|
Record |
Links |
|
Author |
Lin, F.; Meng; Kukueva, E.; Mertens, M.; Van Doorslaer, S.; Bals, S.; Cool, P. |
|
|
Title |
New insights into the mesophase transformation of ethane-bridged PMOs by the influence of different counterions under basic conditions |
Type |
A1 Journal article |
|
Year |
2015 |
Publication |
RSC advances |
Abbreviated Journal |
Rsc Adv |
|
|
Volume |
5 |
Issue |
5 |
Pages |
5553-5562 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA) |
|
|
Abstract |
The counterions are of crucial importance in determining the mesostructure and morphology of ethanebridged PMO materials synthesized under basic conditions. By using CTABr as the surfactant, the final PMO materials show a 2-D hexagonal (p6mm) mesophase, while PMO materials with cubic (Pm (3) over barn ) mesostructure are obtained when CTACl or CTA(SO4)(1)/(2) are used. With gradually replacing CTABr by CTACl or CTA(SO4) (1)/(2) while keeping the total surfactant concentration constant, a clear p6mm to Pm (3) over barn 3n mesophase evolution process is observed. For a given gel composition, the mesophase of ethanebridged PMO materials can also be adjusted by the addition of different sodium salts. In short, the effect of the counterions on the mesophase can be attributed to the binding strength of the ions on the surfactant micelles, which follows the Hofmeister series (SO42- < Cl- < Br-< NO3- < SCN-). Furthermore, it is found that the hydrolysis and condensation rate of the organosilica precursor also plays an important role in the formation of the final mesostructure |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000347304900010 |
Publication Date |
2014-12-11 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2046-2069; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.108 |
Times cited |
6 |
Open Access |
Not_Open_Access |
|
|
Notes |
; The Erasmus Mundus CONNEC program is acknowledged for PhD funding of F. L. Furthermore, the authors acknowledge support by the GOA-BOF project 'Optimization of the structureactivity relation in nanoporous materials', funded by the University of Antwerp. ; |
Approved |
Most recent IF: 3.108; 2015 IF: 3.840 |
|
|
Call Number |
c:irua:123768 |
Serial |
2317 |
|
Permanent link to this record |