.252  
  Call Number UA @ lucian @ c:irua:77150 Serial 403  
Permanent link to this record
 

 
Author Lin, F.; Meng; Kukueva, E.; Altantzis, T.; Mertens, M.; Bals, S.; Cool, P.; Van Doorslaer, S. pdf  url
doi  openurl
  Title Direct-synthesis method towards copper-containing periodic mesoporous organosilicas : detailed investigation of the copper distribution in the material Type A1 Journal article
  Year 2015 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 44 Issue 44 Pages 9970-9979  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Three-dimensional cubic Fm (3) over barm mesoporous copper-containing ethane-bridged PMO materials have been prepared through a direct-synthesis method at room temperature in the presence of cetyltrimethylammonium bromide as surfactant. The obtained materials have been unambiguously characterized in detail by several sophisticated techniques, including XRD, UV-Vis-Dr, TEM, elemental mapping, continuous- wave and pulsed EPR spectroscopy. The results show that at lower copper loading, the Cu2+ species are well dispersed in the Cu-PMO materials, and mainly exist as mononuclear Cu2+ species. At higher copper loading amount, Cu2+ clusters are observed in the materials, but the distribution of the Cu2+ species is still much better in the Cu-PMO materials prepared through the direct-synthesis method than in a Cu-containing PMO material prepared through an impregnation method. Moreover, the evolution of the copper incorporation during the PMO synthesis has been followed by EPR. The results show that the immobilization of the Cu2+ ion/complex and the formation of the PMO materials are taking place simultaneously. The copper ions are found to be situated on the inner surface of the mesopores of the materials and are accessible, which will be beneficial for the catalytic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000355000700028 Publication Date 2015-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226;1477-9234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.029 Times cited 11 Open Access OpenAccess  
  Notes Goa-Bof; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 4.029; 2015 IF: 4.197  
  Call Number c:irua:126422 Serial 725  
Permanent link to this record
 

 
Author Lin, F.; Meng; Kukueva, E.; Mertens, M.; Van Doorslaer, S.; Bals, S.; Cool, P. url  doi
openurl 
  Title New insights into the mesophase transformation of ethane-bridged PMOs by the influence of different counterions under basic conditions Type A1 Journal article
  Year 2015 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 5 Issue 5 Pages 5553-5562  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The counterions are of crucial importance in determining the mesostructure and morphology of ethanebridged PMO materials synthesized under basic conditions. By using CTABr as the surfactant, the final PMO materials show a 2-D hexagonal (p6mm) mesophase, while PMO materials with cubic (Pm (3) over barn ) mesostructure are obtained when CTACl or CTA(SO4)(1)/(2) are used. With gradually replacing CTABr by CTACl or CTA(SO4) (1)/(2) while keeping the total surfactant concentration constant, a clear p6mm to Pm (3) over barn 3n mesophase evolution process is observed. For a given gel composition, the mesophase of ethanebridged PMO materials can also be adjusted by the addition of different sodium salts. In short, the effect of the counterions on the mesophase can be attributed to the binding strength of the ions on the surfactant micelles, which follows the Hofmeister series (SO42- < Cl- < Br-< NO3- < SCN-). Furthermore, it is found that the hydrolysis and condensation rate of the organosilica precursor also plays an important role in the formation of the final mesostructure  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347304900010 Publication Date 2014-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 6 Open Access Not_Open_Access  
  Notes ; The Erasmus Mundus CONNEC program is acknowledged for PhD funding of F. L. Furthermore, the authors acknowledge support by the GOA-BOF project 'Optimization of the structureactivity relation in nanoporous materials', funded by the University of Antwerp. ; Approved Most recent IF: 3.108; 2015 IF: 3.840  
  Call Number c:irua:123768 Serial 2317  
Permanent link to this record
 

 
Author Huybrechts, W.; Mali, G.; Kuśtrowski, P.; Willhammar, T.; Mertens, M.; Bals, S.; Van Der Voort, P.; Cool, P. pdf  url
doi  openurl
  Title Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material Type A1 Journal article
  Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 236 Issue 236 Pages 244-249  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Periodic mesoporous organosilicas provide the best of two worlds: the strength and porosity of an inorganic framework combined with the infinite possibilities created by the organic bridging unit. In this work we focus on post-synthetical modification of benzene bridged PMO, in order to create bromobenzene PMO. In the past, this proved to be very challenging due to unwanted structural deterioration. However, now we have found a way to brominate this material whilst keeping the structure intact. In-depth structural analysis by solid state NMR and XPS shows both vast progress over previous attempts as well as potential for improvement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000385899600028 Publication Date 2016-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 7 Open Access OpenAccess  
  Notes ; The authors would like to thank financial support from the FWO-Flanders (project no G.0068.13). The authors further acknowledge financial support of the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ; ecas_Sara Approved Most recent IF: 3.615  
  Call Number UA @ lucian @ c:irua:135274 Serial 4228  
Permanent link to this record
 

 
Author Garzia Trulli, M.; Claes, N.; Pype, J.; Bals, S.; Baert, K.; Terryn, H.; Sardella, E.; Favia, P.; Vanhulsel, A. pdf  url
doi  openurl
  Title Deposition of aminosilane coatings on porous Al2O3microspheres by means of dielectric barrier discharges Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 14 Issue 14 Pages 1600211  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Advances in the synthesis of porous microspheres and in their functionalization are increasing the interest in applications of alumina. This paper deals with coatings plasma deposited from 3-aminopropyltriethoxysilane by means of dielectric barrier discharges on alumina porous microspheres, shaped by a vibrational droplet coagulation technique. Aims of the work are the functionalization of the particles with active amino groups, as well as the evaluation of their surface coverage and of the penetration of the coatings into their pores. A multi-diagnostic approach was used for the chemical/morphological characterization of the particles. It was found that 5 min exposure to plasma discharges promotes the deposition of homogeneous coatings onto the microspheres and within their pores, down to 1 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000410773200003 Publication Date 2017-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 8 Open Access OpenAccess  
  Notes The technical assistance of the VITO staff (Materials Dpt.) is gratefully acknowledged, especially D. Havermans, E. Van Hoof, R. Kemps (SEM-EDX), and A. De Wilde (Hg Porosimetry). Drs. S. Mullens and G. Scheltjens are kindly acknowledged for constructive discussions. Strategic Initiative Materials in Flanders (SIM) is gratefully acknowledged for its financial support. This research was carried out in the framework of the SIM-TRAP program (Tools for rational processing of nano-particles: controlling and tailoring nanoparticle based or nanomodified particle based materials). N. Claes and S. Bals acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.846  
  Call Number EMAT @ emat @ c:irua:139511UA @ admin @ c:irua:139511 Serial 4342  
Permanent link to this record
 

 
Author Zhuge, X.; Jinnai, H.; Dunin-Borkowski, R.E.; Migunov, V.; Bals, S.; Cool, P.; Bons, A.-J.; Batenburg, K.J. pdf  url
doi  openurl
  Title Automated discrete electron tomography – Towards routine high-fidelity reconstruction of nanomaterials Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 175 Issue 175 Pages 87-96  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and non-repeatability. In this paper, we present the application of a new

iterative reconstruction technique, named TVR-DART, for discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging modes. By further reducing the available tilt range and number of projections, we show that the

proposed technique can still produce consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403342500008 Publication Date 2017-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 22 Open Access OpenAccess  
  Notes This work has been supported in part by the Stichting voor de Technische Wetenschappen (STW) through a personal grant (Veni,13610), and was in part by ExxonMobil Chemical Europe Inc. The authors further acknowledge financial support from the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). R.D.B. is grateful for funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007–2013)/ ERC grant agreement number 320832. Thomas Altantzis is gratefully acknowledged for acquiring the Anatase nanosheets dataset. (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:141218UA @ admin @ c:irua:141218 Serial 4485  
Permanent link to this record
 

 
Author Loreto, S.; Vanrompay, H.; Mertens, M.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title The influence of acids on tuning the pore size of mesoporous TiO2 templated by non-ionic block copolymers Type A1 Journal article
  Year 2018 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2018 Issue 2018 Pages 62-65  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We show the possibility to tune the pore size of mesoporous TiO2 templated by non-ionic block copolymers by adding different inorganic acids at well-chosen concentration. The effect of the inorganic anions on both the TiO2 cluster formation and the non-ionic block copolymers micelles is investigated to explain the experimental results.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000419706000008 Publication Date 2017-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 6 Open Access OpenAccess  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) (grant G.0687.13) and the University of Antwerp (BOF project). Hans Vanrompay gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617N). Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.444  
  Call Number UA @ lucian @ c:irua:147897UA @ admin @ c:irua:147897 Serial 4881  
Permanent link to this record
 

 
Author Van Everbroeck, T.; Wu, J.; Arenas-Esteban, D.; Ciocarlan, R.-G.; Mertens, M.; Bals, S.; Dujardin, C.; Granger, P.; Seftel, E.M.; Cool, P. url  doi
openurl 
  Title ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts Type A1 Journal article
  Year 2022 Publication Applied clay science Abbreviated Journal Appl Clay Sci  
  Volume 217 Issue Pages 106390  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000795870100004 Publication Date 2022-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1317 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.6 Times cited 6 Open Access OpenAccess  
  Notes The authors acknowledge financial support by theEuropean Union’s Horizon 2020 Project Partial-PGMs (H2020-NMP-686086). R-G C. and P.C. acknowledge the FWO-Flanders (project no. G038215N) for financial support. S⋅B and D.A.E thank the financial support of the European Research Council (ERC-CoG-2019 815128). The authors are grateful to Johnson Matthey, UK, for supplying the commercial benchmark catalysts; realnano; sygmaSB Approved Most recent IF: 5.6  
  Call Number EMAT @ emat @c:irua:186956 Serial 6955  
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V. pdf  url
doi  openurl
  Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
  Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal  
  Volume Issue Pages e202300437-13  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071673900001 Publication Date 2023-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access OpenAccess  
  Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved Most recent IF: 2.9; 2023 IF: 3.075  
  Call Number UA @ admin @ c:irua:198934 Serial 8911  
Permanent link to this record
 

 
Author Smeulders, G.; van Oers, C.; Van Havenbergh, K.; Houthoofd, K.; Mertens, M.; Martens, J.A.; Bals, S.; Maes, B.U.W.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
  Year 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 175 Issue Pages 585-591  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)  
  Abstract In this study the effects of the heating rate and heating time on the formation of crystal-like benzene bridged periodic mesoporous organosilicas (PMOs) are investigated. The time needed to heat up an autoclave during the hydrothermal treatment has shown to be crucial in the synthesis of PMOs, while the total duration of heating gave rise to only minor differences. By choosing a smart heating profile, superior PMO materials can be obtained in a short time. Different heating profiles in a range from one minute to one hour are adopted by microwave equipment and compared with conventional heating methods. The heating rate has a large influence on the porosity characteristics and the uniformity of the obtained particles. Moreover, two new alternative synthetic strategies to adopt the smart heating profile are presented, in order to give some possible solutions for the expensive microwave equipment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000297875900069 Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 7 Open Access  
  Notes Fwo; Goa-Bof Approved Most recent IF: 6.216; 2011 IF: 3.461  
  Call Number UA @ lucian @ c:irua:93630 Serial 3044  
Permanent link to this record
 

 
Author Kelly, S.; Mercer, E.; De Meyer, R.; Ciocarlan, R.-G.; Bals, S.; Bogaerts, A. url  doi
openurl 
  Title Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation Type A1 Journal Article
  Year 2023 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization  
  Volume 75 Issue Pages 102564  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract e investigate atmospheric pressure microwave (MW) plasma (2.45 GHz) conversion in CO2 and CH4 mixtures (i.e., dry reforming of methane, DRM) focusing on reaction performance and carbon formation. Promising energy costs of ~2.8–3.0 eV/molecule or ~11.1–11.9 kJ/L are amongst the best performance to date considering the current state-of-the-art for plasma-based DRM for all types of plasma. The conversion is in the range of ~46–49% and ~55–67% for CO2 and CH4, respectively, producing primarily syngas (i.e., H2 and CO) with H2/CO ratios of ~0.6–1 at CH4 fractions ranging from 30% to 45%. Water is the largest byproduct with levels ranging ~7–14% in the exhaust. Carbon particles visibly impact the plasma at higher CH4 fractions (> 30%), where they become heated and incandescent. Particle luminosity increases with increasing CH4 fractions, with the plasma becoming unstable near a 1:1 mixture (i.e., > 45% CH4). Electron microscopy of the carbon material reveals an agglomerated morphology of pure carbon nanoparticles. The mean particle size is determined as ~20 nm, free of any metal contamination, consistent with the electrode-less MW design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001065310000001 Publication Date 2023-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited 6 Open Access OpenAccess  
  Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp Approved Most recent IF: 7.7; 2023 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:198155 Serial 8807  
Permanent link to this record
 

 
Author Ndayirinde, C.; Gorbanev, Y.; Ciocarlan, R.-G.; De Meyer, R.; Smets, A.; Vlasov, E.; Bals, S.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic ammonia synthesis : packed catalysts act as plasma modifiers Type A1 Journal article
  Year 2023 Publication Catalysis today Abbreviated Journal  
  Volume 419 Issue Pages 114156-12  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the plasma-catalytic production of NH3 from H2 and N2 in a dielectric barrier discharge plasma reactor using five different Co-based catalysts supported on Al2O3, namely Co/Al2O3, CoCe/Al2O3, CoLa/Al2O3, CoCeLa/Al2O3 and CoCeMg/Al2O3. The catalysts were characterized via several techniques, including SEM-EDX, and their performance was compared. The best performing catalyst was found to be CoLa/Al2O3, but the dif-ferences in NH3 concentration, energy consumption and production rate between the different catalysts were limited under the same conditions (i.e. feed gas, flow rate and ratio, and applied power). At the same time, the plasma properties, such as the plasma power and current profile, varied significantly depending on the catalyst. Taken together, these findings suggest that in the production of NH3 by plasma catalysis, our catalysts act as plasma modifiers, i.e., they change the discharge properties and hence the gas phase plasma chemistry. Importantly, this effect dominates over the direct catalytic effect (as e.g. in thermal catalysis) defined by the chemistry on the catalyst surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000987221300001 Publication Date 2023-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access OpenAccess  
  Notes This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project) and the Methusalem project of the University of Antwerp. We also gratefully acknowledge the NH3-TPD analysis performed by Sander Bossier. Approved Most recent IF: 5.3; 2023 IF: 4.636  
  Call Number UA @ admin @ c:irua:197268 Serial 8917  
Permanent link to this record
 

 
Author Ren, P.; Zhang, T.; Jain, N.; Ching, H.Y.V.; Jaworski, A.; Barcaro, G.; Monti, S.; Silvestre-Albero, J.; Celorrio, V.; Chouhan, L.; Rokicinska, A.; Debroye, E.; Kustrowski, P.; Van Doorslaer, S.; Van Aert, S.; Bals, S.; Das, S. pdf  doi
openurl 
  Title An atomically dispersed Mn-photocatalyst for generating hydrogen peroxide from seawater via the Water Oxidation Reaction (WOR) Type A1 Journal article
  Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 30 Pages 16584-16596  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Organic synthesis (ORSY); Theory and Spectroscopy of Molecules and Materials (TSM²)  
  Abstract In this work, we have fabricatedan aryl amino-substitutedgraphiticcarbon nitride (g-C3N4) catalyst with atomicallydispersed Mn capable of generating hydrogen peroxide (H2O2) directly from seawater. This new catalyst exhibitedexcellent reactivity, obtaining up to 2230 & mu;M H2O2 in 7 h from alkaline water and up to 1800 & mu;Mfrom seawater under identical conditions. More importantly, the catalystwas quickly recovered for subsequent reuse without appreciable lossin performance. Interestingly, unlike the usual two-electron oxygenreduction reaction pathway, the generation of H2O2 was through a less common two-electron water oxidation reaction(WOR) process in which both the direct and indirect WOR processesoccurred; namely, photoinduced h(+) directly oxidized H2O to H2O2 via a one-step 2e(-) WOR, and photoinduced h(+) first oxidized a hydroxide (OH-) ion to generate a hydroxy radical ((OH)-O-& BULL;), and H2O2 was formed indirectly by thecombination of two (OH)-O-& BULL;. We have characterized thematerial, at the catalytic sites, at the atomic level using electronparamagnetic resonance, X-ray absorption near edge structure, extendedX-ray absorption fine structure, high-resolution transmission electronmicroscopy, X-ray photoelectron spectroscopy, magic-angle spinningsolid-state NMR spectroscopy, and multiscale molecular modeling, combiningclassical reactive molecular dynamics simulations and quantum chemistrycalculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001034983300001 Publication Date 2023-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 21 Open Access Not_Open_Access  
  Notes S.D. thanks the IOF grant and Francqui start up grant from the University of Antwerp, Belgium, for the financial support. P.R. thanks CSC and T.Z. thanks FWO for their financial assistance to finish this work. E.D. would like to thank the KU Leuven Research Fund for financial support through STG/21/010. J.S.A. acknowledges financial support from MCIN/AEI/10.13039/501100011033 and EU NextGeneration/PRTR (Project PCI2020-111968/3D-Photocat) and Diamond Synchrotron (rapid access proposal SP32609). This work was supported by the European Research Council (grant 770887-PICOMETRICS to S.V.A. and Grant 815128-REALNANO to S.B.). S.B. and S.V.A. acknowledge financial support from the Research Foundation Flanders (FWO, Belgium, project G.0346.21 N). We also thank Mr. Jian Zhu and Mr. Shahid Ullah Khan from the University of Antwerp, Belgium, for helpful discussions. Approved Most recent IF: 15; 2023 IF: 13.858  
  Call Number UA @ admin @ c:irua:198426 Serial 8831  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Deng, S.; Kurttepeli, M.; Cott, D.J.; Vereecken, P.M.; Bals, S.; Martens, J.A.; Detavernier, C.; Lenaerts, S. pdf  url
doi  openurl
  Title Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 160 Issue Pages 204-210  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Supported carbon nanosheets and carbon nanotubes served as sacrificial templates for preparing spacious TiO2 photocatalytic thin films. Amorphous TiO2 was deposited conformally on the carbonaceous template material by atomic layer deposition (ALD). Upon calcination at 550 °C, the carbon template was oxidatively removed and the as-deposited continuous amorphous TiO2 layers transformed into interlinked anatase nanoparticles with an overall morphology commensurate to the original template structure. The effect of type of template, number of ALD cycles and gas residence time of pollutant on the photocatalytic activity, as well as the stability of the photocatalytic performance of these thin films was investigated. The TiO2 films exhibited excellent photocatalytic activity toward photocatalytic degradation of acetaldehyde in air as a model reaction for photocatalytic indoor air pollution abatement. Optimized films outperformed a reference film of commercial PC500.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000340687900024 Publication Date 2014-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 37 Open Access OpenAccess  
  Notes 335078 Colouratom; Iap-Pai P7/05; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2014 IF: 7.435  
  Call Number UA @ lucian @ c:irua:117094 Serial 2608  
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Goris, B.; Blommaerts, N.; Bals, S.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Plasmonic ‘rainbow’ photocatalyst with broadband solar light response for environmental applications Type A1 Journal article
  Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 188 Issue 188 Pages 147-153  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We propose the concept of a ‘rainbow’ photocatalyst that consists of TiO2 modified with gold-silver alloy nanoparticles of various sizes and compositions, resulting in a broad plasmon absorption band that covers the entire UV–vis range of the solar spectrum. It is demonstrated that this plasmonic ‘rainbow’ photocatalyst is 16% more effective than TiO2 P25 under both simulated and real solar light for pollutant degradation at the solid-gas interface. With this we provide a promising strategy to maximize the spectral response for solar to chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372677500016 Publication Date 2016-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 47 Open Access OpenAccess  
  Notes S.W.V. and B.G. acknowledge the Research Foundation—Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges IWT for the doctoral scholarship. S.B. acknowledges the European Research Council (ERC) for financial support through the ERC grant agreement no. 335078-COLOURATOM. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446  
  Call Number c:irua:130995 Serial 4061  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 200 Issue 200 Pages 31-38  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384775600004 Publication Date 2016-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 45 Open Access OpenAccess  
  Notes CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446  
  Call Number c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 Serial 4104  
Permanent link to this record
 

 
Author Adam, N.; Leroux, F.; Knapen, D.; Bals, S.; Blust, R. pdf  url
doi  openurl
  Title The uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna under chronic exposure scenarios Type A1 Journal article
  Year 2015 Publication Water research Abbreviated Journal Water Res  
  Volume 68 Issue 68 Pages 249-261  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Veterinary physiology and biochemistry  
  Abstract In this study, the uptake and elimination of ZnO and CuO nanoparticles in Daphnia magna was tested. Daphnids were exposed during 10 days to sublethal concentrations of ZnO and CuO nanoparticles and corresponding metal salts (ZnCl2 and CuCl2.2H2O), after which they were transferred to unexposed medium for another 10 days. At different times during the exposure and none-exposure, the total and internal zinc or copper concentration of the daphnids was determined and the nanoparticles were localized in the organism using electron microscopy. The exposure concentrations were characterized by measuring the dissolved, nanoparticle and aggregated fraction in the medium. The results showed that the ZnO nanoparticles quickly dissolved after addition to the medium. Contrarily, only a small fraction (corresponding to the dissolved metal salt) of the CuO nanoparticles dissolved, while most of these nanoparticles formed large aggregates. Despite an initial increase in zinc and copper concentration during the first 48 hour to 5 day exposure, the body concentration reached a plateau level that was comparable for the ZnO nanoparticles and ZnCl2, but much higher for the CuO nanoparticles (with visible aggregates accumulating in the gut) than CuCl2.2H2O. During the remaining exposure and subsequent none-exposure phase, the zinc and copper concentration decreased fast to concentrations comparable with the unexposed daphnids. The results indicate that D. magna can regulate its internal zinc and copper concentration after exposure to ZnO and CuO nanoparticles, similar as after exposure to metal salts. The combined dissolution, accumulation and toxicity results confirm that the toxicity of ZnO and CuO nanoparticles is caused by the dissolved fraction. Keywords nano; zinc; copper; dissolution; aggregation; electron microscopy  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000347756900022 Publication Date 2014-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.942 Times cited 51 Open Access OpenAccess  
  Notes ; The authors would like to thank Valentine Mubiana and Steven Joosen (Sphere, UA) for performing the ICP-MS and ICP-OES measurements and Prof. Dr. Gustaaf Van Tendeloo for making the collaboration between the EMAT and Sphere group possible. This study is part of the ENNSATOX-project, which was funded by the EU (NMP4-SL-2009-229244). The authors report no conflicts of interest. ; Approved Most recent IF: 6.942; 2015 IF: 5.528  
  Call Number c:irua:119366 c:irua:119366 Serial 3822  
Permanent link to this record
 

 
Author Adam, N.; Leroux, F.; Knapen, D.; Bals, S.; Blust, R. doi  openurl
  Title The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios Type A1 Journal article
  Year 2014 Publication Environmental pollution Abbreviated Journal Environ Pollut  
  Volume 194 Issue Pages 130-137  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Veterinary physiology and biochemistry  
  Abstract In this study the uptake of ZnO and CuO nanoparticles by Daphnia magna was tested. Daphnids were exposed during 48 h to acute concentrations of the nanoparticles and corresponding metal salts. The Daphnia zinc and copper concentration was measured and the nanoparticles were localized using electron microscopy. The aggregation and dissolution in the medium was characterized. A fast dissolution of ZnO in the medium was observed, while most CuO formed large aggregates and only a small fraction dissolved. The Daphnia zinc concentration was comparable for the nanoparticles and salts. Contrarily, a much higher Daphnia copper concentration was observed in the CuO exposure, compared to the copper salt. CuO nanoparticles adsorbed onto the carapace and occurred in the gut but did not internalize in the tissues. The combined dissolution and uptake results indicate that the toxicity of both nanoparticle types was caused by metal ions dissolved from the particles in the medium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000342530800016 Publication Date 2014-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-7491; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.099 Times cited 45 Open Access Not_Open_Access  
  Notes ; We would like to thank Valentine Mubiana and Steven Joosen (Sphere, UA) for performing the ICP-OES and ICP-MS measurements and Prof. Dr. Gustaaf Van Tendeloo for making the collaboration between the EMAT and Sphere group possible. Additional thanks go to the European Commission for funding this work through the project ENNSATOX (NMP4-SL-2009-229244). ; Approved Most recent IF: 5.099; 2014 IF: 4.143  
  Call Number UA @ lucian @ c:irua:118326 Serial 3823  
Permanent link to this record
 

 
Author Batenburg, K.J.; Bals, S.; Sijbers, J.; Kübel, C.; Midgley, P.A.; Hernandez, J.C.; Kaiser, U.; Encina, E.R.; Coronado, E.A.; Van Tendeloo, G. pdf  doi
openurl 
  Title 3D imaging of nanomaterials by discrete tomography Type A1 Journal article
  Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 109 Issue 6 Pages 730-740  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi2 nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000265816400005 Publication Date 2009-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 220 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067  
  Call Number UA @ lucian @ c:irua:74665 c:irua:74665 Serial 12  
Permanent link to this record
 

 
Author Roelandts, T.; Batenburg, K.J.; Biermans, E.; Kübel, C.; Bals, S.; Sijbers, J. pdf  doi
openurl 
  Title Accurate segmentation of dense nanoparticles by partially discrete electron tomography Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 114 Issue Pages 96-105  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in electron tomography. Due to artifacts related to image series acquisition and reconstruction, global thresholding of reconstructions computed by established algorithms, such as weighted backprojection or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense nanoparticles of constant composition. The particles are segmented directly by the reconstruction algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As no properties are assumed for the other compositions of the sample, the technique can be applied to any sample where dense nanoparticles must be segmented, regardless of the surrounding compositions. For both experimental and simulated data, it is shown that PDART yields significantly more accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000301954300011 Publication Date 2012-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 34 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:97710 Serial 52  
Permanent link to this record
 

 
Author Goris, B.; Roelandts, T.; Batenburg, K.J.; Heidari Mezerji, H.; Bals, S. pdf  url
doi  openurl
  Title Advanced reconstruction algorithms for electron tomography : from comparison to combination Type A1 Journal article
  Year 2013 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 127 Issue Pages 40-47  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In this work, the simultaneous iterative reconstruction technique (SIRT), the total variation minimization (TVM) reconstruction technique and the discrete algebraic reconstruction technique (DART) for electron tomography are compared and the advantages and disadvantages are discussed. Furthermore, we describe how the result of a three dimensional (3D) reconstruction based on TVM can provide objective information that is needed as the input for a DART reconstruction. This approach results in a tomographic reconstruction of which the segmentation is carried out in an objective manner.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000316659100007 Publication Date 2012-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 63 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2013 IF: 2.745  
  Call Number UA @ lucian @ c:irua:101217 Serial 72  
Permanent link to this record
 

 
Author Turner, S.; Tavernier, S.M.F.; Huyberechts, G.; Bals, S.; Batenburg, K.J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Assisted spray pyrolysis production and characterisation of ZnO nanoparticles with narrow size distribution Type A1 Journal article
  Year 2010 Publication Journal of nanoparticle research Abbreviated Journal J Nanopart Res  
  Volume 12 Issue 2 Pages 615-622  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Nano-sized ZnO particles with a narrow size distribution and high crystallinity were prepared from aqueous solutions with high concentrations of Zn2+ containing salts and citric acid in a conventional spray pyrolysis setup. Structure, morphology and size of the produced material were compared to ZnO material produced by simple spray pyrolysis of zinc nitrates in the same experimental setup. Using transmission electron microscopy and electron tomography it has been shown that citric acid-assisted spray pyrolysed material is made up of micron sized secondary particles comprising a shell of lightly agglomerated, monocrystalline primary ZnO nanoparticles with sizes in the 2030 nm range, separable by a simple ultrasonic treatment step.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000275318700025 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-0764;1572-896X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.02 Times cited 27 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.02; 2010 IF: 3.253  
  Call Number UA @ lucian @ c:irua:81771 Serial 156  
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Bals, S.; Erni, R.; van Dyck, D.; Van Tendeloo, G. url  doi
openurl 
  Title Atomic resolution mapping using quantitative high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
  Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 15 Issue S:2 Pages 464-465  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000208119100230 Publication Date 2009-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.891; 2009 IF: 3.035  
  Call Number UA @ lucian @ c:irua:96555UA @ admin @ c:irua:96555 Serial 178  
Permanent link to this record
 

 
Author Molina, L.; Tan, H.; Biermans, E.; Batenburg, K.J.; Verbeeck, J.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Barrier efficiency of sponge-like La2Zr2O7 buffer layers for YBCO-coated conductors Type A1 Journal article
  Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 24 Issue 6 Pages 065019-065019,8  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Solution derived La2Zr2O7 films have drawn much attention for potential applications as thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and coating parameters strongly affect the microstructure of La2Zr2O7, but different film processing methods can yield similar microstructural features such as nanovoids and nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and the implications for the functionality of the films are investigated by a combination of scanning transmission electron microscopy (STEM), electron energy-loss spectroscopy (EELS) and quantitative electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni5 at.%W substrates with a {100}lang001rang biaxial texture were prepared for an in-depth characterization. A sponge-like structure composed of nanometer-sized voids is revealed by high-angle annular dark-field scanning transmission electron microscopy in combination with electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is obtained on a local scale. Mostly non-interconnected highly faceted nanovoids compromise more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 170 nm thick La2Zr2O7 film is investigated by STEM-EELS, yielding a 1.8 ± 0.2 nm oxide layer beyond which no significant nickel diffusion can be detected and intermixing is observed. This is of particular significance for the functionality of YBa2Cu3O7 − δ coated conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000290472900021 Publication Date 2011-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 31 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 2.878; 2011 IF: 2.662  
  Call Number UA @ lucian @ c:irua:88639UA @ admin @ c:irua:88639 Serial 221  
Permanent link to this record
 

 
Author van den Broek, W.; Rosenauer, A.; Goris, B.; Martinez, G.T.; Bals, S.; Van Aert, S.; van Dyck, D. pdf  doi
openurl 
  Title Correction of non-linear thickness effects in HAADF STEM electron tomography Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 116 Issue Pages 8-12  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract In materials science, high angle annular dark field scanning transmission electron microscopy is often used for tomography at the nanometer scale. In this work, it is shown that a thickness dependent, non-linear damping of the recorded intensities occurs. This results in an underestimated intensity in the interior of reconstructions of homogeneous particles, which is known as the cupping artifact. In this paper, this non-linear effect is demonstrated in experimental images taken under common conditions and is reproduced with a numerical simulation. Furthermore, an analytical derivation shows that these non-linearities can be inverted if the imaging is done quantitatively, thus preventing cupping in the reconstruction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000304473700002 Publication Date 2012-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 67 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:96558 Serial 518  
Permanent link to this record
 

 
Author Goris, B.; van den Broek, W.; Batenburg, K.J.; Heidari Mezerji, H.; Bals, S. pdf  doi
openurl 
  Title Electron tomography based on a total variation minimization reconstruction technique Type A1 Journal article
  Year 2012 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 113 Issue Pages 120-130  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract The 3D reconstruction of a tilt series for electron tomography is mostly carried out using the weighted backprojection (WBP) algorithm or using one of the iterative algorithms such as the simultaneous iterative reconstruction technique (SIRT). However, it is known that these reconstruction algorithms cannot compensate for the missing wedge. Here, we apply a new reconstruction algorithm for electron tomography, which is based on compressive sensing. This is a field in image processing specialized in finding a sparse solution or a solution with a sparse gradient to a set of ill-posed linear equations. Therefore, it can be applied to electron tomography where the reconstructed objects often have a sparse gradient at the nanoscale. Using a combination of different simulated and experimental datasets, it is shown that missing wedge artefacts are reduced in the final reconstruction. Moreover, it seems that the reconstructed datasets have a higher fidelity and are easier to segment in comparison to reconstructions obtained by more conventional iterative algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300554400006 Publication Date 2011-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 171 Open Access  
  Notes Fwo Approved Most recent IF: 2.843; 2012 IF: 2.470  
  Call Number UA @ lucian @ c:irua:93637 Serial 987  
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 158 Issue 158 Pages 81-88  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000361574800011 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126675 c:irua:126675 Serial 988  
Permanent link to this record
 

 
Author Goris, B.; Bals, S.; van den Broek, W.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Exploring different inelastic projection mechanisms for electron tomography Type A1 Journal article
  Year 2011 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 111 Issue 8 Pages 1262-1267  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Several different projection mechanisms that all make use of inelastically scattered electrons are used for electron tomography. The advantages and the disadvantages of these methods are compared to HAADFSTEM tomography, which is considered as the standard electron tomography technique in materials science. The different inelastic setups used are energy filtered transmission electron microscopy (EFTEM), thickness mapping based on the log-ratio method and bulk plasmon mapping. We present a comparison that can be used to select the best inelastic signal for tomography, depending on different parameters such as the beam stability and nature of the sample. The appropriate signal will obviously also depend on the exact information which is requested.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000300461100039 Publication Date 2011-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 21 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 2.843; 2011 IF: 2.471  
  Call Number UA @ lucian @ c:irua:91260UA @ admin @ c:irua:91260 Serial 1151  
Permanent link to this record
 

 
Author Biermans, E.; Molina, L.; Batenburg, K.J.; Bals, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Measuring porosity at the nanoscale by quantitative electron tomography Type A1 Journal article
  Year 2010 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 10 Issue 12 Pages 5014-5019  
  Keywords (up) A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Quantitative electron tomography is proposed to characterize porous materials at a nanoscale. To achieve reliable three-dimensional (3D) quantitative information, the influence of missing wedge artifacts and segmentation methods is investigated. We are presenting the Discrete Algebraic Reconstruction Algorithm as the most adequate tomography method to measure porosity at the nanoscale. It provides accurate 3D quantitative information, regardless the presence of a missing wedge. As an example, we applied our approach to nanovoids in La2Zr2O7 thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000284990900040 Publication Date 2010-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 79 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 12.712; 2010 IF: 12.219  
  Call Number UA @ lucian @ c:irua:87658 Serial 1967  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: