|
Record |
Links |
|
Author |
Engbarth, M.A.; Bending, S.J.; Milošević, M.V. |
|
|
Title |
Geometry-driven vortex states in type-I superconducting Pb nanowires |
Type |
A1 Journal article |
|
Year |
2011 |
Publication |
Physical review : B : condensed matter and materials physics |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
83 |
Issue |
22 |
Pages |
224504-224504,7 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Hall probe magnetometry has been used to investigate the magnetization of individual cylindrically shaped Pb nanowires grown by electrocrystallization on a highly oriented pyrolytic graphite electrode. These measurements have been interpreted by comparison with three-dimensional Ginzburg-Landau (GL) calculations for nanowires with our sample parameters. We find that the measured superheating field and the critical field for surface superconductivity are strongly influenced by the temperature-dependent coherence length, ξ(T) and penetration depth λ(T) and their relationship to the nanowire diameter. As the temperature is increased toward Tc this drives a change in the superconductor-normal transition from first order irreversible to first order reversible and finally second order reversible. We find that the geometrical flux confinement in our type-I nanowires leads to the formation of a one-dimensional row of single-quantum vortices. While GL calculations show a quite uniform distribution of vortices in thin nanowires, clear vortex bunching is found as the diameter increases, suggesting a transition to a more classical type-I behavior. Subtle changes in minor magnetization loops also indicate that slightly different flux configurations can form with the same vorticity, which depend on the sample history. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000291888300012 |
Publication Date |
2011-06-21 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1098-0121;1550-235X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
19 |
Open Access |
|
|
|
Notes |
; We acknowledge valuable conversations with F. V. Kusmartsev and W. M. Wu at Loughborough University, UK. This work was supported by the EPSRC-UK under Grant No. EP/E039944/1, and the Flemish Science Foundation (FWO). ; |
Approved |
Most recent IF: 3.836; 2011 IF: 3.691 |
|
|
Call Number |
UA @ lucian @ c:irua:90927 |
Serial |
1331 |
|
Permanent link to this record |