toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kelly, S.; Verheyen, C.; Cowley, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma Type A1 Journal article
  Year 2022 Publication Chem Abbreviated Journal Chem  
  Volume 8 Issue (down) 10 Pages 2797-2816  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explorethepotentialofmicrowave(MW)-plasma-based in situ

utilizationoftheMartianatmospherewithafocusonthenovelpos-

sibilityoffixingN2 forfertilizerproduction. Conversioninasimulant

plasma (i.e., 96% CO2, 2% N2, and 2% Ar),performedunderen-

ergyconditionssimilartothoseoftheMarsOxygen In Situ Resource

UtilizationExperiment(MOXIE),currentlyonboardNASA’sPerse-

verancerover,demonstratesthatO/O2 formedthroughCO2 dissociation

facilitatesthefixationoftheN2 fractionviaoxidationtoNOx.

PromisingproductionratesforO2, CO,andNOx of 47.0,76.1,and

1.25g/h,respectively,arerecordedwithcorrespondingenergy

costs of0.021,0.013,and0.79kWh/g,respectively.Notably,O2

productionratesare 30 timeshigherthanthosedemonstrated

by MOXIE,whiletheNOx production raterepresentsan 7% fixa-

tionoftheN2 fraction presentintheMartian atmosphere.MW-

plasma-basedconversionthereforeshowsgreatpotentialasan in

situ resourceutilization(ISRU)technologyonMarsinthatitsimulta-

neouslyfixesN2 and producesO2.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000875346600005 Publication Date 2022-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 23.5 Times cited Open Access OpenAccess  
  Notes the Euro- pean Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant no. GoF9618n and EOS no. 30505023). C.V. was supported by a FWO aspirant PhD fellowship (grant no. 1184820N). The calculations were per- formed with the Turing HPC infrastructure at the CalcUA core facility of the Univer- siteit Antwerpen (Uantwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish government (department EWI), and Uantwerpen. Approved Most recent IF: 23.5  
  Call Number PLASMANT @ plasmant @c:irua:192174 Serial 7243  
Permanent link to this record
 

 
Author Vervloessem, E.; Gromov, M.; De Geyter, N.; Bogaerts, A.; Gorbanev, Y.; Nikiforov, A. pdf  url
doi  openurl
  Title NH3and HNOxFormation and Loss in Nitrogen Fixation from Air with Water Vapor by Nonequilibrium Plasma Type A1 Journal article
  Year 2023 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 11 Issue (down) 10 Pages 4289-4298  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The current global energy crisis indicated that increasing our

insight into nonfossil fuel nitrogen fixation pathways for synthetic fertilizer

production is more crucial than ever. Nonequilibrium plasma is a good candidate

because it can use N2 or air as a N source and water directly as a H source, instead

of H2 or fossil fuel (CH4). In this work, we investigate NH3 gas phase formation

pathways from humid N2 and especially humid air up to 2.4 mol % H2O (100%

relative humidity at 20 °C) by optical emission spectroscopy and Fouriertransform

infrared spectroscopy. We demonstrate that the nitrogen fixation

capacity is increased when water vapor is added, as this enables HNO2 and NH3

production in both N2 and air. However, we identified a significant loss

mechanism for NH3 and HNO2 that occurs in systems where these species are

synthesized simultaneously; i.e., downstream from the plasma, HNO2 reacts with NH3 to form NH4NO2, which rapidly decomposes

into N2 and H2O. We also discuss approaches to prevent this loss mechanism, as it reduces the effective nitrogen fixation when not

properly addressed and therefore should be considered in future works aimed at optimizing plasma-based N2 fixation. In-line removal

of HNO2 or direct solvation in liquid are two proposed strategies to suppress this loss mechanism. Indeed, using liquid H2O is

beneficial for accumulation of the N2 fixation products. Finally, in humid air, we also produce NH4NO3, from the reaction of HNO3

with NH3, which is of direct interest for fertilizer application.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953337700001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes This research is supported by the Excellence of Science FWOFNRS project (NITROPLASM, FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant No. 810182 − SCOPE ERC Synergy project), and the Fund for Scientific Research (FWO) Flanders Bioeconomy project (grant No. G0G2322N), funded by the European Union-NextGenerationEU. Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:195878 Serial 7254  
Permanent link to this record
 

 
Author Meng, S.; Wu, L.; Liu, M.; Cui, Z.; Chen, Q.; Li, S.; Yan, J.; Wang, L.; Wang, X.; Qian, J.; Guo, H.; Niu, J.; Bogaerts, A.; Yi, Y. pdf  url
doi  openurl
  Title Plasma‐driven<scp>CO2</scp>hydrogenation to<scp>CH3OH</scp>over<scp>Fe2O3</scp>/<scp>γ‐Al2O3</scp>catalyst Type A1 Journal Article
  Year 2023 Publication AIChE Journal Abbreviated Journal AIChE Journal  
  Volume 69 Issue (down) 10 Pages e18154  
  Keywords A1 Journal Article; chemisorbed oxygen, CO2 hydrogenation, iron-based catalyst, methanol production, plasma catalysis; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract We report a plasma‐assisted CO<sub>2</sub>hydrogenation to CH<sub>3</sub>OH over Fe<sub>2</sub>O<sub>3</sub>/γ‐Al<sub>2</sub>O<sub>3</sub>catalysts, achieving 12% CO<sub>2</sub>conversion and 58% CH<sub>3</sub>OH selectivity at a temperature of nearly 80°C atm pressure. We investigated the effect of various supports and loadings of the Fe‐based catalysts, as well as optimized reaction conditions. We characterized catalysts by X‐ray powder diffraction (XRD), hydrogen temperature programmed reduction (H<sub>2</sub>‐TPR), CO<sub>2</sub>and CO temperature programmed desorption (CO<sub>2</sub>/CO‐TPD), high‐resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), x‐ray photoelectron spectroscopy (XPS), Mössbauer, and Fourier transform infrared<bold>(</bold>FTIR). The XPS results show that the enhanced CO<sub>2</sub>conversion and CH<sub>3</sub>OH selectivity are attributed to the chemisorbed oxygen species on Fe<sub>2</sub>O<sub>3</sub>/γ‐Al<sub>2</sub>O<sub>3</sub>. Furthermore, the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) and TPD results illustrate that the catalysts with stronger CO<sub>2</sub>adsorption capacity exhibit a higher reaction performance.<italic>In situ</italic>DRIFTS gain insight into the specific reaction pathways in the CO<sub>2</sub>/H<sub>2</sub>plasma. This study reveals the role of chemisorbed oxygen species as a key intermediate, and inspires to design highly efficient catalysts and expand the catalytic systems for CO<sub>2</sub>hydrogenation to CH<sub>3</sub>OH.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001022420000001 Publication Date 2023-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-1541 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Fundamental Research Funds for the Central Universities, DUT18JC42 ; National Natural Science Foundation of China, 21908016 21978032 ; Approved Most recent IF: 3.7; 2023 IF: 2.836  
  Call Number PLASMANT @ plasmant @c:irua:197829 Serial 8959  
Permanent link to this record
 

 
Author Peng, L.; Philippaerts, A.; Ke, X.; van Noyen, J.; de Cleppel, F.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. doi  openurl
  Title Preparation of sulfonated ordered mesoporous carbon and its use for the esterification of fatty acids Type A1 Journal article
  Year 2010 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 150 Issue (down) 1/2 Pages 140-146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesoporous carbon, which can be replicated from mesoporous silica and whose surface is hydrophobic, can be an ideal catalyst for the esterification of fatty acids. Here we report an easy and low cost way to prepare sulfonic acid group-functionalized mesoporous carbon. A sample of calcined mesoporous silica SBA-15 was added to an aqueous sucrose solution followed by drying and calcination at different temperatures. In contrast to existing procedures, the obtained hybrid Si/C material was then first sulfonated in H2SO4, before the final removal of the silica template in order to stabilize the porous structure towards the liquid phase sulfonation treatment. Thus the silicacarbon composites, instead of the mesoporous carbon, were successfully sulfonated to introduce SO3H groups, while keeping the ordered mesoporous structure intact. The influence of carbonization temperature was investigated, suggesting an optimum temperature of 873 K. The SO3H group-functionalized mesoporous carbon, denoted as CMK-3-873-SO3H, was characterized by means of XRD, N2 physisorption, SEM, FT-IR, elemental analysis and TEM. It followed that a uniform mesoporous carbon was obtained with an average pore size of 3.89 nm, a specific surface of 807 m2/g and a SO3H group loading of 0.39 meq/g of dry material. Compared with other solid acid catalysts, the resulting material shows enhanced activity in the acid-catalyzed esterification of oleic acid with methanol, and can be used repeatedly. The increased catalytic performance is attributed to the hydrophobic surface and larger pore size of the new catalyst. It can effectively accommodate long chain fatty acids and reject formed water, making the active sites easily accessible.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000275566700024 Publication Date 2009-09-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 132 Open Access  
  Notes Approved Most recent IF: 4.636; 2010 IF: 2.993  
  Call Number UA @ lucian @ c:irua:81739 Serial 2706  
Permanent link to this record
 

 
Author Martens, J.A.; Thybaut, J.W.; Denayer, J.F.M.; Sree, S.P.; Aerts, A.; Reyniers, M.-F.; van Speybroeck, V.; Waroquier, M.; Buekenhoudt, A.; Vankelecom, I.; Buijs, W.; Persoons, J.; Baron, G.V.; Bals, S.; Van Tendeloo, G.; Marin, G.B.; Jacobs, P.A.; Kirschhock, C.E.A. pdf  doi
openurl 
  Title Catalytic and molecular separation properties of Zeogrids and Zeotiles Type A1 Journal article
  Year 2011 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 168 Issue (down) 1 Pages 17-27  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Zeogrids and Zeotiles are hierarchical materials built from assembled MFI zeolite precursor units. Permanent secondary porosity in these materials is obtained through self assembly of nanoparticles encountered in MFI zeolite synthesis in the presence of supramolecular templates. Hereon, the aggregated species are termed nanoslabs. Zeogrids are layered materials with lateral spacings between nanoslabs creating galleries qualifying as supermicropores. Zeotiles present a diversity of tridimensional nanoslab assemblies with mesopores. Zeotile-1, -4 and -6 are hexagonal mesostructures. Zeotile-1 has triangular and hexagonal channels; Zeotile-4 has hexagonal channels interconnected via slits. Zeotile-2 has a cubic structure with gyroid type mesoporosity. The behavior of Zeogrids and Zeotiles in adsorption, membrane and chromatographic separation and catalysis has been characterized and compared with zeolites and mesoporous materials derived from unstructured silica sources. Shape selectivity was detected via adsorption of n- and iso-alkanes. The mesoporosity of Zeotiles can be exploited in chromatographic separation of biomolecules. Zeotiles present attractive separation properties relevant to CO2 sequestration. Because of its facile synthesis procedure without hydrothermal steps Zeogrid is convenient for membrane synthesis. The performance of Zeogrid membrane in gas separation, nanofiltration and pervaporation is reported. In the Beckmann rearrangement of cyclohexanone oxime Zeogrids and Zeotiles display a catalytic activity characteristic of silicalite-1 zeolites. Introduction of acidity and redox catalytic activity can be achieved via incorporation of Al and Ti atoms in the nanoslabs during synthesis. Zeogrids are active in hydrocracking, catalytic cracking, alkylation and epoxidation reactions. Zeogrids and Zeotiles often behave differently from ordered mesoporous materials as well as from zeolites and present a valuable extension of the family of hierarchical silicate based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000291033300003 Publication Date 2011-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 13 Open Access  
  Notes Fwo; Iap Sbo Approved Most recent IF: 4.636; 2011 IF: 3.407  
  Call Number UA @ lucian @ c:irua:88647 Serial 290  
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A. doi  openurl
  Title Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition Type A1 Journal article
  Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue (down) 1 Pages 015008-015008,10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an O2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al2O3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O2, while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000286592200009 Publication Date 2011-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:85285 Serial 467  
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R. doi  openurl
  Title Evolution of charged particle densities after laser-induced photodetachment in a strongly electronegative RF discharge Type A1 Journal article
  Year 2002 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci  
  Volume 30 Issue (down) 1 Pages 132-133  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000175845900065 Publication Date 2002-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.052 Times cited Open Access  
  Notes Approved Most recent IF: 1.052; 2002 IF: 1.170  
  Call Number UA @ lucian @ c:irua:40186 Serial 1097  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 1 : transient behaviour of electrodynamics and power deposition Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue (down) 1 Pages 015202-015202,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model coupled with the full set of Maxwell equations is established to investigate the phase-shift effect on the transient behaviour of electrodynamics and power deposition in a hydrogen capacitively coupled plasma. The effect has been examined at 13.56 MHz and 100 MHz, respectively, because of the different phase-shift modulation when the electromagnetic effects are dominant. The results indicate that the spatiotemporal distributions of the plasma characteristics obtained for various phase-shift cases are obviously different both in shape and especially in absolute values. Indeed, when the phase difference varies from 0 to π, there is an increase in the electron flux, thus the power deposition becomes more pronounced. At the frequency of 13.56 MHz, the axial electron flux in the bulk plasma becomes uniform along the z-axis, and the radial electron flux exhibits two peaks within one period at the reverse-phase case, whereas the oscillation is less pronounced at the in-phase case. Furthermore, in the very high frequency discharge, the radial electron flux is alternately positive and negative with four peaks during one period, and the ionization mainly occurs in the sheath region, due to the prominent power deposition there at a phase difference equal to π.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000298290000011 Publication Date 2011-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 57 Open Access  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:92851 Serial 1230  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 2 : radial uniformity of the plasma characteristics Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue (down) 1 Pages 015203-015203,13  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional fluid model, including the full set of Maxwell equations, has been developed and applied to investigate the effect of a phase shift between two power sources on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma. This study was carried out at various frequencies in the range 13.56200 MHz. When the frequency is low, at 13.56 MHz, the plasma density is characterized by an off-axis peak when both power sources are in-phase (phgr = 0), and the best radial uniformity is obtained at phgr = π. This trend can be explained because the radial nonuniformity caused by the electrostatic edge effect can be effectively suppressed by the phase-shift effect at a phase difference equal to π. When the frequency rises to 60 MHz, the plasma density profiles shift smoothly from edge-peaked over uniform to centre-peaked as the phase difference increases, due to the pronounced standing-wave effect, and the best radial uniformity is reached at phgr = 0.3π. At a frequency of 100 MHz, a similar behaviour is observed, except that the maximum of the plasma density moves again towards the radial edge at the reverse-phase case (phgr = π), because of the dominant skin effect. When the frequency is 200 MHz, the bulk plasma density increases significantly with increasing phase-shift values, and a better uniformity is obtained at phgr = 0.4π. This is because the density in the centre increases faster than at the radial edge as the phase difference rises, due to the increasing power deposition Pz in the centre and the decreasing power density Pr at the radial edge. As the phase difference increases to π, the maximum near the radial edge becomes obvious again. This is because the skin effect has a predominant influence on the plasma density under this condition, resulting in a high density at the radial edge. Moreover, the axial ion flux increases monotonically with phase difference, and exhibits similar profiles to the plasma density. The calculation results illustrate that the radial uniformity of the various plasma characteristics is strongly dependent on the applied frequency and the phase shift between both power sources, which is important to realize, for controlling the uniformity of the plasma etch and deposition processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000298290000012 Publication Date 2011-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:92852 Serial 1231  
Permanent link to this record
 

 
Author Tinck, S.; Altamirano-Sánchez, E.; De Schepper, P.; Bogaerts, A. pdf  doi
openurl 
  Title Formation of a nanoscale SiO2 capping layer on photoresist lines with an Ar/SiCl4/O2 inductively coupled plasma : a modeling investigation Type A1 Journal article
  Year 2014 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 11 Issue (down) 1 Pages 52-62  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract PECVD of a nanoscale SiO2 capping layer using low pressure SiCl4/O-2/Ar plasmas is numerically investigated. The purpose of this capping layer is to restore photoresist profiles with improved line edge roughness. A 2D plasma and Monte Carlo feature profile model are applied for this purpose. The deposited films are calculated for various operating conditions to obtain a layer with desired shape. An increase in pressure results in more isotropic deposition with a higher deposition rate, while a higher power creates a more anisotropic process. Dilution of the gas mixture with Ar does not result in an identical capping layer shape with a thickness linearly correlated to the dilution. Finally, a substrate bias seems to allow proper control of the vertical deposition rate versus sidewall deposition as desired.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330588800006 Publication Date 2013-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.846; 2014 IF: 2.453  
  Call Number UA @ lucian @ c:irua:115735 Serial 1256  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. doi  openurl
  Title Fundamental aspects and applications of glow discharge spectrometric techniques Type A1 Journal article
  Year 1998 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 53 Issue (down) 1 Pages 1-42  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000074078200001 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 49 Open Access  
  Notes Approved Most recent IF: 3.241; 1998 IF: 2.758  
  Call Number UA @ lucian @ c:irua:19612 Serial 1308  
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-N.; Bogaerts, A. pdf  doi
openurl 
  Title Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF4 plasma Type A1 Journal article
  Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 22 Issue (down) 1 Pages 015017-15018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a hybrid model is used to investigate the effect of different gas ratios on the Si etching and polymer film deposition characteristics in an Ar/CF4 inductively coupled plasma. The influence of the surface processes on the bulk plasma properties is studied, and also the spatial characteristics of important gas phase and etched species. The densities of F and CF2 decrease when the surface module is included in the simulations, due to the species consumption caused by etching and polymer deposition. The influence of the surface processes on the bulk plasma depends on the Ar/CF4 gas ratio. The deposited polymer becomes thicker at high CF4 content because of more abundant CFx radicals. As a result of the competition between the polymer thickness and the F flux, the etch rate first increases and then decreases upon increasing the CF4 content. The electron properties, more specifically the electron density profile, affect the Si etch characteristics substantially by determining the radical density and flux profiles. In fact, the radial profile of the etch rate is more uniform at low CF4 content since the electron density has a smooth distribution. At high CF4 content, the etch rate is less uniform with a minimum halfway along the wafer radius, because the electron density distribution is more localized. Therefore, our calculations predict that it is better to work at relatively high Ar/CF4 gas ratios, in order to obtain high etch rate and good profile uniformity for etch applications. This, in fact, corresponds to the typical experimental etch conditions in Ar/CF4 gas mixtures as found in the literature, where Ar is typically present at a much higher concentration than CF4.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000314966300022 Publication Date 2012-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2013 IF: 3.056  
  Call Number UA @ lucian @ c:irua:102583 Serial 1320  
Permanent link to this record
 

 
Author Bultinck, E.; Kolev, I.; Bogaerts, A.; Depla, D. doi  openurl
  Title The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron Type A1 Journal article
  Year 2008 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 103 Issue (down) 1 Pages 013309,1-9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000252890700024 Publication Date 2008-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.068; 2008 IF: 2.201  
  Call Number UA @ lucian @ c:irua:66176 Serial 1564  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. openurl 
  Title Modeling of radio-frequency and direct current glow discharges in argon Type A3 Journal article
  Year 2000 Publication Journal of technical physics Abbreviated Journal  
  Volume 41 Issue (down) 1 Pages 183-202  
  Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:28316 Serial 2131  
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A. pdf  doi
openurl 
  Title Numerical study of the sputtering in a dc magnetron Type A1 Journal article
  Year 2009 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Phys Chem C  
  Volume 27 Issue (down) 1 Pages 20-28  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000263299600018 Publication Date 2009-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 66 Open Access  
  Notes Approved Most recent IF: 4.536; 2009 IF: 4.224  
  Call Number UA @ lucian @ c:irua:71634 Serial 2411  
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A. url  doi
openurl 
  Title Plasma chemistry modeling for an inductively coupled plasma used for the growth of carbon nanotubes Type A1 Journal article
  Year 2011 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 275 Issue (down) 1 Pages 012021,1-012021,9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A hybrid model, called the hybrid plasma equipment model (HPEM), is used to describe the plasma chemistry in an inductively coupled plasma, operating in a gas mixture of C2H2 with either H2 or NH3, as typically used for carbon nanotube (CNT) growth. Two-dimensional profiles of power density, electron temperature and density, gas temperature, and densities of some plasma species are plotted and analyzed. Besides, the fluxes of the various plasma species towards the substrate (where the CNTs can be grown), as well as the decomposition rates of the feedstock gases (C2H2, NH3 and H2), are calculated as a function of the C2H2 fraction in both gas mixtures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2011-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85859 Serial 2631  
Permanent link to this record
 

 
Author Bogaerts, A. doi  openurl
  Title Plasma diagnostics and numerical simulations: insight into the heart of analytical glow discharges Type A1 Journal article
  Year 2007 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 22 Issue (down) 1 Pages 13-40  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000242978500001 Publication Date 2006-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.379; 2007 IF: 3.269  
  Call Number UA @ lucian @ c:irua:61139 Serial 2633  
Permanent link to this record
 

 
Author Philippaerts, A.; Paulussen, S.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Poelman, H.; Bulut, M.; de Clippel, F.; Smeets, P.; Sels, B.; Jacobs, P. pdf  doi
openurl 
  Title Selectivity in sorption and hydrogenation of methyl oleate and elaidate on MFI zeolites Type A1 Journal article
  Year 2010 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 270 Issue (down) 1 Pages 172-184  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Different zeolites were tested for selective removal of methyl elaidate (trans isomer) from an equimolar mixture with methyl oleate (cis isomer). Sorption experiments of the geometric isomers show that only ZSM-5 samples with reduced Al content in the framework are able to discriminate among the bent cis and the linear trans fatty acid methyl esters. Hydrogenation experiments of equimolar methyl oleate and elaidate mixtures at low temperature (65 °C) and high hydrogen pressure (6.0 MPa), using Pt catalysts, confirm this result. Only with a Pt/NaZSM-5 catalyst outspoken selectivity for the hydrogenation of the trans isomer is obtained. In order to prepare a selective Pt/ZSM-5 catalyst, the influence of Pt addition (impregnation, ion-exchange and competitive ion-exchange) and Pt activation (different calcination and reduction temperatures) on the Pt-distribution and Pt particle size was investigated using SEM, bright-field and HR TEM, EDX, electron tomography, CO-chemisorption, XPS, XRD, and UVvis measurements. The best result in terms of hydrogenation activity and selectivity is obtained with a Pt/ZSM-5 catalyst, which is prepared via competitive ion-exchange, followed by slow calcination up to 350 °C under high O2 flow and a reduction up to 500 °C under H2. This preparation method leads to a Pt/ZSM-5 catalyst with the best Pt distribution and the smallest Pt clusters occluded in the zeolite structure. Finally, the influence of zeolite crystal size, morphology, and elemental composition of ZSM-5 on hydrogenation activity and selectivity was investigated in detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, Calif. Editor  
  Language Wos 000275966100021 Publication Date 2010-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 24 Open Access  
  Notes FWO; IAP-IV; Methusalem Approved Most recent IF: 6.844; 2010 IF: 5.415  
  Call Number UA @ lucian @ c:irua:82435 Serial 2970  
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M. doi  openurl
  Title Unraveling the deposition mechanism in a-C:H thin-film growth: a molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a-C:H surfaces Type A1 Journal article
  Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 99 Issue (down) 1 Pages 014902,1-8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000234607200071 Publication Date 2006-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.068; 2006 IF: 2.316  
  Call Number UA @ lucian @ c:irua:55831 Serial 3815  
Permanent link to this record
 

 
Author Bogaerts, A.; Aghaei, M. openurl 
  Title What modeling reveals about the properties of an inductively coupled plasma Type A1 Journal article
  Year 2016 Publication Spectroscopy Abbreviated Journal Spectroscopy-Us  
  Volume 31 Issue (down) 1 Pages 52-59  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To get better performance from inductively coupled plasma (ICP)-based methods, it is informative to study the properties of the ICP under different conditions. Annemie Bogaerts and Maryam Aghaei at the University of Antwerp, Belgium, are using computational modeling to examine how various properties of the ICP, such as gas flow path lines and velocity, temperature changes, and ionization effects, are affected by numerous factors, such as the gas flow rates of injector and auxiliary gas, applied power, and even the very presence of a mass spectrometry (MS) sampler. They have also applied their models to study particle transport through the ICP. Using their developed model, it is now possible to predict optimum conditions for specific analyses. Bogaerts and Aghaei spoke to us about this work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Springfield, Or. Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0887-6703 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.466 Times cited Open Access  
  Notes Approved Most recent IF: 0.466  
  Call Number UA @ lucian @ c:irua:131601 Serial 4278  
Permanent link to this record
 

 
Author Van Boxem, W.; Van der Paal, J.; Gorbanev, Y.; Vanuytsel, S.; Smits, E.; Dewilde, S.; Bogaerts, A. url  doi
openurl 
  Title Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue (down) 1 Pages 16478  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We evaluate the anti-cancer capacity of plasma-treated PBS (pPBS), by measuring the concentrations of NO2 − and H2O2 in pPBS, treated with a plasma jet, for different values of gas flow rate, gap and plasma treatment time, as well as the effect of pPBS on cancer cell cytotoxicity, for three different glioblastoma cancer cell lines, at exactly the same plasma treatment conditions. Our experiments reveal that pPBS is cytotoxic for all conditions investigated. A small variation in gap between plasma jet and liquid surface (10 mm vs 15 mm) significantly affects the chemical composition of pPBS and its anti-cancer capacity, attributed to the occurrence of discharges onto the liquid. By correlating the effect of gap, gas flow rate and plasma treatment time on the chemical composition and anti-cancer capacity of pPBS, we may conclude that H2O2 is a more important species for the anti-cancer capacity of pPBS than NO2 −. We also used a 0D model, developed for plasma-liquid interactions, to elucidate the most important mechanisms for the generation of H2O2 and NO2 −. Finally, we found that pPBS might be more suitable for practical applications in a clinical setting than (commonly used) plasma-activated media (PAM), because of its higher stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416398100028 Publication Date 2017-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 40 Open Access OpenAccess  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant No. 11U5416N), the Research Council of the University of Antwerp and the European Marie Skłodowska-Curie Individual Fellowship “LTPAM” within Horizon2020 (Grant No. 743151). Finally, we would like to thank P. Attri and A. Privat Maldonado for the valuable discussions. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:147192 Serial 4766  
Permanent link to this record
 

 
Author Lackmann, J.-W.; Wende, K.; Verlackt, C.; Golda, J.; Volzke, J.; Kogelheide, F.; Held, J.; Bekeschus, S.; Bogaerts, A.; Schulz-von der Gathen, V.; Stapelmann, K. url  doi
openurl 
  Title Chemical fingerprints of cold physical plasmas – an experimental and computational study using cysteine as tracer compound Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue (down) 1 Pages 7736  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Reactive oxygen and nitrogen species released by cold physical plasma are being proposed as effectors in various clinical conditions connected to inflammatory processes. As these plasmas can be tailored in a wide range, models to compare and control their biochemical footprint are desired to infer on the molecular mechanisms underlying the observed effects and to enable the discrimination between different plasma sources. Here, an improved model to trace short-lived reactive species is presented. Using FTIR, high-resolution mass spectrometry, and molecular dynamics computational simulation, covalent modifications of cysteine treated with different plasmas were deciphered and the respective product pattern used to generate a fingerprint of each plasma source. Such, our experimental model allows a fast and reliable grading of the chemical potential of plasmas used for medical purposes. Major reaction products were identified to be cysteine sulfonic acid, cystine, and cysteine fragments. Less abundant products, such as oxidized cystine derivatives or S-nitrosylated cysteines, were unique to different plasma sources or operating conditions. The data collected point at hydroxyl radicals, atomic O, and singlet oxygen as major contributing species that enable an impact on cellular thiol groups when applying cold plasma in vitro or in vivo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000432275800035 Publication Date 2018-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 19 Open Access OpenAccess  
  Notes This work was supported by the German Research Foundation (DFG, grant PAK816 to V.SvdG.), the Federal German Ministry of Education and Research (grant number 03Z22DN12 to K.W. and 03Z22DN11 to S.B.), and the FWO-Flanders (grant number G012413N to A.B.). K.W. likes to thank T. von Woedtke and K.-D. Weltmann for constant support. The authors thank K. Kartaschew for fruitful discussion and G. Bruno for support during mock studies. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:151241 Serial 4957  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Possible Mechanism of Glucose Uptake Enhanced by Cold Atmospheric Plasma: Atomic Scale Simulations Type A1 Journal article
  Year 2018 Publication Plasma Abbreviated Journal  
  Volume 1 Issue (down) 1 Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) has shown its potential in biomedical applications, such as wound healing, cancer treatment and bacterial disinfection. Recent experiments have provided evidence that CAP can also enhance the intracellular uptake of glucose molecules which is important in diabetes therapy. In this respect, it is essential to understand the underlying mechanisms of intracellular glucose uptake induced by CAP, which is still unclear. Hence, in this study we try to elucidate the possible mechanism of glucose uptake by cells by performing computer simulations. Specifically, we study the transport of glucose molecules through native and oxidized membranes. Our simulation results show that the free energy barrier for the permeation of glucose molecules across the membrane decreases upon increasing the degree of oxidized lipids in the membrane. This indicates that the glucose permeation rate into cells increases when the CAP oxidation level in the cell membrane is increased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2018-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2571-6182 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the Universiteit Antwerpen. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @ plasma1010011c:irua:152176 Serial 4990  
Permanent link to this record
 

 
Author Vanraes, P.; Nikiforov, A.; Bogaerts, A.; Leys, C. url  doi
openurl 
  Title Study of an AC dielectric barrier single micro-discharge filament over a water film Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue (down) 1 Pages 10919  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In the last decades, AC powered atmospheric dielectric barrier discharges (DBDs) in air with a liquid electrode have been proposed as a promising plasma technology with versatile applicability in medicine agriculture and water treatment. The fundamental features of the micro-discharge filaments that make up this type of plasma have, however, not been studied yet in sufficient detail. In order to address this need, we investigated a single DBD micro-discharge filament over a water film in a sphere-to-sphere electrode configuration, by means of ICCD imaging and optical emission spectroscopy. When the water film temporarily acts as the cathode, the plasma duration is remarkably long and shows a clear similarity with a resistive barrier discharge, which we attribute to the resistive nature of the water film and the formation of a cathode fall. As another striking difference to DBD with solid electrodes, a constant glow-like plasma is observed at the water surface during the entire duration of the applied voltage cycle, indicating continuous plasma treatment of the liquid. We propose several elementary mechanisms that might underlie the observed unique behavior, based on the specific features of a water electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000439101600018 Publication Date 2018-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 3 Open Access OpenAccess  
  Notes P. Vanraes acknowledges funding by a University of Antwerp BOF grant. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:152822c:irua:152411 Serial 4999  
Permanent link to this record
 

 
Author Attri, P.; Han, J.; Choi, S.; Choi, E.H.; Bogaerts, A.; Lee, W. url  doi
openurl 
  Title CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue (down) 1 Pages 10218  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) has great potential for sterilization in the food industry, by deactivation of thermophilic bacteria, but the underlying mechanisms are largely unknown. Therefore, we investigate here whether CAP is able to denature/modify protein from thermophilic bacteria. We focus on MTH1880 (MTH) from Methanobacterium thermoautotrophicum as model protein, which we treated with dielectric barrier discharge (DBD) plasma operating in air for 10, 15 and 20 mins. We analysed the structural changes of MTH using circular dichroism, fluorescence and NMR spectroscopy, as well as the thermal and chemical denaturation, upon CAP treatment. Additionally, we performed molecular dynamics (MD) simulations to determine the stability, flexibility and solvent accessible surface area (SASA) of both the native and oxidised protein.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437414500004 Publication Date 2018-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 6 Open Access OpenAccess  
  Notes We gratefully acknowledge the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by NRF-2017R1A2B2008483 to W.L. through the National Research Foundation of Korea (NRF) and BK+ program (J.H.). E.H.C. acknowledges the NRF (NRF-2016K1A4A3914113 and No. 20100027963). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:152817c:irua:152431 Serial 5002  
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Kwak, H.S.; Park, J.H.; Uhm, H.S.; Bogaerts, A.; Choi, E.H.; Attri, P. url  doi
openurl 
  Title Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue (down) 1 Pages 11268  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract There is a growing body of literature that recognizes the importance of plasma treated water (PTW)for inactivation of microorganism. However, very little attention has been paid to the role of reactive nitrogen species (RNS) in deactivation of bacteria. The aim of this study is to explore the role of RNS in bacterial killing, and to develop a plasma system with increased sterilization efficiency. To increase the concentration of reactive oxygen and nitrogen species (RONS) in solution, we have used vapor systems (DI water/HNO3 at different wt%) combined with plasma using N2 as working gas. The results show that the addition of the vapor system yields higher RONS contents. Furthermore, PTW produced by N2 + 0.5 wt% HNO3 vapor comprises a large amount of both RNS and ROS, while PTW created by N2 + H2O vapor consists of a large amount of ROS, but much less RNS. Interestingly, we observed more deactivation of E. Coli with PTW created by N2 + 0.5 wt% HNO3 vapor plasma as compared to PTW generated by the other plasma systems. This work provides new insight into the role of RNS along with ROS for deactivation of bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000439805700029 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 17 Open Access OpenAccess  
  Notes We gratefully acknowledge the Leading Foreign Research Institute Recruitment program (Grant # NRF- 2016K1A4A3914113) throughout the Basic Science Research Program of the National Research Foundation (NRF) of Korea and in part by Kwangwoon University 2018. JHP thanks to NRF Grant No. NRF- 2017R1D1A1B03033495. We also acknowledge financial support from the Research Foundation – Flanders (FWO) (Grant Number 12J5617N) and from the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (Grant Number 743546). Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:152821 Serial 5003  
Permanent link to this record
 

 
Author Brandenburg, R.; Bogaerts, A.; Bongers, W.; Fridman, A.; Fridman, G.; Locke, B.R.; Miller, V.; Reuter, S.; Schiorlin, M.; Verreycken, T.; Ostrikov, K.K. pdf  url
doi  openurl
  Title White paper on the future of plasma science in environment, for gas conversion and agriculture Type A1 Journal article
  Year 2019 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 16 Issue (down) 1 Pages 1700238  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Climate change, environmental pollution control, and resource utilization efficiency, as well as food security, sustainable agriculture, and water supply are among the main challenges facing society today. Expertise across different academic fields, technologies,anddisciplinesisneededtogeneratenewideastomeetthesechallenges. This “white paper” aims to provide a written summary by describing the main aspects and possibilities of the technology. It shows that plasma science and technology can make significant contributions to address the mentioned issues. The paper also addresses to people in the scientific community (inside and outside plasma science) to give inspiration for further work in these fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455413600004 Publication Date 2018-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 19 Open Access Not_Open_Access  
  Notes This paper is a result of the PlasmaShape project, supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 316216. During this project, young scientists and renowned and outstanding scientists collaborated in the development of a political-scientific consensus paper as well as six scientific, strategic white papers. In an unique format core themes such as energy, optics and glass, medicine and hygiene, aerospace and automotive, plastics and textiles, environment and agriculture and their future development were discussed regarding scientific relevance and economic impact. We would like to thank our colleagues from 18 nations from all over the world (Australia, Belgium, Czech Republic, PR China, France, Germany, Great Britain, Italy, Japan, The Netherlands, Poland, Romania, Russia, Slovakia, Slovenia, Sweden, Switzerland, USA) who have participated both workshops of Future in Plasma Science I and II in Greifswald in 2015/2016. The valuable contribution of all participants during the workshops, the intensive cooperation between the project partners, and the comprehensive input of all working groups of Future in Plasma Science was the base for the present paper. Kindly acknowledged is the support of graphical work by C. Desjardins and K. Drescher. Approved Most recent IF: 2.846  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:156389 Serial 5146  
Permanent link to this record
 

 
Author Snoeckx, R.; Wang, W.; Zhang, X.; Cha, M.S.; Bogaerts, A. url  doi
openurl 
  Title Plasma-based multi-reforming for Gas-To-Liquid: tuning the plasma chemistry towards methanol Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue (down) 1 Pages 15929  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Because of its unique properties, plasma technology has gained much prominence in the

microelectronics industry. Recently, environmental and energy applications of plasmas have gained a lot of attention. In this area, the focus is on converting CO 2 and reforming hydrocarbons, with the goal of developing an efficient single-step ‘gas-to-liquid’ (GTL) process. Here we show that applying tri-reforming principles to plasma—further called ‘plasma-based multi-reforming’—allows us to better control the plasma chemistry and thus the formed products. To demonstrate this, we used chemical kinetics calculations supported by experiments and reveal that better control of the plasma chemistry can be achieved by adding O 2 or H 2 O to a mixture containing CH 4 and CO 2 (diluted in N 2 ). Moreover, by adding O 2 and H 2 O simultaneously, we can tune the plasma chemistry even further, improving the conversions, thermal efficiency and methanol yield. Unlike thermocatalytic reforming, plasma-based reforming is capable of producing methanol in a single step; and compared with traditional plasma-based dry reforming, plasma-based multi-reforming increases the methanol yield by more than seven times and the thermal efficiency by 49%, as revealed by our model calculations. Thus, we believe that by using plasma-based multi-reforming, ‘gas-to-liquid’ conversion may be made efficient and scalable.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448589200005 Publication Date 2018-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Competitive Research Funding from King Abdullah University of Science and Technology (KAUST), the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304), the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N) and the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). This work was carried out, in part, using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:154868 Serial 5066  
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Bogaerts, A. url  doi
openurl 
  Title Oxidation destabilizes toxic amyloid beta peptide aggregation Type A1 Journal article
  Year 2019 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 9 Issue (down) 1 Pages 5476  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The aggregation of insoluble amyloid beta (Aβ) peptides in the brain is known to trigger the onset of neurodegenerative diseases, such as Alzheimer’s disease. In spite of the massive number of investigations, the underlying mechanisms to destabilize the Aβ aggregates are still poorly understood. Some studies indicate the importance of oxidation to destabilize the Aβ aggregates. In particular, oxidation induced by cold atmospheric plasma (CAP) has demonstrated promising results in eliminating these toxic aggregates. In this paper, we investigate the effect of oxidation on the stability of an Aβ pentamer. By means of molecular dynamics simulations and umbrella sampling, we elucidate the conformational changes of Aβ pentamer in the presence of oxidized residues, and we estimate the dissociation free energy of the terminal peptide out of the pentamer form. The calculated dissociation free energy of the terminal peptide is also found to decrease with increasing oxidation. This indicates that Aβ pentamer aggregation becomes less favorable upon oxidation. Our study contributes to a better insight in one of the potential mechanisms for inhibition of toxic Aβ peptide aggregation, which is considered to be the main culprit to Alzheimer’s disease.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000462990000018 Publication Date 2019-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 5 Open Access OpenAccess  
  Notes M.Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant 1200216N and 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:159367 Serial 5182  
Permanent link to this record
 

 
Author Michielsen, I.; Uytdenhouwen, Y.; Bogaerts, A.; Meynen, V. url  doi
openurl 
  Title Altering conversion and product selectivity of dry reforming of methane in a dielectric barrier discharge by changing the dielectric packing material Type A1 Journal article
  Year 2019 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 9 Issue (down) 1 Pages 51  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We studied the influence of dense, spherical packing materials, with different chemical compositions, on the dry reforming of methane (DRM) in a dielectric barrier discharge (DBD) reactor. Although not catalytically activated, a vast effect on the conversion and product selectivity could already be observed, an influence which is often neglected when catalytically activated plasma packing materials are being studied. The alpha-Al2O3 packing material of 2.0-2.24 mm size yields the highest total conversion (28%), as well as CO2 (23%) and CH4 (33%) conversion and a high product fraction towards CO (similar to 70%) and ethane (similar to 14%), together with an enhanced CO/H-2 ratio of 9 in a 4.5 mm gap DBD at 60 W and 23 kHz. gamma-Al2O3 is only slightly less active in total conversion (22%) but is even more selective in products formed than alpha-Al2O3 BaTiO3 produces substantially more oxygenated products than the other packing materials but is the least selective in product fractions and has a clear negative impact on CO2 conversion upon addition of CH4. Interestingly, when comparing to pure CO2 splitting and when evaluating differences in products formed, significantly different trends are obtained for the packing materials, indicating a complex impact of the presence of CH4 and the specific nature of the packing materials on the DRM process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459732000051 Publication Date 2019-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.082  
  Call Number UA @ admin @ c:irua:158666 Serial 5268  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: