toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Philippaerts, A.; Paulussen, S.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Poelman, H.; Bulut, M.; de Clippel, F.; Smeets, P.; Sels, B.; Jacobs, P. pdf  doi
openurl 
  Title Selectivity in sorption and hydrogenation of methyl oleate and elaidate on MFI zeolites Type A1 Journal article
  Year (down) 2010 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 270 Issue 1 Pages 172-184  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Different zeolites were tested for selective removal of methyl elaidate (trans isomer) from an equimolar mixture with methyl oleate (cis isomer). Sorption experiments of the geometric isomers show that only ZSM-5 samples with reduced Al content in the framework are able to discriminate among the bent cis and the linear trans fatty acid methyl esters. Hydrogenation experiments of equimolar methyl oleate and elaidate mixtures at low temperature (65 °C) and high hydrogen pressure (6.0 MPa), using Pt catalysts, confirm this result. Only with a Pt/NaZSM-5 catalyst outspoken selectivity for the hydrogenation of the trans isomer is obtained. In order to prepare a selective Pt/ZSM-5 catalyst, the influence of Pt addition (impregnation, ion-exchange and competitive ion-exchange) and Pt activation (different calcination and reduction temperatures) on the Pt-distribution and Pt particle size was investigated using SEM, bright-field and HR TEM, EDX, electron tomography, CO-chemisorption, XPS, XRD, and UVvis measurements. The best result in terms of hydrogenation activity and selectivity is obtained with a Pt/ZSM-5 catalyst, which is prepared via competitive ion-exchange, followed by slow calcination up to 350 °C under high O2 flow and a reduction up to 500 °C under H2. This preparation method leads to a Pt/ZSM-5 catalyst with the best Pt distribution and the smallest Pt clusters occluded in the zeolite structure. Finally, the influence of zeolite crystal size, morphology, and elemental composition of ZSM-5 on hydrogenation activity and selectivity was investigated in detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, Calif. Editor  
  Language Wos 000275966100021 Publication Date 2010-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 24 Open Access  
  Notes FWO; IAP-IV; Methusalem Approved Most recent IF: 6.844; 2010 IF: 5.415  
  Call Number UA @ lucian @ c:irua:82435 Serial 2970  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: