|
Record |
Links |
|
Author |
Lackmann, J.-W.; Wende, K.; Verlackt, C.; Golda, J.; Volzke, J.; Kogelheide, F.; Held, J.; Bekeschus, S.; Bogaerts, A.; Schulz-von der Gathen, V.; Stapelmann, K. |
|
|
Title |
Chemical fingerprints of cold physical plasmas – an experimental and computational study using cysteine as tracer compound |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Scientific reports |
Abbreviated Journal |
Sci Rep-Uk |
|
|
Volume |
8 |
Issue |
1 |
Pages |
7736 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
Reactive oxygen and nitrogen species released by cold physical plasma are being proposed as effectors in various clinical conditions connected to inflammatory processes. As these plasmas can be tailored in a wide range, models to compare and control their biochemical footprint are desired to infer on the molecular mechanisms underlying the observed effects and to enable the discrimination between different plasma sources. Here, an improved model to trace short-lived reactive species is presented. Using FTIR, high-resolution mass spectrometry, and molecular dynamics computational simulation, covalent modifications of cysteine treated with different plasmas were deciphered and the respective product pattern used to generate a fingerprint of each plasma source. Such, our experimental model allows a fast and reliable grading of the chemical potential of plasmas used for medical purposes. Major reaction products were identified to be cysteine sulfonic acid, cystine, and cysteine fragments. Less abundant products, such as oxidized cystine derivatives or S-nitrosylated cysteines, were unique to different plasma sources or operating conditions. The data collected point at hydroxyl radicals, atomic O, and singlet oxygen as major contributing species that enable an impact on cellular thiol groups when applying cold plasma in vitro or in vivo. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000432275800035 |
Publication Date |
2018-05-10 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2045-2322 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
4.259 |
Times cited |
19 |
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by the German Research Foundation (DFG, grant PAK816 to V.SvdG.), the Federal German Ministry of Education and Research (grant number 03Z22DN12 to K.W. and 03Z22DN11 to S.B.), and the FWO-Flanders (grant number G012413N to A.B.). K.W. likes to thank T. von Woedtke and K.-D. Weltmann for constant support. The authors thank K. Kartaschew for fruitful discussion and G. Bruno for support during mock studies. |
Approved |
Most recent IF: 4.259 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:151241 |
Serial |
4957 |
|
Permanent link to this record |