toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Neyts, E.; Bogaerts, A.; de Meyer, M.; van Gils, S. doi  openurl
  Title Macroscale computer simulations to investigate the chemical vapor deposition of thin metal-oxide films Type A1 Journal article
  Year 2007 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 201 Issue (down) 22/23 Pages 8838-8841  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000249340400008 Publication Date 2007-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.589; 2007 IF: 1.678  
  Call Number UA @ lucian @ c:irua:64790 Serial 1859  
Permanent link to this record
 

 
Author Hadermann, J.; Pérez, O.; Créon, N.; Michel, C.; Hervieu, M. doi  openurl
  Title The (3 + 2)D structure of oxygen deficient LaSrCuO3.52 Type A1 Journal article
  Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 17 Issue (down) 22 Pages 2344-2350  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000247349400020 Publication Date 2007-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes Supergmr:Hprn-Ct-2000-0021 Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:64749 c:irua:64749 Serial 13  
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Peeters, F.M. doi  openurl
  Title Cerenkov emission of terahertz acoustic-phonons from graphene Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue (down) 22 Pages 222101-222104  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000320621600034 Publication Date 2013-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 25 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109607 Serial 305  
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Comment on “Chiral tunneling in trilayer graphene” [Appl. Phys. Lett. 100, 163102 (2012)] Type Editorial
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 101 Issue (down) 22 Pages 226101-1  
  Keywords Editorial; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Amer inst physics Place of Publication Melville Editor  
  Language Wos 000311967000107 Publication Date 2012-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 7 Open Access  
  Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:105999 Serial 408  
Permanent link to this record
 

 
Author Créon, N.; Pérez, O.; Hadermann, J.; Klein, Y.; Hébert, S.; Hervieu, M.; Raveau, B. doi  openurl
  Title Double modulation and microstructure of the thermoelectric misfit compound \left[Ca2-yLnyCu0.7+yCo1.3-yO4\right]\left[CoO2\right]b_{1/b2} (Ln = Pr, Y and 0\leq y\leq1/3) Type A1 Journal article
  Year 2006 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 18 Issue (down) 22 Pages 5355-5362  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000241492900033 Publication Date 2006-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes Approved Most recent IF: 9.466; 2006 IF: 5.104  
  Call Number UA @ lucian @ c:irua:61846 Serial 755  
Permanent link to this record
 

 
Author Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A. doi  openurl
  Title Electronic properties of hydrogenated silicene and germanene Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue (down) 22 Pages 223107  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The electronic properties of hydrogenated silicene and germanene, so called silicane and germanane, respectively, are investigated using first-principles calculations based on density functional theory. Two different atomic configurations are found to be stable and energetically degenerate. Upon the adsorption of hydrogen, an energy gap opens in silicene and germanene. Their energy gaps are next computed using the HSE hybrid functional as well as the G(0)W(0) many-body perturbation method. These materials are found to be wide band-gap semiconductors, the type of gap in silicane (direct or indirect) depending on its atomic configuration. Germanane is predicted to be a direct-gap material, independent of its atomic configuration, with an average energy gap of about 3.2 eV, this material thus being potentially interesting for optoelectronic applications in the blue/violet spectral range. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3595682]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000291405700057 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 63 Open Access  
  Notes Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:105586 Serial 1003  
Permanent link to this record
 

 
Author Engbarth, M.A.; Bending, S.J.; Milošević, M.V. url  doi
openurl 
  Title Geometry-driven vortex states in type-I superconducting Pb nanowires Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue (down) 22 Pages 224504-224504,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hall probe magnetometry has been used to investigate the magnetization of individual cylindrically shaped Pb nanowires grown by electrocrystallization on a highly oriented pyrolytic graphite electrode. These measurements have been interpreted by comparison with three-dimensional Ginzburg-Landau (GL) calculations for nanowires with our sample parameters. We find that the measured superheating field and the critical field for surface superconductivity are strongly influenced by the temperature-dependent coherence length, ξ(T) and penetration depth λ(T) and their relationship to the nanowire diameter. As the temperature is increased toward Tc this drives a change in the superconductor-normal transition from first order irreversible to first order reversible and finally second order reversible. We find that the geometrical flux confinement in our type-I nanowires leads to the formation of a one-dimensional row of single-quantum vortices. While GL calculations show a quite uniform distribution of vortices in thin nanowires, clear vortex bunching is found as the diameter increases, suggesting a transition to a more classical type-I behavior. Subtle changes in minor magnetization loops also indicate that slightly different flux configurations can form with the same vorticity, which depend on the sample history.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291888300012 Publication Date 2011-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; We acknowledge valuable conversations with F. V. Kusmartsev and W. M. Wu at Loughborough University, UK. This work was supported by the EPSRC-UK under Grant No. EP/E039944/1, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90927 Serial 1331  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M. url  doi
openurl 
  Title Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue (down) 22 Pages 224523-224523,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We predict heating of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |Δ| and the dependence of the spectral functions both on |Δ| and the supervelocity Q are the origin of this effect. Our results are opposite to those of Aslamazov and Larkin [ Zh. Eks. Teor. Fiz. 70 1340 (1976)] and Schmid et al. [ Phys. Rev. B 21 5076 (1980)] where cooling of quasiparticles was found.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292218200010 Publication Date 2011-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme “Scientific and educational personnel of innovative Russia in 2009-2013,” Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90924 Serial 1415  
Permanent link to this record
 

 
Author Retuerto, M.; Li, M.R.; Go, Y.B.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Hadermann, J.; Hodges, J.P.; Herber, R.H.; Nowik, I.; Greenblatt, M.; pdf  doi
openurl 
  Title Magnetic and structural studies of the multifunctional material SrFe0.75Mo0.25O3-\text{\textgreek{d}} Type A1 Journal article
  Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 51 Issue (down) 22 Pages 12273-12280  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract SrFe0.75Mo0.25O3-delta has been recently discovered as an extremely efficient electrode for intermediate temperature solid oxide fuel cells (IT-SOFCs). We have performed structural and magnetic studies to fully characterize this multifunctional material. We have observed by powder neutron diffraction (PND) and transmission electron microscopy (TEM) that its crystal symmetry is better explained with a tetragonal symmetry (I4/mcm space group) than with the previously reported orthorhombic symmetry (Pnma space group). The temperature dependent magnetic properties indicate an exceptionally high magnetic ordering temperature (T-N similar to 750 K), well above room temperature. The ordered magnetic structure at low temperature was determined by PND to be an antiferromagnetic coupling of the Fe cations. Mossbauer spectroscopy corroborated the PND results. A detailed study, with X-ray absorption spectroscopy (XAS), in agreement with the Mossbauer results, confirmed the formal oxidation states of the cations to be mixed valence Fe3+/4+ and Mo6+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000311173700024 Publication Date 2012-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.857; 2012 IF: 4.593  
  Call Number UA @ lucian @ c:irua:105142 Serial 1862  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Chao, X.H.; Peeters, F.M.; Wang, H.B.; Moshchalkov, V.V.; Zhu, B.Y. url  doi
openurl 
  Title Magnetoresistance oscillations in superconducting strips : a Ginzburg-Landau study Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue (down) 22 Pages 224504-224508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within the time-dependent Ginzburg-Landau theory we study the dynamic properties of current-carrying superconducting strips in the presence of a perpendicular magnetic field. We found pronounced voltage peaks as a function of the magnetic field, the amplitude of which depends both on sample dimensions and external parameters. These voltage oscillations are a consequence of moving vortices, which undergo alternating static and dynamic phases. At higher fields or for high currents, the continuous motion of vortices is responsible for the monotonic background on which the resistance oscillations due to the entry of additional vortices are superimposed. Mechanisms for such vortex-assisted resistance oscillations are discussed. Qualitative changes in the magnetoresistance curves are observed in the presence of random defects, which affect the dynamics of vortices in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000312064300004 Publication Date 2012-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF-NES program. G. R. B. acknowledges support from FWO-Vl. B.Y.Z. acknowledges the support from the MOST 973 Projects No. 2011CBA00110 and No. 2009CB930803, and the National Natural Science Foundation of China. V. V. M. acknowledges support from the Methusalem Funding by the Flemish Government. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:105969 Serial 1930  
Permanent link to this record
 

 
Author Vagov, A.; Croitoru, M.D.; Axt, V.M.; Kuhn, T.; Peeters, F.M. url  doi
openurl 
  Title Nonmonotonic field dependence of damping and reappearance of Rabi oscillations in quantum dots Type A1 Journal article
  Year 2007 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 98 Issue (down) 22 Pages 1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000246910100059 Publication Date 2007-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 91 Open Access  
  Notes Iap Approved Most recent IF: 8.462; 2007 IF: 6.944  
  Call Number UA @ lucian @ c:irua:64768 Serial 2362  
Permanent link to this record
 

 
Author Croitoru, M.D.; Buzdin, A.I. url  doi
openurl 
  Title Peculiarities of the orbital effect in the Fulde-Ferrell-Larkin-Ovchinnikov state in quasi-one-dimensional superconductors Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue (down) 22 Pages 224506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the quasiclassical formalism, we determine the low-temperature phase diagram of a quasi-one-dimensional superconductor, taking into account the interchain Josephson coupling and the paramagnetic spin splitting. We show that the anisotropy of the onset of superconductivity changes in the FFLO state as compared with the conventional superconducting phase. It can result in anomalous peaks in the field-direction dependence of the upper critical field when the magnetic field length equals to the FFLO period. This regime is characterized by the lock-in effect of the FFLO modulation wave vector, which is governed by the magnetic length. Furthermore, in the FFLO phase, the anisotropy of the upper critical field is inverted at T-1(**) = 0.5T(c0), where the orbital anisotropy disappears. We suggest that an experimental study of the anisotropy of the upper critical field can provide very reach information about the parameters of the FFLO phase in quasi-1D samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336975000005 Publication Date 2014-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access  
  Notes Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:117749 Serial 2569  
Permanent link to this record
 

 
Author Sliem, M.A.; Turner, S.; Heeskens, D.; Kalidindi, S.B.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis Type A1 Journal article
  Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 14 Issue (down) 22 Pages 8170-8178  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metalorganic Cu precursor [Cu{(OCH(CH3)CH2N(CH3)2)}2] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 35 nm sized stearate@ZnO particles. For ZnO ∶ Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (2050 nm) decorated by small ZnO nanoparticles (35 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000304102200033 Publication Date 2012-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 16 Open Access  
  Notes Fwo Approved Most recent IF: 4.123; 2012 IF: 3.829  
  Call Number UA @ lucian @ c:irua:98377 Serial 2702  
Permanent link to this record
 

 
Author Maignan, A.; Martin, C.; Van Tendeloo, G.; Hervieu, M.; Raveau, B. url  doi
openurl 
  Title Size mismatch : a crucial factor for generating a spin-glass insulator in manganites Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 60 Issue (down) 22 Pages 15214-15219  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Thr structural, electronic, and magnetic properties of the highly mismatched perovskite oxides, Th(0.35)A(0.65)MnO(3), where Ais for the alkaline earth divalent cations (Ca, Ba, Sr), which are all characterized by the same large tolerance factor (t=0.934), have been investigated by using electron microscopy, electrical resistivity, magnetic susceptibility, and magnetization. It is clearly established that a transition from ferromagnetic metallic towards spin-glass insulator samples is induced as the A-site cationic size mismatch is increased. Moreover, the magnetoresistance (MR) properties of these manganites are strongly reduced for the spin-glass insulators, demonstrating that the A-sire cationic disorder is detrimental for the colossal MR properties. Based on these results, a new electronic and magnetic diagram is established that shows that the A-site disorder, rather than the A-site average cationic size (or t) is the relevant factor for generating spin-glass insulating manganites. [S0163-1829(99)01746-4].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000084631600039 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 75 Open Access  
  Notes Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:104280 Serial 3038  
Permanent link to this record
 

 
Author Xing, Y.T.; Micklitz, H.; Rappoport, T.G.; Milošević, M.V.; Solorzano-Naranjo, I.G.; Baggio-Saitovitch, E. url  doi
openurl 
  Title Spontaneous vortex phases in superconductor-ferromagnet Pb-Co nanocomposite films Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue (down) 22 Pages 224524,1-224524,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report measurements which indicate the appearance of spontaneous vortices in lead superconducting films with embedded magnetic nanoparticles and a temperature-induced phase transition between different vortex phases. Unlike common vortices in superconductors, the vortex phase appears in the absence of applied magnetic field. The vortices nucleate exclusively due to the stray field of the magnetic nanoparticles, which serve the dual role of providing the internal field and simultaneously acting as pinning centers. Transport measurements reveal dynamical phase transitions that depend on temperature (T) and applied field (H) and support the obtained H-T phase diagram.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262245200092 Publication Date 2008-12-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76005 Serial 3109  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Superconducting transition temperature of Pb nanofilms : impact of thickness-dependent oscillations of the phonon-mediated electron-electron coupling Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue (down) 22 Pages 224517-224517,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract To date, several experimental groups reported measurements of the thickness dependence of T-c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T-c oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon-mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover, and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T-c oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305251300006 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99076 Serial 3368  
Permanent link to this record
 

 
Author Parsons, T.G.; d' Hondt, H.; Hadermann, J.; Hayward, M.A. pdf  doi
openurl 
  Title Synthesis and structural characterization of La1-xAxMnO2.5 (A = Ba, Sr, Ca) phases: mapping the variants of the brownmillerite structure Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue (down) 22 Pages 5527-5538  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Analysis of the structural parameters of phases that adopt brownmillerite-type structures suggests the distribution of the different complex ordering schemes adopted within this structure type can be rationalized by considering both the size of the separation between the tetrahedral layers and the tetrahedral chain distortion angle. A systematic study using structural data obtained from La1−xAxMnO2,5 (A = Ba, Sr, Ca,) phases, prepared by the topotactic reduction of the analogous La1−xAxMnO3 perovskite phases, was performed to investigate this relationship. By manipulating the A-cation composition, both the tetrahedral layer separation and tetrahedral chain distortion angle in the La1−xAxMnO2,5 phases were controlled and from the data obtained a ¡°structure map¡± of the different brownmillerite variants was plotted as a function of these structural parameters. This map has been extended to include a wide range of reported brownmillerite phases showing the structural ideas presented are widely applicable. The complete structural characterization of La1−xAxMnO2,5 0.1 ¡Ü x ¡Ü 0.33, A = Ba; 0.15 ¡Ü x ¡Ü 0.5 A = Sr, and 0.22 ¡Ü x ¡Ü 0.5 A = Ca is described and includes compositions which exhibit complex intralayer ordered structures and Mn2+/Mn3+ charge ordering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000271756400021 Publication Date 2009-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 60 Open Access  
  Notes Iap Vi Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:79935 Serial 3435  
Permanent link to this record
 

 
Author d' Hondt, H.; Abakumov, A.M.; Hadermann, J.; Kalyuzhnaya, A.S.; Rozova, M.G.; Antipov, E.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Tetrahedral chain order in the Sr2Fe2O5 brownmillerite Type A1 Journal article
  Year 2008 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 20 Issue (down) 22 Pages 7188-7194  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of the Sr2Fe2O5 brownmillerite has been investigated using electron diffraction and high resolution electron microscopy. The Sr2Fe2O5 structure demonstrates two-dimensional order: the tetrahedral chains with two mirror-related configurations (L and R) are arranged within the tetrahedral layers according to the −L−R−L−R− sequence, and the layers themselves are displaced with respect to each other over 1/2[111] or 1/2[11] vectors of the brownmillerite unit cell, resulting in different ordered stacking variants. A unified superspace model is constructed for ordered stacking sequences in brownmillerites based on the average brownmillerite structure with a = 5.5298(4)Å, b = 15.5875(12)Å, c = 5.6687(4)Å, and (3 + 1)-dimensional superspace group I2/m(0βγ)0s, q = βb* + γc*, 0 ≤ β ≤ 1/2, 0 ≤ γ ≤ 1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000261002200039 Publication Date 2008-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 64 Open Access  
  Notes Iap Vi Approved Most recent IF: 9.466; 2008 IF: 5.046  
  Call Number UA @ lucian @ c:irua:72945 Serial 3511  
Permanent link to this record
 

 
Author Nasirpouri, F.; Engbarth, M.A.; Bending, S.J.; Peter, L.M.; Knittel, A.; Fangohr, H.; Milošević, M.V. url  doi
openurl 
  Title Three-dimensional ferromagnetic architectures with multiple metastable states Type A1 Journal article
  Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 98 Issue (down) 22 Pages 222506,1-222506,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate controllable dual-bath electrodeposition of nickel on architecture-tunable three-dimensional (3D) silver microcrystals. Magnetic hysteresis loops of individual highly faceted Ag-Ni core-shell elements reveal magnetization reversal that comprises multiple sharp steps corresponding to different stable magnetic states. Finite-element micromagnetic simulations on smaller systems show several jumps during magnetization reversal which correspond to transitions between different magnetic vortex states. Structures of this type could be realizations of an advanced magnetic data storage architecture whereby each element represents one multibit, storing a combination of several conventional bits depending on the overall number of possible magnetic states associated with the 3D core-shell shape.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000291405700044 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 8 Open Access  
  Notes ; This work was supported by EPSRC in the U.K. under Grant Nos. EP/E039944/1 and EP/E040063/1, DYNAMAG project (EU FP7/2007-2013 Grant No. 233552), and FWO-Vlaanderen. ; Approved Most recent IF: 3.411; 2011 IF: 3.844  
  Call Number UA @ lucian @ c:irua:90008 Serial 3652  
Permanent link to this record
 

 
Author Bals, S.; Van Tendeloo, G.; Salluzzo, M.; Maggio-Aprile, I. pdf  doi
openurl 
  Title Why are sputter deposited Nd1+xBa2-xCu3O7-\delta thin films flatter than NdBa2Cu3O7-\delta films? Type A1 Journal article
  Year 2001 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 79 Issue (down) 22 Pages 3660-3662  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High-resolution electron microscopy and scanning tunneling microscopy have been used to compare the microstructure of NdBa2Cu3O7-delta and Nd1+xBa2-xCu3O7-delta thin films. Both films contain comparable amounts of Nd2CuO4 inclusions. Antiphase boundaries are induced by unit cell high steps at the substrate or by a different interface stacking. In Nd1+xBa2-xCu3O7-delta the antiphase boundaries tend to annihilate by the insertion of extra Nd layers. Stacking faults, which can be characterized as local Nd2Ba2Cu4O9 inclusions, also absorb the excess Nd. A correlation is made between the excess Nd and the absence of growth spirals at the surface of the Nd-rich films. (C) 2001 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000172204400034 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.411; 2001 IF: 3.849  
  Call Number UA @ lucian @ c:irua:54801 Serial 3916  
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
  Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 22 Issue (down) 22 Pages 3304-3311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000371419200001 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 43 Open Access  
  Notes Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:132347 Serial 4192  
Permanent link to this record
 

 
Author Heidari, H.; Rivero, G.; Idrissi, H.; Ramachandran, D.; Cakir, S.; Egoavil, R.; Kurttepeli, M.; Crabbé, A.C.; Hauffman, T.; Terryn, H.; Du Prez, F.; Schryvers, D. pdf  doi
openurl 
  Title Melamine–Formaldehyde Microcapsules: Micro- and Nanostructural Characterization with Electron Microscopy Type A1 Journal article
  Year 2016 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 22 Issue (down) 22 Pages 1222-1232  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A systematic study has been carried out to compare the surface morphology, shell thickness, mechanical properties, and binding behavior of melamine–formaldehyde microcapsules of 5–30 μm diameter size with various amounts of core content by using scanning and transmission electron microscopy including electron tomography, in situ nanomechanical tensile testing, and electron energy-loss spectroscopy. It is found that porosities are present on the outside surface of the capsule shell, but not on the inner surface of the shell. Nanomechanical tensile tests on the capsule shells reveal that Young’s modulus of the shell material is higher than that of bulk melamine–formaldehyde and that the shells exhibit a larger fracture strain compared with the bulk. Core-loss elemental analysis of microcapsules embedded in epoxy indicates that during the curing process, the microcapsule-matrix interface remains uniform and the epoxy matrix penetrates into the surface micro-porosities of the capsule shells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000393853100011 Publication Date 2016-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 2 Open Access  
  Notes This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The authors are also thankful to Stijn Van den Broeck and Dr. Frederic Leroux for help in sample preparation and to S. Bals and J. Verbeeck for valuable discussions. H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. Approved Most recent IF: 1.891  
  Call Number EMAT @ emat @ c:irua:138980 Serial 4333  
Permanent link to this record
 

 
Author Lindell, L.; Çakir, D.; Brocks, G.; Fahlman, M.; Braun, S. url  doi
openurl 
  Title Role of intrinsic molecular dipole in energy level alignment at organic interfaces Type A1 Journal article
  Year 2013 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue (down) 22 Pages 223301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy level alignment in metal-organic and organic-organic junctions of the widely used materials tris-(8-hydroxyquinoline) aluminum (Alq(3)) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) is investigated. The measured alignment schemes for single and bilayer films of Alq(3) and NTCDA are interpreted with the integer charge transfer (ICT) model. Single layer films of Alq(3) feature a constant vacuum level shift of similar to 0.2-0.4 eV in the absence of charge transfer across the interface. This finding is attributed to the intrinsic dipole of the Alq(3) molecule and (partial) ordering of the molecules at the interfaces. The vacuum level shift changes the onset of Fermi level pinning, as it changes the energy needed for equilibrium charge transfer across the interface. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000320621600081 Publication Date 2013-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 22 Open Access  
  Notes ; We acknowledge funding from the European Community's Framework Programme under Grant No. FP7-NMP-228424 of the MINOTOR project as well as a project grant from the Swedish Energy Agency, STEM. ; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:128323 Serial 4605  
Permanent link to this record
 

 
Author Madan, I.; Kusar, P.; Baranov, V.V.; Lu-Dac, M.; Kabanov, V.V.; Mertelj, T.; Mihailovic, D. url  doi
openurl 
  Title Real-time measurement of the emergence of superconducting order in a high-temperature superconductor Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue (down) 22 Pages 224520  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Systems which rapidly evolve through symmetry-breaking transitions on timescales comparable to the fluctuation timescale of the single-particle excitations may behave very differently than under controlled near-ergodic conditions. A real-time investigation with high temporal resolution may reveal insights into the ordering through the transition that are not available in static experiments. We present an investigation of the system trajectory through a normal-to-superconductor transition in a prototype high-temperature superconducting cuprate in which such a situation occurs. Using a multiple pulse femtosecond spectroscopy technique we measure the system trajectory and time evolution of the single-particle excitations through the transition in La1.9Sr0.1CuO4 and compare the data to a simulation based on the time-dependent Ginzburg-Landau theory, using the laser excitation fluence as an adjustable parameter controlling the quench conditions in both experiment and theory. The comparison reveals the presence of significant superconducting fluctuations which precede the transition on short timescales. By including superconducting fluctuations as a seed for the growth of the superconducting order we can obtain a satisfactory agreement of the theory with the experiment. Remarkably, the pseudogap excitations apparently play no role in this process.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000378815800003 Publication Date 2016-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes ; We wish to acknowledge the useful discussion with T. W. Kibble regarding the importance of a variable quench rate in the experiment. The funding was provided by European Research Council advanced grant TRAJECTORY. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:144701 Serial 4683  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V. url  doi
openurl 
  Title Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue (down) 22 Pages 224512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418653500012 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148504 Serial 4901  
Permanent link to this record
 

 
Author Kang, T.-Y.; Kwon, J.-S.; Kumar, N.; Choi, E.; Kim, K.-M. url  doi
openurl 
  Title Effects of a Non-Thermal Atmospheric Pressure Plasma Jet with Different Gas Sources and Modes of Treatment on the Fate of Human Mesenchymal Stem Cells Type A1 Journal article
  Year 2019 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel  
  Volume 9 Issue (down) 22 Pages 4819  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Despite numerous attempts to use human mesenchymal stem cells (hMSCs) in the field of tissue engineering, the control of their differentiation remains challenging. Here, we investigated possible applications of a non-thermal atmospheric pressure plasma jet (NTAPPJ) to control the differentiation of hMSCs. An air- or nitrogen-based NTAPPJ was applied to hMSCs in culture media, either directly or by media treatment in which the cells were plated after the medium was exposed to the NTAPPJ. The durations of exposure were 1, 2, and 4 min, and the control was not exposed to the NTAPPJ. The initial attachment of the cells was assessed by a water-soluble tetrazolium assay, and the gene expression in the cells was assessed through reverse-transcription polymerase chain reaction and immunofluorescence staining. The results showed that the gene expression in the hMSCs was generally increased by the NTAPPJ exposure, but the enhancement was dependent on the conditions of the exposure, such as the source of the gas and the treatment method used. These results were attributed to the chemicals in the extracellular environment and the reactive oxygen species generated by the plasma. Hence, it was concluded that by applying the best conditions for the NTAPPJ exposure of hMSCs, the control of hMSC differentiation was possible, and therefore, exposure to an NTAPPJ is a promising method for tissue engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502570800096 Publication Date 2019-11-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.679 Times cited Open Access  
  Notes The plasma source was kindly provided by the Plasma Bioscience Research Center, Kwangwoon University. Approved Most recent IF: 1.679  
  Call Number PLASMANT @ plasmant @c:irua:164893 Serial 5435  
Permanent link to this record
 

 
Author Bulska, E.; Wysocka, I.A.; Wierzbicka, M.H.; Proost, K.; Janssens, K.; Falkenberg, G. doi  openurl
  Title In vivo investigation of the distribution and the local speciation of selenium in Allium cepa L. by means of microscopic X-ray absorption near-edge structure spectroscopy and confocal microscopic X-ray fluorescence analysis Type A1 Journal article
  Year 2006 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 78 Issue (down) 22 Pages 7616-7624  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000242021400003 Publication Date 2006-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 56 Open Access  
  Notes Approved Most recent IF: 6.32; 2006 IF: 5.646  
  Call Number UA @ admin @ c:irua:60714 Serial 5659  
Permanent link to this record
 

 
Author Conti, S.; Van der Donck, M.; Perali, A.; Peeters, F.M.; Neilson, D. url  doi
openurl 
  Title Doping-dependent switch from one- to two-component superfluidity in coupled electron-hole van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue (down) 22 Pages 220504-220506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The hunt for high-temperature superfluidity has received new impetus from the discovery of atomically thin stable materials. Electron-hole superfluidity in coupled MoSe2-WSe2 monolayers is investigated using a mean-field multiband model that includes band splitting caused by strong spin-orbit coupling. This splitting leads to a large energy misalignment of the electron and hole bands which is strongly modified by interchanging the doping of the monolayers. The choice of doping determines if the superfluidity is tunable from one to two components.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538941900002 Publication Date 2020-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 12 Open Access  
  Notes ; This work was partially supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl), the Methusalem Foundation, and the FLAG-ERA project TRANS2DTMD. We thank A. R. Hamilton and A. Vargas-Paredes for useful discussions. ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:170201 Serial 6489  
Permanent link to this record
 

 
Author Toso, S.; Akkerman, Q.A.; Martin-Garcia, B.; Prato, M.; Zito, J.; Infante, I.; Dang, Z.; Moliterni, A.; Giannini, C.; Bladt, E.; Lobato, I.; Ramade, J.; Bals, S.; Buha, J.; Spirito, D.; Mugnaioli, E.; Gemmi, M.; Manna, L. pdf  url
doi  openurl
  Title Nanocrystals of lead chalcohalides : a series of kinetically trapped metastable nanostructures Type A1 Journal article
  Year 2020 Publication Journal Of The American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 142 Issue (down) 22 Pages 10198-10211  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the colloidal synthesis of a series of surfactant-stabilized lead chalcohalide nanocrystals. Our work is mainly focused on Pb4S3Br2, a chalcohalide phase unknown to date that does not belong to the ambient-pressure PbS-PbBr2 phase diagram. The Pb4S3Br2 nanocrystals herein feature a remarkably narrow size distribution (with a size dispersion as low as 5%), a good size tunability (from 7 to similar to 30 nm), an indirect bandgap, photoconductivity (responsivity = 4 +/- 1 mA/W), and stability for months in air. A crystal structure is proposed for this new material by combining the information from 3D electron diffraction and electron tomography of a single nanocrystal, X-ray powder diffraction, and density functional theory calculations. Such a structure is closely related to that of the recently discovered high-pressure chalcohalide Pb4S3I2 phase, and indeed we were able to extend our synthesis scheme to Pb4S3I2 colloidal nanocrystals, whose structure matches the one that has been published for the bulk. Finally, we could also prepare nanocrystals of Pb3S2Cl2, which proved to be a structural analogue of the recently reported bulk Pb3Se2Br2 phase. It is remarkable that one high-pressure structure (for Pb4S3I2) and two metastable structures that had not yet been reported (for Pb4S3Br2 and Pb3S2Cl2) can be prepared on the nanoscale by wet-chemical approaches. This highlights the important role of colloidal chemistry in the discovery of new materials and motivates further exploration into metal chalcohalide nanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538526500035 Publication Date 2020-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited 32 Open Access OpenAccess  
  Notes ; We would like to thank Dr. A. Toma for the access to the IIT clean room facilities' SEM/FIB and evaporators, the Smart Materials group (IIT) for the access to the ATR-FTIR equipment, S. Marras for the support during XRPD measurements, G. Pugliese for help with the TGA measurements, M. Campolucci for help with the experiments on NC growth kinetics, S. Lauciello for help with the SEM-EDX analyses, and D. Baranov and R. Brescia for the helpful discussions. We also acknowledge funding from the Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement COMPASS No. 691185. I.I. acknowledges the Dutch NWO for financial support under the Vidi scheme (Grant No. 723.013.002). S.B. acknowledges support by means of the ERC Consolidator Grant No. 815128 REALNANO. E. M. and M.G acknowledge the Regione Toscana for funding the purchase of the Timepix detector through the FELIX project (Por CREO FESR 2014-2020 action). ; sygma Approved Most recent IF: 15; 2020 IF: 13.858  
  Call Number UA @ admin @ c:irua:170218 Serial 6566  
Permanent link to this record
 

 
Author Motta, M.; Burger, L.; Jiang, L.; Acosta, J.D.G.; Jelić, Ž.L.; Colauto, F.; Ortiz, W.A.; Johansen, T.H.; Milošević, M.V.; Cirillo, C.; Attanasio, C.; Xue, C.; Silhanek, A., V.; Vanderheyden, B. url  doi
openurl 
  Title Metamorphosis of discontinuity lines and rectification of magnetic flux avalanches in the presence of noncentrosymmetric pinning forces Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue (down) 22 Pages 224514  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Considering a noncentrosymmetric pinning texture composed of a square array of triangular holes, the magnetic flux penetration and expulsion are investigated experimentally and theoretically. A direct visualization of the magnetic landscape obtained using a magneto-optical technique on a Nb film is complemented by a multiscale numerical modeling. This combined approach allows the magnetic flux dynamics to be identified from the single flux quantum limit up to the macroscopic electromagnetic response. Within the theoretical framework provided by time-dependent Ginzburg-Landau simulations, an estimation of the in-plane current anisotropy is obtained and its dependence with the radius of the curvature of hole vertices is addressed. These simulations show that current crowding plays an important role in channeling the flux motion, favoring hole-to-hole flux hopping rather than promoting interstitial flux displacement in between the holes. The resulting anisotropy of the critical current density gives rise to a distinct pattern of discontinuity lines for increasing and decreasing applied magnetic fields, in sharp contrast to the invariable patterns reported for centrosymmetric pinning potentials. This observation is partially accounted for by the rectification effect, as demonstrated by finite-element modeling. At low temperatures, where magnetic field penetration is dominated by thermomagnetic instabilities, highly directional magnetic flux avalanches with a fingerlike shape are observed to propagate along the easy axis of the pinning potential. This morphology is reproduced by numerical simulations. Our findings demonstrate that anisotropic pinning landscapes and, in particular, ratchet potentials produce subtle modifications to the critical state field profile that are reflected in the distribution of discontinuity lines.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687246200001 Publication Date 2021-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:181714 Serial 7002  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: