toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Thermodynamic properties of the electron gas in multilayer graphene in the presence of a perpendicular magnetic field Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue (down) 24 Pages 245429-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermodynamic properties of the electron gas in multilayer graphene depend strongly on the number of layers and the type of stacking. Here we analyze how those properties change when we vary the number of layers for rhombohedral stacked multilayer graphene and compare our results with those from a conventional two-dimensional electron gas. We show that the highly degenerate zero-energy Landau level which is partly filled with electrons and partly with holes has a strong influence on the values of the different thermodynamic quantities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000328686900006 Publication Date 2014-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; The authors would like to thank C. De Beule for enlightening discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B.V.D., and the Methusalem Program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:113700 Serial 3635  
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.; Partoens, B.; Pasek, W.J. url  doi
openurl 
  Title Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue (down) 24 Pages 245324-245324,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using an exact-diagonalization approach we show that one- and two-electron InAs quantum dots exhibit an avoided crossing in the energy spectra that is induced by the spin-orbit coupling in the presence of an in-plane external magnetic field. The width of the avoided crossings depends strongly on the orientation of the magnetic field, which reveals the intrinsic anisotropy of the spin-orbit-coupling interactions. We find that for specific orientations of the magnetic field avoided crossings vanish. A value of this orientation can be used to extract the ratio of the strength of Rashba and Dresselhaus interactions. The spin-orbit anisotropy effects for various geometries and orientations of the confinement potential are discussed. Our analysis explains the physics behind the recent measurements performed on a gated self-assembled quantum dot [ S. Takahashi et al. Phys. Rev. Lett. 104 246801 (2010)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292254000005 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes ; The authors thank S. Takahashi for helpful discussions. This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund, the Project No. N N202103938 supported by the Ministry of Science an Higher Education (MNiSW) for 2010-2013, and the Belgian Science Policy (IAP). W. J. P. has been partially supported by the EU Human Capital Operation Program, Polish Project No. POKL.04.0101-00-434/08-00. Calculations were performed in ACK-CYFRONET-AGH on the RackServer Zeus. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90923 Serial 3755  
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M. url  doi
openurl 
  Title Correlated few-particle states in artificial bipolar molecule Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue (down) 23 Pages 233302-233304  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the ground and excited states of a bipolar artificial molecule composed of two vertically coupled quantum dots containing different type of carriers-electrons and holes-in equilibrium. The approach based on exact diagonalization is used and reveals an intricate pattern of ground-state angular momentum switching and a rearrangement of approximate single-particle levels as a function of the interdot coupling strength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000176767900019 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:104154 Serial 519  
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M. url  doi
openurl 
  Title Dielectric mismatch effect on the exciton states in cylindrical nanowires Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue (down) 23 Pages 235321,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000243195700080 Publication Date 2006-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:62178 Serial 693  
Permanent link to this record
 

 
Author Masir, M.R.; Vasilopoulos, P.; Matulis, A.; Peeters, F.M. url  doi
openurl 
  Title Direction-dependent tunneling through nanostructured magnetic barriers in graphene Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue (down) 23 Pages 235443,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000257289500133 Publication Date 2008-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 212 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69639 Serial 727  
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Effect of strain on the magnetoexciton ground state in InP/GaxIn1-xP quantum disks Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 67 Issue (down) 23 Pages 235325,1-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000184040700063 Publication Date 2003-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes Approved Most recent IF: 3.836; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:62432 Serial 837  
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue (down) 23 Pages 235425-235425,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286769100008 Publication Date 2010-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 23 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:86911 Serial 1010  
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M. url  doi
openurl 
  Title Fano resonances and electron spin transport through a two-dimensional spin-orbit-coupled quantum ring Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue (down) 23 Pages 235319-235319,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electron transport through a spin-orbit-coupled quantum ring is investigated within linear response theory. We show that the finite width of the ring results in the appearance of Fano resonances in the conductance. This turns out to be a consequence of the spin-orbit interaction that leads to a breaking of the parity of the states localized in the ring. The resonances appear when the system is close to maxima of Aharonov-Casher conductance oscillations where spin transfer is heavily modified. When the spin-orbit coupling strength is detuned from the Aharonov-Casher maxima the resonances are broadened resulting in a dependence of the spin transport on the electron Fermi energy in contrast to predictions from one-dimensional models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298605700002 Publication Date 2011-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme cofinanced by the EU European Regional Development Fund, Project No. N N202103938 supported by the Ministry of Science and Higher Education (MNiSW) for 2010-2013, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:94292 Serial 1171  
Permanent link to this record
 

 
Author Mlinar, V.; Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Hole and exciton energy levels in InP/InxGa1-xP quantum dot molecules: influence of geometry and magnetic field dependence Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue (down) 23 Pages 235336,1-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000238696600104 Publication Date 2006-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 16 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:59708 Serial 1474  
Permanent link to this record
 

 
Author Čukarić, N.; Arsoski, V.; Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Hole states in nanocups in a magnetic field Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue (down) 23 Pages 235425-235425,11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magnetic-field dependence of the hole states in a nanocup, which is composed of a ring (the nanocup rim) that surrounds a disk (the nanocup bottom), is obtained within the Luttinger-Kohn model for the unstrained GaAs/(Al,Ga) As and the strained (In,Ga) As/GaAs systems. Aharonov-Bohm oscillations due to angular momentum transitions of the hole ground state appear with periods that vary with the thickness of the disk. The strain in the (In, Ga) As/GaAs nanocup is sensitive to the disk thickness and favors the spatial localization of the heavy holes inside the disk. Therefore, the angular momentum transitions between the valence-band states disappear for much thinner disks than in the case of the unstrained GaAs/(Al, Ga) As nanocups. In both systems, the oscillations in the energy of the hole ground state are found to disappear for thinner inner layer than in the electron ground-state energy. This is due to the different confining potentials and the mixing between the heavy- and light-hole states. As a consequence, magnetization of the single hole is found to strongly depend on the bottom thickness of the strained (In, Ga) As/GaAs nanocup. Furthermore, we found that the strain can lead to a spatial separation of the electron and the hole, as in type-II band alignment, which is advantageous for the appearance of the excitonic Aharonov-Bohm effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305116700005 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; The authors thank B. Partoens for useful discussions. This work was supported by the EU NoE: SANDiE, the Ministry of Education and Science of Serbia, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98906 Serial 1477  
Permanent link to this record
 

 
Author Shakouri, K.; Vasilopoulos, P.; Vargiamidis, V.; Peeters, F.M. url  doi
openurl 
  Title Integer and half-integer quantum Hall effect in silicene: Influence of an external electric field and impurities Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue (down) 23 Pages 235423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of silicene's strong spin-orbit interaction and of an external electric field E-z on the transport coefficients are investigated in the presence of a perpendicular magnetic field B. For finite E-z the spin and valley degeneracy of the Landau levels is lifted and leads to additional plateaus in the Hall conductivity, at half-integer values of 4e(2)/h, due to spin intra-Landau-level transitions that are absent in graphene. These plateaus are more sensitive to disorder and thermal broadening than the main plateaus, occurring at integral values of 4e(2)/h, when the Fermi level passes through the Landau levels. We also evaluate the Hall and longitudinal resistivities and critically contrast the results with those for graphene on a substrate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000346377400004 Publication Date 2014-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 32 Open Access  
  Notes ; Our work was supported by the Flemish Science Foundation (FWO-VI), the Methusalem Foundation of the Flemish Government, and the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122771 Serial 1678  
Permanent link to this record
 

 
Author Li, L.L.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Intrinsic optical anisotropy of [001]-grown short-period InAs/GaSb superlattices Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue (down) 23 Pages 235422-235422,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We theoretically investigate the intrinsic optical anisotropy or polarization induced by the microscopic interface asymmetry (MIA) in no-common-atom (NCA) InAs/GaSb superlattices (SLs) grown along the [001] direction. The eight-band K⋅P model is used to calculate the electronic band structures and incorporates the MIA effect. A Boltzmann equation approach is employed to calculate the optical properties. We found that in NCA InAs/GaSb SLs, the MIA effect causes a large in-plane optical anisotropy for linearly polarized light and the largest anisotropy occurs for light polarized along the [110] and [11̅ 0] directions. The relative difference between the optical-absorption coefficient for [110]-polarized light and that for [11̅ 0]-polarized light is found to be larger than 50%. The dependence of the in-plane optical anisotropy on temperature, photoexcited carrier density, and layer width is examined in detail. This study is important for optical devices which require the polarization control and selectivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286768800007 Publication Date 2010-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported partly by the Flemish Science Foundation (FWO-VL), the Belgium Science Policy (IAP), the NSF of China (Grants No. 10664006, No. 10504036, and No. 90503005), Special Funds of 973 Project of China (Grant No. 2005CB623603), and Knowledge Innovation Program of the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:88909 Serial 1717  
Permanent link to this record
 

 
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M. url  doi
openurl 
  Title Kronig-Penney model on bilayer graphene : spectrum and transmission periodic in the strength of the barriers Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue (down) 23 Pages 235408-235408,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We show that the transmission through single and double δ-function potential barriers of strength P=VWb/ℏvF in bilayer graphene is periodic in P with period π. For a certain range of P values we find states that are bound to the potential barrier and that run along the potential barrier. Similar periodic behavior is found for the conductance. The spectrum of a periodic succession of δ-function barriers (Kronig-Penney model) in bilayer graphene is periodic in P with period 2π. For P smaller than a critical value Pc, the spectrum exhibits two Dirac points while for P larger than Pc an energy gap opens. These results are extended to the case of a superlattice of δ-function barriers with P alternating in sign between successive barriers; the corresponding spectrum is periodic in P with period π.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286766900008 Publication Date 2010-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 34 Open Access  
  Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the Canadian NSERC under Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:88910 Serial 1768  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Lattice thermal properties of graphane : thermal contraction, roughness, and heat capacity Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue (down) 23 Pages 235437-235437,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic simulations, we determine the roughness and the thermal properties of a suspended graphane sheet. As compared to graphene, we found that (i) hydrogenated graphene has a larger thermal contraction, (ii) the roughness exponent at room temperature is smaller, i.e., ≃ 1.0 versus ≃ 1.2 for graphene, (iii) the wavelengths of the induced ripples in graphane cover a wide range corresponding to length scales in the range 30125 Å at room temperature, and (iv) the heat capacity of graphane is estimated to be 29.32±0.23 J/mol K, which is 14.8% larger than that for graphene, i.e., 24.98±0.14 J/mol K. Above 1500 K, we found that graphane buckles when its edges are supported in the x-y plane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292253400011 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 42 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90921 Serial 1803  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue (down) 23 Pages 11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279336000001 Publication Date 2010-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes ; Financial support was provided by the Hungarian Research Foundation (Contracts No. OTKA K68312, No. K77771, No. K73361, and No. F68726). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83857 Serial 1820  
Permanent link to this record
 

 
Author Kirilenko, D.A.; Dideykin, A.T.; Van Tendeloo, G. url  doi
openurl 
  Title Measuring the corrugation amplitude of suspended and supported graphene Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue (down) 23 Pages 235417-235417,5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanoscale corrugation is a fundamental property of graphene arising from its low-dimensional nature. It places a fundamental limit to the conductivity of graphene and influences its properties. However the degree of the influence of the corrugation has not been well established because of the little knowledge about its spectrum in suspended graphene. We present a transmission electron microscopy technique that enables us to measure the average corrugation height and length. We applied the technique also to measure the temperature dependence of the corrugation. The difference in corrugation between suspended and supported graphene has been illustrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297764700003 Publication Date 2011-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93629 Serial 1971  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Nanoindentation of a circular sheet of bilayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue (down) 23 Pages 235421,1-235421,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nanoindentation of bilayer graphene is studied using molecular-dynamics simulations. We compared our simulation results with those from elasticity theory as based on the nonlinear Föppl-Hencky equations with rigid boundary condition. The force-deflection values of bilayer graphene are compared to those of monolayer graphene. Youngs modulus of bilayer graphene is estimated to be 0.8 TPa which is close to the value for graphite. Moreover, an almost flat bilayer membrane at low temperature under central load has a 14% smaller Youngs modulus as compared to the one at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278710800003 Publication Date 2010-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 108 Open Access  
  Notes ; We gratefully acknowledge comments from R. Asgari. M.N.-A. would like to thank the Universiteit of Antwerpen for its hospitality where part of this work was performed. This work was supported by the Flemish science foundation (FWO-V1) and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83093 Serial 2259  
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Zeng, Z.; Lu, T.C.; Peeters, F.M. url  doi
openurl 
  Title Quantum and transport conductivities in monolayer graphene Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 77 Issue (down) 23 Pages 235402,1-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000257289500092 Publication Date 2008-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:69637 Serial 2771  
Permanent link to this record
 

 
Author Novoselov, K.S.; Geim, A.K.; Dubonos, S.V.; Cornelissens, Y.G.; Peeters, F.M.; Maan, J.C. url  doi
openurl 
  Title Scattering of ballistic electrons at a mesoscopic spot of strong magnetic field Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue (down) 23 Pages 233312-233314  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report quenching of the Hall effect with increasing magnetic field confined in a micron-sized spot. Such fields were created by placing tall ferromagnetic pillars on top of a two-dimensional electron gas, which allowed us to achieve the field strength up to 0.4 T under the pillars in the absence of external field. The quenching is accompanied by an anomalous increase in resistance and occurs when the cyclotron diameter matches the size of the magnetic spot. The results are explained by a rapid increase in the number of electrons that are scattered or quasilocalized by the magnetic region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000176767900029 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:103349 Serial 2949  
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Stark shift in single and vertically coupled type-I and type-II quantum dots Type A1 Journal article
  Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 65 Issue (down) 23 Pages 233301,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000176767900018 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 43 Open Access  
  Notes Approved Most recent IF: 3.836; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:62431 Serial 3150  
Permanent link to this record
 

 
Author Govaerts, K.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title van der Waals bonding and the quasiparticle band structure of SnO from first principles Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue (down) 23 Pages 235210-235217  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract In this work we have investigated the structural and electronic properties of SnO, which is built up from layers kept together by van der Waals (vdW) forces. The combination of a vdW functional within density functional theory (DFT) and quasiparticle band structure calculations within the GW approximation provides accurate values for the lattice parameters, atomic positions, and the electronic band structure including the fundamental (indirect) and the optical (direct) band gap without the need of experimental or empirical input. A systematic comparison is made between different levels of self-consistency within the GW approach {following the scheme of Shishkin et al. [Phys. Rev. B 75, 235102 (2007)]} and the results are compared with DFT and hybrid functional results. Furthermore, the effect of the vdW-corrected functional as a starting point for the GW calculation of the band gap has been investigated. Finally, we studied the effect of the vdW functional on the electron charge density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000321061000003 Publication Date 2013-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes IWT; FWO; Hercules Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109596 Serial 3835  
Permanent link to this record
 

 
Author Lebedev, O.I.; Van Tendeloo, G.; Attfield, J.P.; McLaughlin, A.C. doi  openurl
  Title Defect structure of ferromagnetic superconducting RuSr2GdCu2O8 Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 73 Issue (down) 22 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure and defect structure of superconducting ferromagnetic bulk RuSr2GdCu2O8 has been investigated using high-resolution transmission electron microscopy and high-resolution scanning transmission microscopy. Two distinct, but closely related structures, due to ordering of rotated RuO6 octahedra and due to Cu substitution in the Ru-O layer, have been revealed. The structure of Ru1-xSr2GdCu2+xO8-delta can be described as a periodic alteration along the c axis of CuO4 planes and RuO6 octahedra. The unit-cell parameters of this phase are root 2a(p) x root 2a(p) x 2c. The possible influence of this phase and defect structure on the sensitivity of the superconductivity and magnetic properties is discussed. Local defects such as 90 S domain boundaries, (130) antiphase boundaries, and the associated dislocations are analyzed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000238696300115 Publication Date 2006-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Iap V-I Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:59707 Serial 619  
Permanent link to this record
 

 
Author Engbarth, M.A.; Bending, S.J.; Milošević, M.V. url  doi
openurl 
  Title Geometry-driven vortex states in type-I superconducting Pb nanowires Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue (down) 22 Pages 224504-224504,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hall probe magnetometry has been used to investigate the magnetization of individual cylindrically shaped Pb nanowires grown by electrocrystallization on a highly oriented pyrolytic graphite electrode. These measurements have been interpreted by comparison with three-dimensional Ginzburg-Landau (GL) calculations for nanowires with our sample parameters. We find that the measured superheating field and the critical field for surface superconductivity are strongly influenced by the temperature-dependent coherence length, ξ(T) and penetration depth λ(T) and their relationship to the nanowire diameter. As the temperature is increased toward Tc this drives a change in the superconductor-normal transition from first order irreversible to first order reversible and finally second order reversible. We find that the geometrical flux confinement in our type-I nanowires leads to the formation of a one-dimensional row of single-quantum vortices. While GL calculations show a quite uniform distribution of vortices in thin nanowires, clear vortex bunching is found as the diameter increases, suggesting a transition to a more classical type-I behavior. Subtle changes in minor magnetization loops also indicate that slightly different flux configurations can form with the same vorticity, which depend on the sample history.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291888300012 Publication Date 2011-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; We acknowledge valuable conversations with F. V. Kusmartsev and W. M. Wu at Loughborough University, UK. This work was supported by the EPSRC-UK under Grant No. EP/E039944/1, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90927 Serial 1331  
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M. url  doi
openurl 
  Title Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue (down) 22 Pages 224523-224523,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We predict heating of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |Δ| and the dependence of the spectral functions both on |Δ| and the supervelocity Q are the origin of this effect. Our results are opposite to those of Aslamazov and Larkin [ Zh. Eks. Teor. Fiz. 70 1340 (1976)] and Schmid et al. [ Phys. Rev. B 21 5076 (1980)] where cooling of quasiparticles was found.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292218200010 Publication Date 2011-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme “Scientific and educational personnel of innovative Russia in 2009-2013,” Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90924 Serial 1415  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Chao, X.H.; Peeters, F.M.; Wang, H.B.; Moshchalkov, V.V.; Zhu, B.Y. url  doi
openurl 
  Title Magnetoresistance oscillations in superconducting strips : a Ginzburg-Landau study Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue (down) 22 Pages 224504-224508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Within the time-dependent Ginzburg-Landau theory we study the dynamic properties of current-carrying superconducting strips in the presence of a perpendicular magnetic field. We found pronounced voltage peaks as a function of the magnetic field, the amplitude of which depends both on sample dimensions and external parameters. These voltage oscillations are a consequence of moving vortices, which undergo alternating static and dynamic phases. At higher fields or for high currents, the continuous motion of vortices is responsible for the monotonic background on which the resistance oscillations due to the entry of additional vortices are superimposed. Mechanisms for such vortex-assisted resistance oscillations are discussed. Qualitative changes in the magnetoresistance curves are observed in the presence of random defects, which affect the dynamics of vortices in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000312064300004 Publication Date 2012-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the ESF-NES program. G. R. B. acknowledges support from FWO-Vl. B.Y.Z. acknowledges the support from the MOST 973 Projects No. 2011CBA00110 and No. 2009CB930803, and the National Natural Science Foundation of China. V. V. M. acknowledges support from the Methusalem Funding by the Flemish Government. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:105969 Serial 1930  
Permanent link to this record
 

 
Author Hiroi, Z.; Amelinckx, S.; Van Tendeloo, G.; Kobayashi, N. doi  openurl
  Title Microscopic origin of dimerization in the CuO2 chains in Sr14Cu24O41 Type A1 Journal article
  Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 54 Issue (down) 22 Pages 849-855  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1996VX71800045 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 33 Open Access  
  Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #  
  Call Number UA @ lucian @ c:irua:16871 Serial 2030  
Permanent link to this record
 

 
Author Croitoru, M.D.; Buzdin, A.I. url  doi
openurl 
  Title Peculiarities of the orbital effect in the Fulde-Ferrell-Larkin-Ovchinnikov state in quasi-one-dimensional superconductors Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue (down) 22 Pages 224506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the quasiclassical formalism, we determine the low-temperature phase diagram of a quasi-one-dimensional superconductor, taking into account the interchain Josephson coupling and the paramagnetic spin splitting. We show that the anisotropy of the onset of superconductivity changes in the FFLO state as compared with the conventional superconducting phase. It can result in anomalous peaks in the field-direction dependence of the upper critical field when the magnetic field length equals to the FFLO period. This regime is characterized by the lock-in effect of the FFLO modulation wave vector, which is governed by the magnetic length. Furthermore, in the FFLO phase, the anisotropy of the upper critical field is inverted at T-1(**) = 0.5T(c0), where the orbital anisotropy disappears. We suggest that an experimental study of the anisotropy of the upper critical field can provide very reach information about the parameters of the FFLO phase in quasi-1D samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336975000005 Publication Date 2014-06-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access  
  Notes Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:117749 Serial 2569  
Permanent link to this record
 

 
Author Maignan, A.; Martin, C.; Van Tendeloo, G.; Hervieu, M.; Raveau, B. url  doi
openurl 
  Title Size mismatch : a crucial factor for generating a spin-glass insulator in manganites Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 60 Issue (down) 22 Pages 15214-15219  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Thr structural, electronic, and magnetic properties of the highly mismatched perovskite oxides, Th(0.35)A(0.65)MnO(3), where Ais for the alkaline earth divalent cations (Ca, Ba, Sr), which are all characterized by the same large tolerance factor (t=0.934), have been investigated by using electron microscopy, electrical resistivity, magnetic susceptibility, and magnetization. It is clearly established that a transition from ferromagnetic metallic towards spin-glass insulator samples is induced as the A-site cationic size mismatch is increased. Moreover, the magnetoresistance (MR) properties of these manganites are strongly reduced for the spin-glass insulators, demonstrating that the A-sire cationic disorder is detrimental for the colossal MR properties. Based on these results, a new electronic and magnetic diagram is established that shows that the A-site disorder, rather than the A-site average cationic size (or t) is the relevant factor for generating spin-glass insulating manganites. [S0163-1829(99)01746-4].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000084631600039 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 75 Open Access  
  Notes Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:104280 Serial 3038  
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Superconducting transition temperature of Pb nanofilms : impact of thickness-dependent oscillations of the phonon-mediated electron-electron coupling Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue (down) 22 Pages 224517-224517,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract To date, several experimental groups reported measurements of the thickness dependence of T-c of atomically uniform single-crystalline Pb nanofilms. The reported amplitude of the T-c oscillations varies significantly from one experiment to another. Here we propose that the reason for this unresolved issue is an interplay of the quantum-size variations in the single-electron density of states with thickness-dependent oscillations in the phonon-mediated electron-electron coupling. Such oscillations in the coupling depend on the substrate material, the quality of the interface, the protection cover, and other details of the fabrication process, changing from one experiment to another. This explains why the available data do not exhibit one-voice consistency about the amplitude of the T-c oscillations. Our analyses are based on a numerical solution of the Bogoliubov-de Gennes equations for a superconducting slab.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305251300006 Publication Date 2012-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:99076 Serial 3368  
Permanent link to this record
 

 
Author Pogosov, W.V.; Misko, V.R. url  doi
openurl 
  Title Vortex quantum tunneling versus thermal activation in ultrathin superconducting nanoislands Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue (down) 22 Pages 224508-224508,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider two possible mechanisms for single-vortex fluctuative entry/exit through the surface barrier in ultrathin superconducting disk-shaped nanoislands made of Pb and consisting of just a few monoatomic layers, which can be fabricated using modern techniques. We estimate tunneling probabilities and establish criteria for the crossover between these two mechanisms depending on magnetic field and system sizes. For the case of vortex entry, quantum tunneling dominates on the major part of the temperature/flux phase diagram. For the case of vortex exit, thermal activation turns out to be more probable. This nontrivial result is due to the subtle balance between the barrier height and width, which determine rates of the thermal activation and quantum tunneling, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304856600003 Publication Date 2012-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). W. V. P. acknowledges numerous discussions with A. O. Sboychakov and the support from the Dynasty Foundation, the RFBR (Project No. 12-02-00339), and RFBR-CNRS programme (Project No. 12-02-91055). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98908 Serial 3882  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: