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ABSTRACT 
 

Electron tomography is an essential imaging technique for the investigation of morphology and 3D structure of nanomaterials. This 
method, however, suffers from well-known missing wedge artifacts due to a restricted tilt range, which limits the objectiveness, 
repeatability and efficiency of quantitative structural analysis. Discrete tomography represents one of the promising reconstruction 
techniques for materials science, potentially capable of delivering higher fidelity reconstructions by exploiting the prior knowledge of 
the limited number of material compositions in a specimen. However, the application of discrete tomography to practical datasets 
remains a difficult task due to the underlying challenging mathematical problem. In practice, it is often hard to obtain consistent 
reconstructions from experimental datasets. In addition, numerous parameters need to be tuned manually, which can lead to bias and 
non-repeatability. In this paper, we present the application of a new iterative reconstruction technique, named TVR-DART, for 
discrete electron tomography. The technique is capable of consistently delivering reconstructions with significantly reduced missing 
wedge artifacts for a variety of challenging data and imaging conditions, and can automatically estimate its key parameters. We 
describe the principles of the technique and apply it to datasets from three different types of samples acquired under diverse imaging 
modes. By further reducing the available tilt range and number of projections, we show that the proposed technique can still produce 
consistent reconstructions with minimized missing wedge artifacts. This new development promises to provide the electron microscopy 
community with an easy-to-use and robust tool for high-fidelity 3D characterization of nanomaterials. 
 

I. INTRODUCTION 
Increasing interest in the modeling and development of 
advanced nanomaterials has fueled the demand for optimized 
imaging methods capable of accurate characterization of such 
systems. Electron tomography (ET) is an important and 
powerful technique for the investigation of the 
three-dimensional structures of nanomaterials [1,2], and has 
been widely applied to materials that include polymeric 
structures [3,4], inorganic materials [5,6] and organic 
materials [7].  

Despite recent advances in instrumentation and automated 
image acquisition, ET is fundamentally limited by the 
accuracy of the reconstructions it can produce, largely due to 
the well-coined ‘missing wedge’ problem [8]. For most types 
of samples, the maximum tilt range, over which 2D projection 
images are acquired, is restricted to approximately ±70° (and 
sometimes less in practice) due to an increase in the effective 
thickness of a thin section at high tilt angles, shadowing by the 
sample grid and sample holder, and limited space between the 
polepieces of the objective lens in the transmission electron 
microscope (TEM). This limited tilt range results in an 
unavoidable missing gap of information in the Fourier 
representation of the reconstruction, which can lead to false 
vertical elongation of structures and to the disappearance of 
horizontal features. As a result, segmentation of the 
reconstructions needs to be performed manually to reduce the 

influence of artifacts, which is not only time-consuming but 
also affects the objectiveness and repeatability of quantitative 
structural analysis.  

Significant efforts have been made by the electron 
microscopy community to address the missing wedge problem. 
Dual-axis ET is an alternative acquisition strategy, which 
involves the acquisition of additional projection images about 
a second tilt axis that is perpendicular to the original one 
[9,10]. Although this approach can partially reduce artifacts by 
decreasing the lost information to a ‘missing pyramid’, the 
doubled electron dose and difficulty in acquiring as well as 
aligning two tilt series add many complications. 
Needle-shaped specimens that have been prepared using 
focused ion beam (FIB) milling together with the use of a 
dedicated tomography holder, enable the acquisition of 
projection images over the complete tilt range of 180°, thereby 
eliminating missing wedge artifacts [11-13]. However, not all 
samples can be prepared and imaged using this method and 
the diameter of the specimen that one can image is also 
limited.  

The development of advanced reconstruction algorithms is 
another important direction for alleviating the missing wedge 
problem. Weighted backprojection (WBP) [14] and iterative 
reconstruction algorithms, such as the simultaneous iterative 
reconstruction technique (SIRT) [15], are now widely used but 
do not offer solutions to the missing wedge problem. 
Furthermore, their performance degrades significantly when 
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the number of projection images is limited. Compressive 
sensing ET (CS-ET) represents a type of algorithm that has 
undergone intensive research in recent years [16,17]. 
According to CS theory, if an image is sparse in a certain 
domain then it can be recovered accurately from a small 
number of measurements with high probability when the 
measurements satisfy certain randomization properties [18]. In 
several cases, it has been demonstrated that artifacts due to 
limited sampling in conventional reconstructions could be 
reduced by selecting proper sparsifying transforms [17]. 
Recent studies have shown that the combination of CS-ET 
with the use of a needle-shaped specimen can provide 
high-fidelity reconstructions from fewer projections [12]. 
Total Variation minimization (TVmin) can be seen as a special 
case of CS-ET when the boundary representing the interface 
between different compositions is sparse [19,20].  

Discrete tomography (DT) makes use of a type of prior 
knowledge, where the sample is known to consist of a limited 
number of materials [21]. Historically, DT was first 
formulated for the reconstruction of nanocrystals at atomic 
resolution in samples that contain only a few types of atoms 
that also lie on regular lattices [22]. In more generalized cases, 
where individual atoms cannot be resolved, DT assumes that 
the reconstruction contains a few different intensities, which 
correspond to a limited number of materials, with no 
assumption about the lattice structure. By exploiting this prior 
knowledge, DT has the potential to provide a significant 
reduction in missing wedge artifact, as well as in the number 
of projection images required and exposure of the specimen.  

The Discrete Algebraic Reconstruction Technique (DART), 
which is one of the practical algorithms for DT [23], has 
demonstrated its ability to improve the reconstruction quality 
in several practical cases [24-28]. However, the application of 
DART to practical tilt series remains a difficult and often 
time-consuming task. Several key issues must be addressed if 
it is to reach a general level of applicability to nanomaterials. 
First, DART requires very strict conditions on the discreteness 
of the reconstruction, which are not fulfilled in all 
tomographic acquisition modes in the TEM. In fact, all 
previous results have been demonstrated using 
HAADF-STEM mode, where the projection requirement for 
tomography is better fulfilled. Other imaging modes, such as 
BF-TEM, have their own advantages in applications for the 
study of beam sensitive materials such as polymers or 
meso-porous structures. Second, just as for many other DT 
algorithms, DART is sensitive to noise in the projection data 
and can produce unstable artifacts such as rough edges and 
salt-and-pepper noise in the resulting reconstruction. Last but 
not least, one must specify numerous parameters for DART, 
including the discrete grey levels that correspond to each 
composition, in order to achieve reasonable results. This 
requires a high level of algorithm-specific expertise from the 
user and may involve trial-and-error, which limits the wide 
adoption of the technique. 

In this paper, we present a recently proposed technique, 
named TVR-DART [29], which addresses all of the 
above-mentioned problems by incorporating a flexible and 

relaxed discrete model, while exploiting two types of prior 
information simultaneously in terms of limited material 
composition and sparsity of boundaries inspired by 
compressive sensing. An improved 3D version of the 
technique is introduced in this paper, which allows us to 
expand the application of DT to different types of materials 
for various TEM acquisition modes, thereby improving the 
fidelity of the reconstruction and its automation.  

The key concepts and formulations of the proposed 
technique are described in Section II. In Section III, we 
present the application of TVR-DART to three different 
experimental electron tomography datasets that were obtained 
using diverse imaging modes and acquisition conditions. By 
using a needle-shaped specimen, we demonstrate the extended 
application of DT to BF-TEM images, and compare the 
TVR-DART reconstruction under a ±60° tilt range with the 
one obtained from a complete dataset (±90°). The second 
dataset of an inorganic nanotube was recorded on a direct 
electron detector and has a high level of noise due to the 
extremely short exposure time (the complete tilt series 
recorded in under 3.5 seconds). We use this dataset to show 
that rough edges, which appear in the reconstructions obtained 
using the original DART algorithm as a result of high noise 
level, are now effectively suppressed, allowing accurate 
reconstruction despite the use of an extremely limited tilt 
range of ±50°. The last dataset is a tilt series of an anatase 
nanosheet specimen recorded using HAADF-STEM. We 
demonstrate with this data that challenging horizontal 
structures, which usually disappear due to missing wedge 
artifacts, can be recovered using the proposed technique. 
Section IV discusses the results and concludes the paper. 

II. METHODS 

A. Algorithm 
For a limited angular range and large tilt increments, the 

mathematical problem of tomographic reconstruction is highly 
underdetermined based on only the acquired data. This 
situation results in the need to fully utilize any prior 
knowledge we have about the underlying specimen. On the 
assumption that the total number of different material 
compositions within the sample is known a priori, the 
proposed TVR-DART technique exploits explicitly two types 
of priors: sparsity of image grey levels (each corresponding to 
a distinct material composition) and sparsity of boundaries 
between different compositions. The first type of sparsity 
promotes a solution that has a smaller amount of different grey 
levels, while the second type helps to minimize the amount of 
noise within the reconstruction. The two types of priors are 
incorporated in different mathematical formats and can be 
solved within the following optimization framework: 

 

𝒙 = argmin
𝒙,!

𝑾𝑆 𝒙,𝑅 − 𝒑 𝟐
𝟐 + 𝜆 ∇ 𝑆 𝒙,𝑅 !  

 (1) 
where 𝒙 is a voxel representation of the specimen, 𝒑 is the 
acquired tilt series, 𝑾 is the projection matrix that maps the 
reconstruction to the measured projection data, 𝑆 𝒙,𝑅  



represents a Soft Segmentation Function (SSF) that smoothly 
steers the intensities of the reconstruction towards a set of 
discrete grey levels 𝑅 = 𝜌!, 𝜌!,… , 𝜌G  with G being the total 
number of different material compositions besides vacuum, 
and ∇  represents the discrete gradient operator. The first 
ℓ! -norm term in Eq. (1) ensures a match between the 
reconstruction after segmentation and the projection data 
while the second ℓ!-norm promotes sparsity in boundaries 
between the segmented regions of different materials. The 
parameter 𝜆 is the weight for controlling the trade-off between 
the two terms. Inclusion of the SSF in the objective function 
applies a soft push to the pixel values that encourages (but not 
strictly enforces) a discrete solution. As a result of this 
flexibility, TVR-DART exhibits extra tolerance towards 
miss-matches in the projection data, e.g., noise and 
less-than-ideal imaging conditions. A dedicated algorithm that 
forms auxiliary functions above the second order 
approximation of the objective function was formulated to 
efficiently solve the underlying non-convex optimization 
problem. Detailed formulations of the algorithm can be found 
in Ref. [29]. 

With the objective function formulated in Eq. (1), both the 
reconstruction 𝒙  and the set of discrete grey levels 𝑅 
corresponding to each of the compositions must be optimized 
or determined. Due to the different nature of the two types of 
unknowns, the problem is solved in a manner of bilevel 
optimization: the optimization on the grey levels 𝑅 is treated 
as an inner layer problem, which nests within an outer layer 
optimization on the reconstruction 𝒙 . This approach is 
illustrated in Fig. 1. Within every iteration of the algorithm, a 
converged solution for the grey levels 𝑅!!! is first found using 
the current estimate 𝒙!, before making a step of the outer layer 
problem to find the next estimate of the reconstruction 𝒙!!!. 
Efficient second-order algorithms can be used to solve the 
inner optimization of grey levels [29]. The whole algorithm 
alternates between the inner and outer optimization tasks until 
the convergence is reached.  

We further propose a modified formulation for the SSF 
function of TVR-DART as a sum of generalized logistic 
functions (from previous logistic function): 

𝑆 𝒙,𝑅 = 𝜌!＋
𝜌! − 𝜌!!!

𝟏 + 𝒆!𝟐!! 𝒙!!!
!!

G

!!!

 (2) 

where 𝜌! are the discrete grey levels with 𝜌! = 0 (assuming 
the background is always vacuum, corresponding to zero 
intensity in the reconstruction), 𝜏! represent the corresponding 
thresholds, and 𝑘!  controls the sharpness of the SSF. The 
variable 𝑣! in Eq. (2) is introduced to help ensure that pixels 
with intensities below 𝜏! are pushed downwards, while those 
above 𝜏! are pushed upwards.  

The TVR-DART algorithm starts with an initial solution for 
the reconstruction using either SIRT or Total Variation 
minimization. For all of the results presented in this paper, an 
initial SIRT solution with 200 iterations is used. We further 
normalize the projection data with the maximum value of the 
initial SIRT reconstruction, so that the value range of the 

reconstruction lies approximately between 0 and 1 for all of 
the datasets. We also initialize the values of the set of grey 
levels 𝑅!  using the average pixel values within identified 
regions of different materials from the normalized initial 
reconstruction. A sample script demonstrating the workflow of 
applying TVR-DART on experimental datasets can be found 
in the appendix. 

B. Simulation 
In order to gain further insights into the proposed 

TVR-DART technique, a numerical tomography simulation 
was carried out using a simple linear projection model. Fig. 2 
shows the reconstructions of a phantom, which resembles a 
specimen in which nanoparticles are embedded in a base 
matrix. The chosen phantom is not completely discrete, but 
contains intensity gradients within its two compositions. This 
mimics practical data within which non-ideal imaging 
conditions, such as non-monotonicity of the recorded contrast, 
are present. The simulated tilt range is ±60° with a 2° tilt 
increment to represent a missing wedge condition. To make 
the simulation more realistic, Gaussian noise was also added 
to the projection data. Visual comparison of the 
reconstructions obtained from the different techniques shows 
that TVR-DART and DART provide more accurate 
reconstructions with reduced missing wedge artifacts, while 
DART further results in rough edges and a small amount of 
artifacts within the object. Fig. 2(f) further compares the 
histograms of different reconstructions with the ground truth. 
Conventional techniques, such as WBP and SIRT, produce 
blurred edges under missing wedge conditions, which are 
represented as spread intensities and a widened histogram 
distribution. In contrast, DART enforces a completely discrete 
solution which forces the reconstruction to contain only 2 grey 
levels besides vacuum. Under less ideal imaging conditions, 
morphological artifacts around the edge and inner regions of 
the object are introduced in order to provide a match with the 
projection data, while following this strict discrete assumption. 
The histogram of TVR-DART reconstruction matches with the 
ground truth well, as it concentrates the grey levels towards a 
limited number of grey values but does not strictly enforce this 
criterion. It thereby allows an additional degree of tolerance 
towards small mismatches in the acquired data, while still 

 
Fig. 1.  Illustration of the bilevel optimization framework of TVR-DART for 
joint estimation of reconstruction and grey levels subject to a specified 
number of different material compositions. 
  



being able to take advantage of the strong discrete assumption. 

C. Parameters 
For the three experimental datasets described in the next 

section, we specify the parameter settings in the algorithm that 
are listed in Table I. Parameter 𝐾 is a transition constant for 
controlling the sharpness of transitions in the SSF curve, while 
𝑟 = 𝜏! − 𝜌!!! / 𝜌! − 𝜌!!!  determines the relative position 
of the thresholds between adjacent grey levels. 

 
Table I. Parameter settings for the 3 experimental datasets 

 Needle-shaped 
Polymer 

(BF-TEM) 

Inorganic 
nanotube 

(BF-TEM) 

Anatase 
nanosheets 

(HAADF-STEM) 
𝐾 4 4 4 
𝑟 0.5 0.5 0.5 
𝜆 150 10 40 

with 𝑘! =
!

!!!!!!!
, and 𝑣! = −𝑙𝑜𝑔!𝑟 

 
For all three datasets, only 𝜆 is set differently, depending on 
the noise level and the imaging mode of the experiment. The 
fact that the same settings can be applied to different datasets 
and imaging conditions, with the exception of a single 
parameter, demonstrates the automation of the proposed 
technique. 

Three algorithms are further used for comparison in this 
study: WBP, SIRT, and DART. For (additive) SIRT, 200 
iterations are used to ensure convergence. For the DART 
implementation, SIRT is utilized as the intermediate algebraic 
reconstruction step. The algorithm iterates for 100 iterations to 
ensure convergence. Within each main iteration, 20 
sub-iterations of SIRT are performed on the free pixels (pixels 
that are allowed to change). In order to maximize its ability to 
cope with noise in the projection data, the fix probability (the 
percentage of pixels that are fixed during update) is specified 
as 𝑝 = 0.5 as described in Ref. [23]. A Gaussian filter of a 
size 3x3 with σ = 0.6 is used to smooth the boundary pixels 
after each iteration. Because DART requires further input on 
the grey levels of the compositions, we use the values 
estimated by TVR-DART to assist the DART reconstructions. 

III. EXPERIMENTAL RESULTS FROM THREE CASE STUDIES 
In this section, we report the electron tomography 

experiments carried out for three different types of specimens 
in materials science imaged using different TEM acquisition 
modes. For every sample, descriptions of the composition, 
preparation and acquisition conditions are given, followed by 
an analysis of results from different reconstruction techniques.  

A Structural Similarity Index (SSIM) [30] is used to 
evaluate the quality of the reconstructions. This is a 
quantitative measure of the similarity between the 
reconstruction obtained from a limited (reduced) dataset and 
one computed from the full available tilt series. A perfect 
reconstruction should produce an SSIM that is close to 1 
(maximum). We also compute the projection distance measure 
using the ℓ!-norm ( 𝑾𝒙 − 𝒑 𝟐) as an estimate of the match 

between the reconstructions and the projection data. The lower 
the projection distance measure, the better the consistency of 
the reconstruction with the acquired tilt series. 

A. Needle-shaped nanocomposite acquired with BF-TEM 
A polymer nanocomposite was prepared by a direct 

     
 

f. Histograms 

 
 
Fig. 2.  Numerical tomography simulations of (a) a phantom with intensity 
gradients within two of its compositions and its reconstructions performed 
for a ±60° tilt range with 2° increments obtained using (b) WBP, (c) SIRT, 
(d) DART and (e) TVR-DART. Comparison of histograms (f) of the original 
phantom and reconstructions obtained using different algorithms, showing 
the closest match between the TVR-DART reconstruction and the ground 
truth.  
 
  



dispersion method from ultrafine zirconium dioxide (zirconia) 
particles and a thermally stable polymer. A FIB system  
(FB2100, Hitachi, Ltd., Japan) was used to make a 
needle-shaped TEM specimen from the nanocomposite. The 
diameter of the resulting needle was approximately 150 nm at 
the tip and 300 nm at the base. The grid with the rod-shaped 
specimen at the top was mounted on a dedicated specimen 
holder to achieve a ±90° tilt range. Electron tomography 
experiment was carried out using a JEM2200FS TEM (JEOL 
Ltd., Japan) equipped with a eucentric specimen stage. The 
accelerating voltage was 200 kV. In total, 180 bright-field 
projection images from  -90° to +90° with 1° increments were 
acquired using a slow-scan charge-coupled device (CCD) 
camera (Gatan USC1000). The pixel size of the acquired 
images was 0.45 nm. The tilt series of the electron 
micrographs was aligned by using the zirconia grains as 
fiducial markers. Full details of the experiment can be found 
in Ref. [11]. Fig. 3 shows a projection image of the 
needle-shaped specimen. The 5-20 nm zirconia grains are 
visible as dark domains in the polymer matrix in the enlarged 
region. Before reconstruction, a pixel-wise logarithm, 
followed by a negation, were applied to the data, based on the 
assumption of image formation according to the Beer-Lambert 
law. This is a necessary step before reconstruction in making 
the projection image intensity linearly proportional to the 
material thickness. Finally, an intensity-offset correction was 
applied so that the average value of the visible background 
was zero (corresponding to vacuum). 

The challenge in applying discrete tomography to a 
BF-TEM tilt series results from its complex contrast 
mechanism where image intensities are affected by both 
amplitude and phase contrast. This means that the projection 
requirement, by which image intensities must vary 
monotonically with material thickness, is hard to guarantee in 
BF-TEM mode. A single composition in the sample then does 
not produce a single grey level in the reconstruction. Instead, 
pixel intensities tend to spread around certain grey levels, 
which violates the strict assumption of a conventional discrete 
tomography algorithm. The proposed TVR-DART technique 
can then succeed due to its flexible prior model. Fig. 4 shows 
cross-sections through the reconstructed needle-shaped 
polymer composite obtained using WBP, SIRT, DART and 
TVR-DART. The availability of full rotation of the 
needle-shaped specimen provides the opportunity to further 
verify the fidelity of reconstructions obtained using a limited 
tilt range. We computed reconstructions from a reduced tilt 
series with a ±60° tilt range (120 projections) and compared 
them with reconstructions computed from the full dataset. 
Two sub-regions of zirconia grains are highlighted by yellow 
and red boxes at two corners. Both WBP and SIRT result in 
typical missing wedge artifacts. DART tries to force the 
reconstruction to be completely discrete (with only two grey 
levels besides zero), causing unstable features to appear within 
the polymer matrix and zirconia grains. Artifacts such as 
vertical elongation and blurring of the zirconia grains and 
polymer matrix are effectively reduced by using TVR-DART. 
By tolerating a small amount of intensity gradient to exist 

within each of the two compositions, the reconstruction 
becomes more consistent, despite the fact that the discrete 
assumption is not completely fulfilled. It is worth noting that 
the grey levels were estimated independently for both the full 
and reduced tilt ranges (Fig. 5), yet they still converged to 
similar values for the two compositions in the two separate 
reconstructions. Both the SSIM and the projection distance of 
the reconstructions are shown in Fig. 6. The TVR-DART 
reconstruction for the ±60° tilt range results in a SSIM of 
0.953, which is the most consistent of the values obtained 
using different techniques with the reconstruction obtained 
using full rotation. Its projection distance is also the lowest (by 
an order of magnitude), indicating that it provides the most 
compliant reconstruction with the original projection data. 

B. Lanthanide-based inorganic nanotube recorded using a 
direct electron detector 

Inorganic lanthanide nanotubes were prepared from 
misfit-layered compounds in the forms of alternating 
crystallographic layers with different periodicities [31]. 
Specifically, LaS layers that have a rock-salt structure were 
alloyed with Ce alternate with layers of hexagonal CrS!. For 
the tomography experiment, nanotubes were dispersed onto 
lacey C grids. Tomographic tilt series were acquired using a 
FEI Titan 60-300 TEM operated at 60 kV using a Fischione 
Model 2010 single-tilt tomography holder. A direct electron 
detection camera with a pnCCD sensor (PNDetector GmbH) 
was mounted below the projection chamber and used to record 
BF-TEM images. A series of 3487 images with a pixel size of 
5.32 nm was acquired during rotation of the specimen over a 
tilt range of -70° to +30° under continuous electron beam 
illumination, while keeping the majority parts of an individual 
nanotube in focus and within the field-of-view  [32]. The 
entire tilt series was acquired with 1.34×10! electrons per 
frame, corresponding to approximately 2 electrons per pixel 
per frame. A reduced dataset consisting of an average of five 
neighboring projections (698 images) was used for 
reconstruction. The projection images were aligned with 
sub-pixel precision using an iterative feedback algorithm that 
optimizes the contrast and resolution of the tomogram. A high 

 
 

Fig. 3. BF-TEM image of the needle-shaped polymer nanocomposite and an 
enlarged region of the thinnest part of the specimen showing dark regions 
corresponding to 5-20 nm zirconia grains. 
 
  



magnification image (2.63 nm pixel size) of the apex of the 
nanotube and two of the acquired projection images recorded 
at -70° and -20° (middle) are shown in Fig. 7. As in the 
previous polymer study, the negative logarithm of each image 
in the BF-TEM tilt series was computed, followed by intensity 
offset-correction, before performing tomographic 
reconstructions. 

For this experimental dataset, the challenges relate mainly to 
the high noise level in the tilt series and the extremely limited 
tilt range. Fig. 8 shows cross-sections (xy- and yz- planes) 
through the center of the reconstructed nanotube obtained 
using different reconstruction techniques. Traditional 
algorithms such as WBP and SIRT require a large number of 
projections and suffer from missing wedge artifacts for such a 

limited tilt range. Their reconstructions in the yz-plane contain 
extra double layer structures outside the wall of the nanotube 
(indicated by the red arrow). Because this particular type of 
nanotube commonly exhibit regular wall wrapping [31], it is 
obvious that such double-wall structures are the result of 
missing wedge artifacts. In contrast, DART and TVR-DART 
deliver improved reconstructions with reduced artifacts. 
DART still produces a hint of a false double layer structure, 
which is completely resolved in the TVR-DART results. Due 
to high noise level, a false rough surface on the inner and outer 
layer of the nanotube is also observed in the DART 
reconstruction. We further compare the reconstructions 
obtained using a drastically reduced dataset with only 42 
projection images and a uniform 2.44° tilt increment. In this 

 
Fig. 5.  Automated grey level estimation for both the zirconia grains and the 
polymer matrix within the polymer nanocomposite by TVR-DART using full 
rotation (±90°) and a limited tilt range (±60°). For both material 
compositions, the estimated grey levels under a reduced angular range are 
similar to those estimated from the full tilt series. 
 
  

 
Fig. 6. Structural Similarity Index (SSIM) and Projection Distance 
(𝓵𝟐-norm) for reconstructions of the polymer nanocomposite from WBP, 
SIRT, DART and TVR-DART under a ±60° tilt range. Corresponding 
reconstructions using the full tilt range (±90°) are used as reference images 
for the calculation of the SSIM. TVR-DART shows the highest structural 
similarity (0.953), while exhibiting the best match with the projection data 
(lowest 𝓵𝟐-norm). 
 

 
Fig. 4.  Comparison of cross-sections through the reconstructed needle-shaped polymer composite obtained from BF-TEM tilt series using the full rotation 
(±90°, row 1) and a limited tilt range (±60°, row 2) by WBP (a, e), SIRT (b, f), DART (c, g) and TVR-DART (d, h). Two sub-regions of zirconia grains are 
highlighted by yellow and red rectangles at two corners. Missing wedge artifacts such as elongation and blurring of the zirconia grains and the outline of 
polymer matrix are effectively corrected by TVR-DART, while other techniques exhibit different types of artifacts. 
  
 



case, WBP delivers a reconstruction with a much higher noise 
level while SIRT handles noise better but results in blurrier 
images. DART produces a noisier reconstruction, especially 
on the surface of the nanotube, while TVR-DART delivers the 
most consistent reconstruction when compared with the results 
obtained from the complete tilt series. This is confirmed in 
Fig. 9 where TVR-DART shows a SSIM of 0.961 between 
reconstructions obtained with 698 and 42 projections. The 
value of the projection distance shows the 2nd lowest value 
among the four techniques. Under limited data, projection 
distance is no longer a reliable measure for the quality of 
reconstruction, but a quantitative indicator for the match 
between the reconstruction and the projection data. Therefore, 
under limited tilt range and/or number of projections, a blurred 
SIRT reconstruction can have better match with the dataset, 
therefore lower projection distance, but in fact far less 
accurate compared with advanced prior-based algorithms, 
such as TVR-DART. 

C. Anatase nanosheets acquired in dark-field 
(HAADF-STEM) mode  

Titanium dioxide (TiO2) anatase nanosheets were prepared 
under hydrothermal conditions from the reagents 
titaniumbutoxide and hydrofluoric acid. Electron tomographic 
tilt series were acquired in HAADF-STEM mode by using a 
FEI Tecnai G2 TEM operated at 200 kV. A Fischione 
tilt-rotation tomography holder (model 2040) was used, with 
images acquired automatically using Xplore 3D software over 
a tilt range of -70˚ to +66˚ and a tilt increment of 2˚. The pixel 
size of the projection images was 0.50 nm. Alignment of the 
images was performed using Inspect 3D software. The first 3 

projection images were removed from the recorded tilt series 
due to alignment issues, resulting in a final tilt range of -64˚ to 
+66˚ (66 projections in total). An intensity offset-correction 
was applied before performing tomographic reconstructions. 
Two of the projection images, which were acquired at tilt 
angles of 0° and +66°, are shown in Fig. 10. Each image 
shows a cluster of thin TiO2 nanosheets.  

The signal recorded in HAADF-STEM mode is 
predominantly incoherent, with the contrast depending mainly 
on thickness and atomic number. However, as the nanosheets 
are agglomerated together, the total thickness of the specimen 
means that the projection requirement is only approximately 
fulfilled, which presents a challenge for conventional discrete 
tomography techniques. The flat horizontal structure of the 
nanosheets also represents one of the most difficult 
morphologies to recover under missing wedge conditions, as 
the majority of the Fourier representation of a horizontal 
structure is not sampled using a limited tilt range.  

Fig. 11 shows the reconstructed cross-sections through the 
nanosheets obtained from both the full dataset and a reduced 
dataset in which the angular range was further reduced to -60˚ 
to +60˚ with a tilt increment of 4˚ (31 projection images). 
Missing wedge artifacts are visible in the WBP and SIRT 
reconstructions where horizontal slabs are hardly identifiable 
that could severely hamper the quantification analysis. Here 
we have added a positive-constraint in the SIRT 
implementation that enforces positive intensities in the 
reconstruction. Despite slight improvements in contrast, 
horizontal structures are still greatly affected by limited tilt 
range. DART improves this by further recovering part of the 
horizontal structures but also produces some inconsistent 
artifacts around and between the nanosheets. TVR-DART 
delivers almost identical reconstructions under both full and 
reduced tilt series with well-recovered facets visible on the 
nanosheets. The computed SSIM (Fig. 12) is 0.966, 
demonstrating that accurate reconstructions can still be 
obtained using TVR-DART from a ±60° tilt range with a 4° 
tilt increment. Furthermore, the reconstruction from 
TVR-DART is the most consistent with the acquired tilt series 
indicated by the lowest projection distance among all 
techniques. 

IV. CONCLUSIONS 
In this paper, we have presented the application of a new 

iterative reconstruction technique, TVR-DART, for discrete 
electron tomography of nanomaterials. It is demonstrated via 
three experimental datasets that the proposed technique is 
capable of consistently delivering high-fidelity reconstructions 
with significantly reduced missing wedge artifacts under 
limited tilt range and a small number of projection images. 
With the needle-shaped polymer composite, we showed the 
successful application of discrete tomography for tilt series 
collected using bright-field TEM, and were able to 
experimentally verify the accuracy of the reconstruction under 
a ±60° tilt range by comparing it with the results from the 
±90° full rotation. The tilt series of an inorganic nanotube 
recorded in 3.5 seconds using a direct electron detector helped 

 
Fig. 7. BF-TEM images of an individual inorganic lanthanide nanotube on a 
lacey C grid. (a) High magnification electron micrograph of the apex of the 
nanotube showing regular tube structure, and examples of projection images 
for tilt angles of (b) -70° and (c) -20°, taken from the complete 100° tilt 
range, are shown. 
 
  



demonstrate the ability of the proposed technique to cope with 
extremely high noise level in the projection data and 
verification of the reconstructions under more than an order of 
magnitude dose reduction. With the HAADF-STEM datasets 
from anatase nanosheets, the recoveries of the most 
challenging horizontal structures under limited tilt range are 
further verified. Taken together, these results provide strong 
evidence that the proposed discrete tomography technique can 

provide the electron microscopy community with a robust and 
automated tool for routine high-fidelity characterization of 
nanomaterials. The implementation of the proposed technique 
(in Python) is available in the GitHub repository of the 
ASTRA tomography toolbox via the following link: 
https://github.com/astra-toolbox/ContributedTools/ 

APPENDIX 
Here we demonstrate the common workflow for creating a 3D 
discrete tomographic reconstruction with the available 
TVR-DART python implementation by providing a code 
sample applied on the nanotube dataset in Section III.B. 

 
Fig. 9. Structural Similarity Index (SSIM) and Projection Distance 
(𝓵𝟐-norm) for reconstructions of the inorganic nanotube obtained using 
WBP, SIRT, DART and TVR-DART from 42 projections (2.44° tilt step). 
Corresponding reconstructions using 698 projections (0.14° tilt step) were 
used as the reference images for the calculation of the SSIM. TVR-DART 
shows the highest structural similarity (0.961), while exhibiting the 2nd best 
match with the projection data. 
 

 
Fig. 10. HAADF-STEM images of anatase nanosheets recorded at tilt angles 
of (a) 0° and (b) +66°, taken from the complete 130° tilt range. 
 

 
Fig. 8.  Comparison of cross-sections through the reconstructed inorganic lanthanide nanotube from BF-TEM tilt series using 698 projections (0.14°, column 
1) and 42 projections (±2.44°, column 2) by WBP (a, b), SIRT (c, d), DART (e, f) and TVR-DART (g, h). The yellow line indicates the relative position 
between the two cross-sections. Missing wedge artifacts and rough outline of the nanotube are effectively reduced by TVR-DART while other techniques 
exhibit different types of artifacts and inconsistencies. The tilt range of the dataset is ±50°. 
  
 



1. The projection data is first read into the python 
environment and stored as a numpy array. The tilt angles 
are also specified. 
 

import	TVRDART	
import	astra		
import	numpy	as	np		
#	read	MRC	file	(-log	has	been	performed	beforehand)	
fname	=	'./nanotube.mrc'	
import	read_mrc	
mrcfile	=	read_mrc.read(fname,False)	
data	=	mrcfile[0]	
data	=	np.transpose(data,(1,2,0))	
[Nan,Ndetx,Ndety]	=	data.shape	
Nan	=	698	
angles	=	np.linspace(-50,50,Nan,True)	*	(np.pi/180) 
 

2. An intensity-offset correction is performed to make sure 
the average value of the visible background equals zero 
(corresponding to vacuum). Note that for bright-field data, 
negative logarithm is a necessary step before the 
intensity-offset correction. For this specific dataset, this 
has been done on the mrc file. 
 

background	=	data[int(np.round(Nan/2)), 274:330,	80:150]	
offset	=	np.mean(background)	
data	-=	offset	

 

3. The projection and volume geometry as well as operators 
are specified and created. Here we use the python interface 
of the ASTRA tomography toolbox to perform efficient 
forward and back projection operations using either CPU 
or GPU. 
 

Nx	=	Ndetx	
Ny	=	Ndety	
proj_geom	=	astra.create_proj_geom('parallel',	1.0,	Ndetx,	
angles)	
vol_geom	=	astra.create_vol_geom(Nz,Nx)	
#	use	‘strip’	for	CPU	computation,	or	‘cuda’	for	faster	GPU	
#implementation	
proj_id	=	astra.create_projector('cuda',proj_geom,vol_geom)	
W	=	astra.OpTomo(proj_id)	
	

4. Initial reconstruction is performed with SIRT. The 
resulting 3D reconstruction and projection data is 
normalized by the maximum value of the initial 
reconstruction so that the value range lies approximately 
between 0 and 1. This makes it easier to have a stable 
choice of 𝜆 for various experimental datasets. 
 

import	SIRT	
#	both	CPU	and	GPU	implementations	of	SIRT	are	available	
recsirt	=	SIRT.recon(data,	200,	proj_geom,	vol_geom,	‘cuda’)	
sf	=	np.max(recsirt)	
data	=	data/sf	
recsirt	=	recsirt/sf	
	

5. The parameters of TVR-DART are specified. This includes 
the number of material compositions in the specimen 
(including vacuum), 𝑁!" , the sharpness of the soft 
segmentation function, 𝐾, the weight for the total variation 
term, 𝜆, and the number of iterations, 𝑁!"#$. A universal 
initial value for 𝐾  is 4, and the algorithm will 
automatically adjust it. 
 
 

 
 

Fig. 11.  Comparison of cross-sections through reconstructed anatase nanosheets obtained from HAADF-STEM tilt series using a -64° to 66° tilt range with a 
2° tilt increment (66 projections, row 1) and a reduced -60° to 60° tilt range with a 4° tilt increment (31 projections, row 2) using (a, e) WBP, (b, f) SIRT, (c, g) 
and DART (d, h) TVR-DART. Horizontal structures, which disappear in the WBP and SIRT reconstructions due to missing wedge artifacts, are effectively 
recovered using TVR-DART, while DART produces less consistent results when the data condition changes. 
  
 

 
Fig. 12. Structural Similarity Index (SSIM) and projection distance 
(𝓵𝟐-norm) for reconstructions of the anatase nanosheets using WBP, SIRT, 
DART and TVR-DART using a -60° to 60° tilt range and a 4° tilt increment 
(31 projections). Corresponding reconstructions from a -64° to 66° tilt range 
and a 2° tilt increment (66 projections) were used as reference images for 
calculation of the SSIM. TVR-DART shows the highest structural similarity 
(0.961), while exhibiting the best match with the projection data. 
 



 

Ngv	=	2	#	number	of	material	compositions	in	the	specimen	
K	=	4*np.ones(Ngv-1)	#	sharpness	of	soft	segmentation	function	
lambda	=	10	#	weight	for	TV	term	of	the	objective	function	
Niter	=	50	#	number	of	iterations	
	

6. TVR-DART then automatically estimates the grey levels 
of the discrete reconstruction and adjusts some of the 
parameter settings. We do this using one slice or a few 
slices of the projection data (one slice means a detector 
row along the plane orthogonal to the tilt axis). Because 
we have normalized both our projection data and initial 
reconstruction, the initial values for grey levels can be set 
uniformly distributed between 0 and 1. In difficult 
conditions where a really low contrast material is present, 
it can be helpful to use the average pixel values within 
identified regions of different materials from the 
normalized initial reconstruction. 
 

yrange	=	[190,192]	#	range	of	slices	chosen	for	the	parameter	
#estimation	
x0_esti	=	recsirt[:,yrange[0]:yrange[1]+1,:]	
data_esti	=	data[:,:,yrange[0]:yrange[1]+1]	
p_esti	=	data_esti.reshape(np.size(data_esti))	
gv	=	np.linspace(0,	1,	Ngv,True)	
param0	=	TVRDART.gv2param(gv,K)	
Segrec,param_esti	=	TVRDART.joint(W,	p_esti,	x0_esti,	param0	
,lambda)	
gv,K	=	TVRDART.param2gv(param_esti)	
	

7. Finally, the TVR-DART reconstruction of the full 3D 
dataset is performed using the estimated parameters. 
 

p	=	data.reshape(Nan*Ndetx*Ndety)	
Segrec,rec	 =	 TVRDART.recon(W,	 p,	 recsirt,	 param_esti,	 lambda,	
Niter)	
#	scale	back	the	grey	levels	and	the	final	reconstruction	
gv	=	gv*sf	
Segrec	=	Segrec*sf;	

 

This example script is available at the GitHub repository of 
the ASTRA tomography toolbox. 
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