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Tuning of the spin-orbit interaction in a quantum dot by an in-plane magnetic field
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Using an exact-diagonalization approach we show that one- and two-electron InAs quantum dots exhibit an
avoided crossing in the energy spectra that is induced by the spin-orbit coupling in the presence of an in-plane
external magnetic field. The width of the avoided crossings depends strongly on the orientation of the magnetic
field, which reveals the intrinsic anisotropy of the spin-orbit-coupling interactions. We find that for specific
orientations of the magnetic field avoided crossings vanish. A value of this orientation can be used to extract
the ratio of the strength of Rashba and Dresselhaus interactions. The spin-orbit anisotropy effects for various
geometries and orientations of the confinement potential are discussed. Our analysis explains the physics behind
the recent measurements performed on a gated self-assembled quantum dot [S. Takahashi ef al., Phys. Rev. Lett.

104, 246801 (2010)].
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I. INTRODUCTION

Over the past decade there has been a growing interest in
the study of the spin-orbit (SO) interaction in semiconductor
low-dimensional systems motivated by the possibility of
coherent spin manipulation.'~'* The Hamiltonians describing
the SO coupling resulting from the inversion asymmetry of the
material (Dresselhaus'# coupling) or the specific structure of
the device (Rashba'® interaction) are not invariant with respect
to the rotation of the spin or the momentum operators sepa-
rately, and, consequently, spin-orbit-coupled systems posses
intrinsic anisotropic properties. This anisotropy has been
thoroughly studied for delocalized systems.*> In particular,
in transport experiments, the dependence of the conductance
of a narrow quantum wire on the direction of the external
magnetic field can be used to determine the reciprocal strengths
of the Rashba and Dresselhaus couplings.® The anisotropy
of the spin-orbit interaction is translated into an anisotropic
effective magnetic field’ for a moving electron modifying the
electron spin state. This effective magnetic field can be used
to perform rotations of spin and thus to construct quantum
gates® or a spin-field effect transistor.”!° Moreover, the spin-
orbit coupling is responsible for anisotropic corrections'! to
the spin swap in a two-qubit quantum gate'? because it results
in the precession of spin-packets tunneling between the two
quantum dots."?

For electrons localized in a quantum dot, the SO coupling
results in avoided crossings (AC) in the energy spectra'® and
spin relaxation!” mediated by phonons with a relaxation rate
dependent on the orientation of the external magnetic field.'3
The energetic effects of the SO interaction are usually weak.
Only recently SO-induced AC were experimentally measured
on quantum dots that were situated in gated nanowires ' and
gated self-assembled quantum dots.”! The latter experiment
studied changes of the width of AC for different orientations
of the magnetic field, which extended the previous studies that
were focused on a comparison of the spin-splittings for vertical
and in-plane alignment of a magnetic field >?* in circularly
symmetric confinement potentials.
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In the present work, we explain the physics underlying
the observations of Ref. 21. To the best of our knowledge,
the present paper explains for the first time the oscillatory
dependence of the width of AC on the direction of the in-plane
magnetic field. The latter turns out to be the consequence of
the influence of the individual SO couplings and the anisotropy
of the confinement potential. This conclusion is supported by
an exact three-dimensional calculation of the energy spectra
of one- and two-electron spin-orbit-coupled quantum dots.

We show that for quantum dots with a confinement
potential elongated in [100] direction for pure Rashba (or pure
Dresselhaus) coupling, the AC disappears when the magnetic
field is aligned along the short (or long) axis of the dot. We
show how this can be understood from the form of the SO
Hamiltonians and the approximate parity of the one-electron
wave functions. The dependence of the AC width on the
direction of the magnetic field turns to be a | sin ¢|-shaped
function, and when both couplings are present, this function
is shifted by an amount that depends on the relative strength
of both interactions. This shift is affected by the orientation of
the dot within the [001] plane due to the SO bulk-induced
anisotropy (Dresselhaus term). For completeness, we also
study the influence of the dot shape. We show that for a square-
based quantum dot the anisotropic dependence of the AC width
is only observed when both couplings are present.”? Moreover,
we show that for increased height of the dot, the orbital effect of
the magnetic field modifies the energy spectrum, but the shape
of the dependence of the anticrossing width on the direction
of the in-plane magnetic field remains unaltered.

The present work is organized as follows: we start with an
outline of our theoretical approach in Sec. II. In Sec. III, we
present our numerical results starting from the single-electron
case, which provides us with a physical insight of the reasons
for the SO-coupling anisotropy. We continue by studying
different orientations and geometries of the dot, and we end
the section with the two-electron case that allows for a direct
comparison with the recent experimental data of Ref. 21. We
end with a concluding discussion in Sec. IV and a summary in
Sec. V.
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II. THEORY
A. Model

Our aim is to calculate the energy spectra of one and two
electrons confined in a three-dimensional quantum dot in the
presence of SO coupling and a magnetic field oriented within
the quantum-dot plane. The effect of the spin-orbit coupling on
the energy is very small, requiring a very high numerical pre-
cision when evaluating the energy spectrum. We assume that
the quantum dot is cuboid in shape and that the confinement
potential is separable, namely, V(r) = Vi(x) + Vy(y) + V.(2).
Moreover, we assume that the one-dimensional confinement
potentials V,, V,, and V, can be described by an infinite
quantum-well model. This is a reasonable approximation for
not too small quantum dots. Under these assumptions one
can construct a sufficiently precise solver for the two-electron
problem. We consider a quantum dot with a varied in-plane
orientation with respect to the crystal host. The z axis is taken
along the [001] crystal direction, which is also the vertical axis
of the dot. The orientation of the dot is described by a rotation
of the x and y directions (which are the axes of the dot) with
respect to the [100] and [010] crystal directions. The outline
of our quantum dot and the coordinate system used is depicted
in Fig. 1.

B. Method

We employ the effective mass approximation with a single-
electron Hamiltonian of the form

'y 1
h = pyes + V) (1+ EgpLBBO' + Hpia + Hsia, (1)

where k = —iV + eA /R, 1 s the identity matrix, V (r) defines
the confining potential, and Hgja and Hgpa are the spin-orbit-
coupling Hamiltonians. The x, y, and z directions are taken
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FIG. 1. (Color online) Schematics of the quantum dot system
with the used coordinate system fixed to the quantum dot. The
crystallographic directions of the InAs host lattice are also indicated
together with the direction of the in-plane magnetic field.
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along the axes of the dot. But notice that the SO-interaction
Hamiltonians are defined in a coordinate system with axes
parallel to the [100], [010], and [001], which we denote with
x', ¥, and z. Both coordinate systems are transformed into
each other by an in-plane rotation by an angle 9.

We introduce the Rashba coupling with Hamiltonian,

Hgip = aV'V - (o’ x k), 2

where « defines the coupling strength. For infinite-quantum-
well confinement the term V'V within the dot is equal to
the external electric field. We neglect the influence of the in-
plane component of the electric field>* and obtain the Rashba
Hamiltonian in the form

aVv
Hgia = aa_z(ax’ky’ - O-y’kx’)- 3

Thus the electric field is in the z direction, which is incorpo-

rated by taking a nonzero slope of the bottom of V,(z).
Inversion asymmetry of the crystal lattice results in a

Dresselhaus SO coupling that is described by the Hamiltonian

Hpia = y[owke (k2 = k3) + ayky (k7 — &2)
ok (k2 — k2)]1,

where y is the coupling constant.

“

The coordinate system used for the SO coupling can be
transformed into the coordinate system used for the quantum
dot through the transformation:

x' =xcosf — ysiné,
S 5)
y' =xsinf + ycos9,

which applies both to the Pauli matrices o and the coordinates
of the momentum operator.

We include an in-plane magnetic field of orientation
B = B(cos ¢, sin ¢,0), which is described by the gauge A =
B(zsin¢,0,y cos ¢). The magnetic field vector, B, for ¢ =0
is oriented along the x direction (see Fig. 1).

The one-electron Hamiltonian, Eq. (1), can be rewritten in
the form h = h, + h, + h; + hy,, where

n? 92
he = =5 o+ Val), ©6)
h2 2 6232 5 5
= oy T VO F gy eeste ()
h =—i3—2+V(z)+e2 2zzsin2¢ (8)
‘ 2m* 972 ¢ 2m* ’

are spin-independent parts separable in the x, y, and z
directions, and
iheB

m*

a a
hps = zsingg— + ycos¢p—
ox 0z

©))

1 .
+§gﬂbB[0x cos ¢ + o, sin @] + Hgia + Hpia
is the nonseparable part that contains the spin-dependent terms.

The eigenenergies and the eigenvectors, ¥ (x), ¥,(y), and
Y.(z), of the Hamiltonians, A, h, and h,, are calculated
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separately on an one-dimensional mesh of Nip = 1000 points.
In a next step, we diagonalize h,s in a basis of products
of the eigenstates, ¥,.(x), ¥,(y), and ¥ .(z), resulting in
three—dimensional spin-orbitals ¥ (r,o). We typically take
N, = N, =20 and N; = 10 one-dimensional eigenstates (we
assumed R, < R.,R,), which, including the degeneracy of
the spin, gives a basis consisting of 8000 elements that results
in an accuracy better than 5 peV.

We solve the two-electron problem as described by the
Hamiltonian

2

H=h+h+ ——— (10)
47‘[880|1‘1 — l’2|
using the configuration-interaction approach. In our numerical

calculation, we take the dielectric constant & = 14.6 for InAs.
The Hamiltonian in Eq. (10) is diagonalized in a basis
constructed of antisymmetrized single-electron spin-orbitals

Y(r,0),

Z Z [Yi (DY) — ¥y, (D]. (A1)

i=1 j=i+l

=5

where 1 and 2 are the spatial (r) and spin (o) coordinates of

the corresponding electron. The electron-electron interaction
matrix element requires the calculation of integrals of the form

2

[Yi(r) Y (r2))
e Vim)yu(ry)

dey e|ry — |

1
glr; — 1|
=e/d3r11/f,~*(l'1)¢k(l'1)/d3r2

(1/& )Y )| ———

—e / P eV ED V(). (12)

A direct calculation of these six dimensional integrals requires
an enormous numerical cost. Therefore, we use a method® in
which the innermost integral is attributed to an electric poten-
tial, V;;(r), originating from an electric charge distribution,
w;f(rz)lﬂl(rz). We calculate the electric potential by solving
the Poisson equation V> Vi) = —e/(aao)w]’f(rl)t/f,(rl) with
the boundary condition

e
Vii(ry) = Ime /d3r1
0

where r;, lays within the boundary of the the computational

Y)Y (ry)

elry —rq|

, 13)

box. The Poisson equation is solved on a grid that covers the
dot area. The calculation accuracy is carefully monitored®
and a configuration-interaction calculation convergence better
than 10 peV is reached for n = 20.

C. Parameters

The bulk of our results presented in the following sections
are obtained for the parameters described below. In the
experiment of Ref. 21, an anisotropic InAs self-organized
quantum dot (SOQD) grown on a [001] GaAs substrate is
studied with a confinement potential that is elongated due to
the source and drain electrodes placed above the dot. The
orientation of the dot with respect to the in-plane crystal
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directions is not well resolved and in the present work, this
is taken as an additional parameter that is studied. We take
R, =100 nm as the long and R, = 60 nm as the short size
of the dot.”! We take R, = 10 nm as a reasonable estimate of
the dot height (note that the SOQD has a nominal pyramidal
shape?! with height 20 nm, but our model is limited to a
potential with a rectangular shape of vertical cross section).
R, influences the effective strength of the Dresselhaus-
coupling constant and the orbital effects of the in-plane
magnetic field. Results for R, > 10 nm are also discussed
below.

For the purpose of the present study, it is important to
notice that the electric field in the growth direction defines the
strength of the Rashba coupling. The electric field is influenced
by the potential profile within the dot,?” the Schottky barrier
at the dot-electrode interface, surface charges, and the applied
potentials.>* The electrostatics of the actual device is complex
and its complete description is out of the scope of the present
work. Nevertheless, we are able to estimate the external
electric field present in the system by considering the stability
diagram and the width of the systems.”® We estimated the
maximal value of the external electric field to be of order
—30 kV/cm, for which the electrons are still present in the
dot.”” From the gate voltage, V, = —0.4 V, of two-electron
spectroscopy, we estimated F, = —13.6 kV/cm, and this value
is used in our numerical calculation. Finally, in this paper
we indicate that the ratio of the Rashba-coupling strength
(that is proportional to F;) to the strength of the Dresselhaus
coupling can be extracted from the experimentally measured
orientation of the magnetic field for which the SO-induced AC
vanishes.

We take the SO coupling parameters as @ = 1.1 nm?, from
Ref. 30, for the Rashba coupling and y = 26.9 meV nm?, from
Ref. 31, for the Dresselhaus coupling constant. The material
parameters for InAs are adopted from Ref. 32, with values
m* =0.026 and g = —17.5.

III. RESULTS
A. Without SO coupling

We consider first a dot aligned such that the x axis is
oriented along [100] (y axis along [010]), namely, 8 = 0.
The energy spectrum obtained in the absence of the SO
coupling (we take « = y = 0) for a single-electron anisotropic
quantum dot is presented in Fig. 2 by the black solid
curves. In the absence of the magnetic field, the ground state
is doubly degenerate with respect to spin and the spatial
wave function is of even symmetry with respect to plane
inversions: w'(X,y,Z) = w(_xvyvzl I/f(X,y,Z) = I/f(X, - y,Z)’
and Y (x,y,z) = ¥(x,y, — z). We denote the state of even
symmetry with respect to all inversions by [v,). The first
excited state is a spin-doublet with wave functions meeting the
symmetry conditions: ¥ (x,y,z) = =¥ (—x,y,z), ¥(x,y,2) =
Yv(x, —y,z), and ¥ (x,y,z) = ¥(x,y, — z). We will refer to
this state as |W_). The nonzero magnetic field lifts the
spin-degeneracy splitting of the states of the same parity by the
Zeeman energy. The energy levels depicted by the black lines
in Fig. 2 are obtained regardless of the ¢ value in spite of the
lateral anisotropy of the dot. Due to the small R, value and the
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FIG. 2. (Color online) The black solid curves represent the one-
electron-energy spectrum obtained without spin-orbit coupling for
the in-plane magnetic field, regardless of the ¢ value. The red dashed
curves are the energy levels when only Dresselhaus coupling with
y = 26.9 meV nm? is included with the magnetic field aligned along
the y direction (¢ = 90°). The inset shows a zoom-in view of the
energy levels in the vicinity of the anticrossing.

in-plane alignment of B, no orbital effects of the magnetic field
are observed (the influence of the height of the dot is studied in
Sec. IIIF).

Generally, in the presence of an in-plane magnetic field,
the Hamiltonian in Eq. (1), even without SO interaction,
does not commute with the plane-inversion operators P, and
P, [defined as Py f(x,y,z) = f(—x,y,z) and P, f(x,y,z) =
f(x, —y,z)]. However, due to the insignificance of the
orbital effect of the magnetic field for this flat quantum
dot, the parity with respect to reflection through the x = 0
and y = 0 plains is approximately preserved (with (P,) and
(Py) above 0.97) even for nonzero B. For the following
discussion, we denote the four lowest-energy states for a small
magnetic field aligned parallel to the y direction as [W(4 1)),
(Wit ) W ), and |W_ 1)) with corresponding energies
Eq 1y, E.y), E— 1), and E_ ), where the arrow denotes
the spin state aligned parallel (1) or antiparallel (|) to the
magnetic-field vector.

B. Single type of SO coupling

Inclusion of the SO interaction lifts the spin polarization
of the states and changes the crossing observed between the
energy levels of [W(y |)) and |¥(_ 4)) around B = 4.25 T into
an anticrossing. The inset of Fig. 2 shows the anticrossing
energy levels for ¢ = 90° (B parallel to the y axis) represented
by the red curves when only Dresselhaus coupling with
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FIG. 3. (Color online) The energy levels near the anticrossing for
pure Dresselhaus (a) and pure Rashba (b) couplings for different B
orientations. The black crosses are the results from a diagonalization
of the matrix in Eq. (22) and the red crosses the results of
diagonalization of Eq. (19). The magnetic field is oriented along
the x direction (¢ = 0) for the black symbols and curves and along
the y direction (¢ = 90°) for the red symbols and curves.

y = 26.9 meV nm? is included. We denote the minimal energy
difference between the anticrossing levels as Eac. For the
applied parameters, we obtain Exc = 146 peV. Outside the
anticrossing the SO interaction does not modify the energy
spectrum in a noticeable way, i.e., the black and red curves
approximately coincide.

In the presence of the SO coupling, the anticrossing energy
levels depend on the orientation of the magnetic field. In
Figs. 3(a) and 3(b), we plot the energy levels obtained for
pure Dresselhaus and pure Rashba interaction, respectively,
for three different ¢ values. In both cases, clear dependence
of the anticrossing width, Esc, is observed with respect to the
B orientation. For pure Dresselhaus coupling the anticrossing
is the widest when the magnetic-field vector is perpendicular
to the y direction (¢ = 90°) [the red curve in Fig. 3(a)]. When
the field is aligned along the x direction (¢ = 0), the mixing
between levels vanishes [the black curve in Fig. 3(a)] and
there is crossing of the levels. With pure Rashba coupling the
dependence is opposite; the anticrossing vanishes when B is
aligned along y, and Eac is largest when B is aligned along x.

The direction of the magnetic field for which the mixing
between the states disappears can be inferred from the
analytic form of the SO Hamiltonians utilizing the approximate
symmetries of the wave functions of confined electron. Let us
first inspect the case of pure Dresselhaus coupling and remind
that for & = 0 the Hamiltonian in Eq. (4) has the same form in
the x, y, and z coordinate system. Averaging the Hamiltonian
in Eq. (4) over the z direction one obtains

Hin, = y(k2)locks — oyky] + v [oykyk; — ock.k; ] 4
+yo (k) (ks — k7).
The second term is the so-called cubic Dresselhaus term,

which is negligible as long as the height is much smaller than
the lateral size of the dot (i.e., until the value of (k7) or (k)

becomes comparable with (kzz)). For an infinite-quantum-well
ground-state wave function in the z direction the last term in
Eq. (14) vanishes®® and

y?P =y(k}) = y(/R.). (15)
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The simplified Dresselhaus Hamiltonian takes now the
following form:

Hgp, = y™P(oky — ayky). (16)

E¢rp) + 7P (W plowke — ayky W p))
YW plocke — o3k, Wit )

The states |V, )) and |W_ 4)) are separable into an orbital
and spin part. Due to the action of the Pauli matrices on the

states with a definite spin one gets I

Ey) — v (Wi ployky | Wi )
YW ploke Wi )

For the magnetic-field vector aligned parallel to the y direction,
the components of the momentum-operator vector are k, =
—i% +eBz, ky, = —iaiy, and k, = —iaiz. Due to parity one
obtains
( Eq.))
. 3
=iy (W ploegs Wi )) E1
(19)

The nonvanishing off-diagonal matrix elements mix the states
|W(t.,)) and W 1)), which results in an avoided crossing
between the corresponding energy levels. By the red crosses

(E(+,«) + 7P (Wi olovks — oyky [Wis o)
J/ZD(‘I"(f,%)w‘xkx - Gyk)'|\ll(+,<—)>
Due to spin one gets

Eq o)+ 7P (Wi, olocke Wit o)
_)/2D<

Vi o)loyky Wit )

For the magnetic field aligned along the x direction the compo-

nents of the momentum operator vector are k, = —i %, ky =
—ia%_, and k, = —ia% + eBy. All integrals in Eq. (21) vanish

due to the parity of the states and we finally obtain

Eqe 0
0 Ec—)

(22)

—iy2D<w<+,¢>|ox%|\1«-,m>)

PHYSICAL REVIEW B 83, 245324 (2011)

Let us now consider the case of a magnetic field aligned
parallel to the y direction and inspect matrix elements of the
HZP, Hamiltonian in a basis that include only the low-energy
states |W, ) and |W_4) that exhibit an energy crossing
without SO coupling. The matrix is given by

Y22 (W plocky — oyky W 1) an
Ep+ 7P (Ve plocke — ayky W p)
|
Y2 (Wep plock W 1)) as)
E 1y — (Y ployky (W 1)

in Fig. 3 we plot numerically calculated eigenvalues of the
matrix in Eq. (19). Note that the crosses and lines are in
perfect agreement, proving that for our dot, with the assumed
geometry, the HZD, is, in fact, a good approximation to Hpia.

Let us now consider the case of a magnetic field aligned
parallel to the x (¢ = 0) direction. In this case, the low-energy
states, for which energy levels cross without SO coupling, are
W+, ) and |W_ _,), where the arrow denotes the electron
spin aligned parallel (— ) and antiparallel (<—) to the magnetic-
field vector, B. The matrix of the Hé& Hamiltonian in this
two-state basis is

YW ok, — ok, W ) ) 0)
E(7,~>) + y2D<“I,(7,~>)|O'xkx - O'yky|\p(7,~>))

_)/2D<\IJ(+!<_)|O'yky|‘IJ(_'_>)) (21)
Ec o)+ v (W ok W )

The matrix in Eq. (22) consists only of diagonal elements
that are equal to the energy of the basis states. Thus
the |W «)) and |W(_ _,)) states are not mixed by the
Dresselhaus coupling in this configuration and there is no
anticrossing of energy levels. We plot the eigenvalues of the
matrix in Eq. (22) in Fig. 3(a) (represented by the black
crosses).
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FIG. 4. (Color online) The spin-orbit-induced anticrossing width,
E ¢, for pure Dresselhaus (blue dashed curve), pure Rashba (green
dotted curve), and both (red solid line) interactions present. Fory = 0
the magnetic field is B = 4.268 T, for the two other cases, B =
4277 T.

A similar analysis can be made for the Rashba Hamiltonian
given by Eq. (2). Due to the fact that the analytic form
of both Hamiltonians Hsja and HB%E\ is similar, i.e., only
the k, and k, are swapped (and the coupling constants are
different), it is clear that the dependence of AC width on the
magnetic-field direction is reversed, i.e., the mixing between
the states vanishes when the magnetic filed is aligned along
the y direction.

C. Anisotropy in the presence of both SO couplings

Let us now consider the effect of both Dresselhaus and
Rashba couplings. Figure 4 presents the avoided-crossing
energy, Eac, as a function of the angle ¢ between the x axis
and the magnetic field. For pure Dresselhaus (the blue dashed
curve in Fig. 4) and pure Rashba (the green dotted curve in
Fig. 4) coupling the extrema are shifted by 90°, in agreement
with our previous analysis. The curves in Fig. 4 are accurately
described by |sin(¢ — ¢ac)|, which is the same functional
form as the one observed in the experimental work of Ref. 21 in
Fig. 3(f) (where the behavior was described by | cos(¢p — ¢o)|).
Moreover, the maximal value of Esc is of the same order
as the magnitude observed experimentally. When both SO
interactions are present, the dependence of the anticrossing
width is plotted in Fig. 4 by the red curve. The shape of the
latter is the same as for pure Dresselhaus or Rashba coupling,
with pronounced minima where Eac is equal to zero. When
the magnetic field is aligned along the x or y direction, the Eac
equals to the value for pure SO coupling. Note that the maxima
are larger than the ones observed for pure couplings and its
positions are now shifted and are no longer aligned along the
axes of the dot. For @ = 1.1 nm? and y = 26.9 meV nm?, the
shift of the dependence is ¢pac = 27.8°. The latter value can
be understood as follows. Let us denote the direction of the
magnetic field for which the AC vanishes for pure Dresselhaus
and pure Rashba couplings by the vectors dgja and dgja,

PHYSICAL REVIEW B 83, 245324 (2011)

respectively. Next, we estimate the strength of each interaction.
The maximal induced anticrossing width is EEICA = 146 pueV
and Eilé* = 77 neV for Dresselhaus and Rashba coupling,
respectively. Thus the Dresselhaus interaction is 1.9 times
larger than the Rashba coupling, which makes the vector
dpra 1.9 times longer than dgpa. Let us denote the magnetic
field for which the effect of both spin-orbit couplings is zero
by the vector dpjatsia = dpia + dsia. It is easy to show
that this vector forms an angle ¢ = 27.8° with the x axis.
Thus when both couplings are present, the effect of the total
spin-orbit coupling disappears when the external magnetic
field is directed along this vector. In fact, that is exactly what
we observe in our calculation (see position of the minimum
of the dependence depicted with the red curve in Fig. 4). The
formula | sin(¢p — ¢ac)| reflects the fact that the dependency
obtained for both SO couplings present can be considered as
an absolute value of a sum of the dependencies obtained for
pure SO couplings, described by — cos ¢ and sin ¢ for pure
Rashba and Dresselhaus couplings, respectively.

D. Dependence on the quantum dot orientation

Different in-plane orientations of the anisotropic potential
of the dot with respect to the crystal host where the long axis
of the dot forms an angle 6 with [100] are now considered. In
Figs. 5(a)-5(c), we present the size of the AC as a function of
the direction of the rotated magnetic field (note that the ¢ angle
is defined as an angle between the magnetic-field vector and
the long axis of the dot) for six different orientations of the dot.
The dotted curves in Fig. 5(a) represent the result obtained for
pure Rashba coupling. We observe that the Eac dependencies
are exactly the same as in Fig. 4 regardless of the dot alignment.
The minimum of the Eac does not change its position and the
energy levels are not affected by the orientation of the dot.
With the green diamonds we show, in Fig. 5(d), the ¢ac angle
for which the Eac = 0 as a function of the angle 6.

For pure Dresselhaus coupling, the Eac dependencies
[depicted by dashed curves in Fig. 5(b)] are shifted as the
dot is rotated. For the case studied in the previous subsections

¢ 020,=0 m a=0,y20 e 00,0

Mo ™ T ——— T — 180
I @y b \R OF
0 4 L |
50 R N A PO VU
o) e —  F ,
0 E

Epc [1eV] Exc[ueV] E,g[ueV]

e ‘ ‘ LN
180 0 45 920 135 180

o 45 90 135
¢ [deg]

FIG. 5. (Color online) Avoided-crossing-energy width as a func-
tion of the direction (¢) for different orientations of the dot with
6 = 10° (black curves), 30° (blue curves), 45° (green curves), 60°
(violet curves), and 80° (red curves). Results are shown for (a) pure
Rashba, (b) pure Dresselhaus and (c) for both couplings present. (d)
The value of the magnetic-field angle, @ac, at which Exc =0 as
a function of the angle 6 for pure Rashba (green diamonds), pure
Dresselhaus (black squares), and both couplings present (red dots).
The red curves are obtained from Eq. (23).
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(where 0 = 0), the AC vanished when the magnetic field was
aligned along the long axis of the dot (¢ac = 0). When the dot
is oriented so that & = 45° (long axis oriented along the [110]
direction), the anticrossing vanishes when the magnetic field
is aligned along the short axis of the dot [see green dashed
curve in Fig. 5(b)]. For ¢ac = 90°, the same behavior was
observed as in pure Rashba case. We plot in Fig. 5(d) the angle
¢ac for pure Dresselhaus coupling (the black squares) for
different orientations of the dot. We find that the angle exhibits
a ¢ac = —26 dependence [black solid lines in Fig. 5(d)].
Moreover, we observe that for both cases, when only a single
type of SO coupling is present the maximal value of the AC
width remains unchanged.

InFig. 5(c), we show the results when both SO couplings are
present (the solid curves). The maximal values of Eac and the
angle ¢ac for which the minima are observed change when the
dot orientation is varied. Both facts can be understood similarly
as discussed in Sec. IIIC. We can justify the ¢ac values
considering the orientation of the dpa+sia = dpia + dsia
vector. But now the orientation of the dgjp vector, assigned
to the Dresselhaus coupling, is changed as the dot is rotated,
i.e., dgja forms an angle —26 with the long axis of the dot.
The rotation of the dot does not change the maximal value of
Eac when only a single type of SO coupling is present, and
the previously derived value for the relative strength of both
couplings remains unchanged (and thus also the ratio of the
length of the dgj4 and dgps vectors). We take 1 as the length of
dga and 1.9 as the length of dgja. In Fig. 6, we schematically
present the considered vectors and the angles they form with
the axes of the dot. The angle between the dgja.s1a Vector (see
red arrow in Fig. 6) and the x direction can be easily calculated
1 + 1.9 sin( 29)i| (23)

= t
$ac = arctan [ 1.9¢os(26)

y [010]
g Pac
SIAH
T AL T
S X

R, \\LL’ 9)

R \
100
20 dg, 1001

FIG. 6. (Color online) Schematics of the method of calculation
of the angle ¢ac for which the the AC vanishes when both SO
couplings are present and the quantum dot (dashed rectangle) is
oriented with its long axis forming an angle 6 with the [100] direction.
The vectors depict the directions of B for which Eac = 0 for pure
Rashba coupling (green arrow), pure Dresselhaus coupling (blue
arrow), and both couplings present (red arrow). The coordinate system
connected with the dot axes and the crystallographic directions is also
shown.
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With the red dots in Fig. 5(d) we plot the angle ¢ac
obtained from our numerical calculation in the presence of
both couplings for different orientations of the dot, which
agree very well with the values (red curves) obtained from
Eq. (23). Along with the changes of the orientation, the length
of the dgra+s1a vector is changed, which results in the different
values of the maximal AC width observed in Fig. 5(c).

A systematic study of the value of the ¢5c angle dependence
on the SO coupling strengths and the dot alignment is given in
Sec. III G where the two-electron case is studied.

E. Quantum dot with a square base

The above discussion was for a lateral anisotropic quantum
dot. Now we study the case of a dot with a symmetrical
base (we assume R, = R, = 100 nm) and 6 =0, and we
investigate if this has an influence on the anisotropy induced
by the SO coupling. In the absence of the SO interaction and a
magnetic field, the first-excited state is spin-doubly degenerate
due to parity. The magnetic field lifts the spin degeneracy but
the degeneracy due to parity is not removed. The inclusion of
a single type of SO interaction induces a repulsion between
the energy levels of the ground-state and one of the states
from the parity doublet [see the red dashed curves in Fig. 7(a)
for the case of pure Dresselhaus coupling and Fig. 7(b) for pure
Rashba coupling]. The same configuration of energy levels is
obtained regardless of the angle ¢. In both Figs. 7(a) and 7(b),
the black (¢ = 0), blue (¢ = 45°), yellow dotted (¢ = 22.5°),
and red dashed curves (¢ = 90°) coincide. The dependence
of the energy levels on the magnetic-field orientation starts to
appear already when the dot is elongated by a factor of 1%.

However, when both Rashba and Dresselhaus interactions
are present the AC width varies with the rotation of the
magnetic field, see Figs. 7(c) and 7(d). We observe that the
anisotropy is most pronounced when « is increased by a
factor of two—the case when both couplings have comparable
strengths.>>* In such a case, when the magnetic field is
directed along the diagonal, i.e., ¢ = 45° [see blue curves

150

149.5

E [meV]

149
150

149.5

E [meV]

149
3.
BIT]

BI[T]

FIG. 7. (Color online) Energy levels of one-electron quantum
dot with a square base with R, = R, = 100 nm. The black curves
correspond to ¢ = 0, the blue curves to ¢ = 45°, yellow dotted to
¢ = 22.5°, and the red dashed curves to ¢ =90°. In (c) and (d),
we additionally plot the energy levels obtained for ¢ = 135° with
green dotted curves. (a) Pure Dresselhaus coupling, (b) pure Rashba
interaction, (c) both SO interactions are present, and (d) both SO
interactions are present with « increased by a factor of two.
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in Fig. 7(d)] the anticrossing between the energy levels of the
ground state and both states from the parity doubled becomes
very small.

F. Larger dot height

Let us now return to the case of the quantum dot with
a rectangular base with R, = 100 nm and R, = 60 nm. For
the previous dot with R, = 10 nm no orbital effects from
the magnetic field on the energy spectrum were observed
[see the black curves in Fig. 2]. However, this is no longer
true for larger R, values. This can be seen from Figs. 8(a)
and 8(b) where we plot the energy levels of a quantum dot
with height R, = 20 nm and R, = 40 nm, respectively, in the
presence of SO coupling (with both SO interactions present).
The energy levels depend on the magnetic-field orientation
even outside the anticrossing region. This is due to the
elongation of the confinement potential in the x direction.
The SO-induced anticrossing is shifted to lower magnetic
fields as the value of the angle ¢ becomes closer to ¢ = 90°
[this is analogous to the experimental observation—compare
with Fig. S7(a) from Ref. 28]. We calculated the anticrossing
widths for different values of ¢ and we plot them as red dots
in the insets of Fig. 8. Then we fitted the points with the
function A| sin(¢p — ¢ac)|, where A = 86 peV and pac = 65°
for R, =20 nm and A = 77 ueV and ¢ac = 82° for R, =
40 nm. Notice the agreement between the fitted curve and the
data points. From this fact we conclude that in spite of the
presence of orbital effects, the previously found dependence
of the anticrossing width on the angle ¢ still holds, but
with modified A and ¢ac values. The latter fact can be at-
tributed to the reduction of the Dresselhaus coupling strength.
This can be accounted for by considering the Dresselhaus
coupling Hamiltonian in Eq. (16), in which the coupling
strength decreases as (1/R.)?. In the calculation performed
for pure Dresselhaus interaction, we obtain the maximal Eac
values: 146, 37, and 11 pueV for R, = 10, 20, and 40 nm,
respectively-the obtained Eac values decrease approximately
as (1/R,)? with the largest discrepancy for large R. values (i.e.,
when the approximation of the coupling strength by Eq. (15)
becomes inaccurate). The decrease of the Dresselhaus-
coupling strength with increasing height of the dot results
in a shift of the E ¢ dependency on ¢ toward the one obtained
for a flat quantum-dot with only Rashba interaction present
compare the black curve in the inset of Fig. 8(b) with the
green dotted curve in Fig. 4—aac becomes close to 90°. Also
the maximal E ac value becomes closer to the one obtained for
pure Rashba coupling—A tends to 77 peV with increasing R,.
The shift in the ¢ac value [see insets of Figs. 8(a) and 8(b)]
can be understood from the relative strengths of the Rashba
and Dresselhaus couplings as discussed in Sec. IITC.

G. Two-electron results

In a recent experiment [21], the ground state and excited
states were measured provided that the latter entered into a
finite but narrow transport window determined by the voltages
applied to the source and drain electrodes. The avoided
crossings that appear for a single-electron in the excited part
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FIG. 8. (Color online) One-electron energy levels for a
rectangular-based quantum dot with (a) R, = 20 nm and (b) R, =
40 nm for ¢ = 0, 45°, and 90° plotted with the black solid, blue
solid, and red dashed curves, respectively. The red dots in the insets
of both plots present the anticrossing width, Ec obtained from the
energy spectrum for a given ¢ value; the black curves are the fitted
| sin(¢ — ¢ac)| dependencies.

of the spectrum, which we described above, were outside the
transport window.

In the two-electron regime and in the absence of both the
magnetic field and the SO interaction, the ground state is a
spin singlet and the first excited state is a spin triplet. Under
the presence of an external magnetic field the ground-state
singlet energy crosses the triplet energy. When we turn on the
SO coupling it induces an avoided crossing between the states
of opposite spin which was well resolved in the experiment
[21].

Similarly to the one-electron case, the SO coupling is
responsible for changes in the size of the anticrossing energy
when the orientation of the magnetic field is varied. Figure 9
presents the low-energy spectrum of the two-electron quantum
dot in the presence of both Rashba and Dresselhaus couplings
for a dot aligned with its long axis along the [100] direction
(6 = 0). In the inset, we plot the energy levels in the vicinity of
the AC. The anticrossing vanishes for exactly the same angle,
dac = 27.8°, as for the one-electron case discussed above (see
the green curves in the inset of Fig. 9).

In Fig. 10(a), we plot the angular dependence of the
anticrossing width, Eac, for pure Dresselhaus, pure Rashba,
and when both couplings are present by the blue dashed, green
dotted, and solid red curves, respectively. Notice that all three
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FIG. 9. (Color online) Two-electron energy spectrum in the
presence of both Rashba and Dresselhaus SO coupling for angles
¢ = 0 (black curves), 27.8° (green curves), 45° (blue curves), and
90° (red curves). The inset shows the energy levels in the vicinity of
the anticrossing. The results are obtained for 8 = 0.

dependencies have the same shape as for the case of the one
electron considered in Sec. III B (compare with Fig. 4), only
the maximal Eac values are about 1.5 times smaller.

As was presented in Sec. III C, for the anisotropic quantum
dot the angle ¢5c depends on the relative strength of both SO
interactions and the in-plane orientation of the dot (explained
in Sec. III D). On the other hand, the ¢ ¢ value can be measured
experimentally?! and the orientation of the quantum dot with
respect to the crystal directions can be obtained by inspecting
the facets of the dot. This opens the possibility to employ such a
measurement to evaluate the relative strength of the Rashba and
Dresselhaus couplings for a dot with a given orientation with
respect to the crystal host. Let us define the strength ratio of the
SO interactions as the ratio of the effective coupling constants
a* and y?P. The Rashba coupling strength denoted with o*
is calculated as o* = a[%] = —ua/e|F, and the Dresselhaus
coupling y2P is obtained from Eq. (15).

We previously derived the angle ¢ac for given relative
strength of the SO couplings for a given orientation of the
dot [see Eq. (23)]. Let us substitute the 1/1.9 value by * /P
in Eq. (23) from which we obtain
o* o le|F, RZ2

e = v 2
This function is shown in Fig. 10(b) by the solid lines for
different orientations of the quantum dot. With the black
symbols we mark the angle ¢ac obtained from our numerical
calculations for dots with different geometries (see Fig. 10
caption) with 8 = 0 for different SO coupling strengths. For
such a case, with 6 = 0 (the dot oriented with its long axis
along [100]) and pure Dresselhaus coupling (a*/y?P = 0)
we obtain ¢ac = 0. When the Rashba-coupling strength is

= cos(20)[tan(pac) — tan(—20)]. (24)
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FIG. 10. (Color online) (a) Width of the singlet-triplet avoided
crossing as a function of the angle ¢ for pure Dresselhaus coupling
(blue dashed curve), pure Rashba coupling (green dotted curve), and
for both couplings present (red solid curve). The inset shows the
experimental results (symbols) of Ref. 21 together with the results of
the present calculation (purple curve) with y = 29.58 meV nm® and
a = 4.731 nm?. The magnetic field is B = 2.211 T for pure Rashba
coupling and B = 2.209 T for all the other cases. The dot is aligned
with its long axis along [100], i.e., 8 = 0. (b) The ¢ac value for
different strength ratios of the Rashba and Dresselhaus couplings for
four different orientations of the dot. The symbols present the results
of our numerical calculation and the curves represent the analytical
result given by Eq. (24). The circles show the results obtained for
R, =60 nm and R, = 10 nm, the crosses for R, =30 nm and
R, =10 nm, the triangles for R, =20 nm and R, = 10 nm, and
the diamonds for Ry = 60 nm and R, = 20 nm. In all cases, R, is
100 nm.

increased, the points move toward the angle ¢ac = 90°
obtained for pure Rashba SO coupling. The green, red, and
blue symbols in Fig. 10(b) are the ¢ac values obtained from our
two-electron numerical calculation for different orientations of
the quantum dot.

In the above discussion, we assume that o = —«ale|F;
and Yy = yx?/ R? describe the strength of the spin-orbit
interactions. For the Rashba coupling, given by the Hamil-
tonian in Eq. (3) (i.e., when an electric field is only present
in the growth direction), the above a* expression is valid
regardless of the dot geometry. However, due to the fact that
y?P originates from the Hamiltonian in Eq. (14), it describes
the strength of the Dresselhaus coupling correctly only when
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TABLE 1. Calculated strength ratios of the SO couplings for
dac = 59° and different orientations of the dot.

2] Ol*/)/zD
0 1.66
40° 1.27
45¢° e
75° —0.94
90° —1.66

the cubic term, y[aykyki — kaxkf], is negligible, which is
the case when R,,R, > R; and the term with (k) is close to
zero, i.e., for a dot with limited height.** All the symbols in
Fig. 10(b) approximately coincide with the dependency given
by Eq. (24). A discrepancy is seen in the limit of a narrow dot
with R, = 20 nm (the triangles) and for increased height of
the dot for R, = 20 nm (diamond symbols). We conclude that
for anisotropic quantum dots with limited height the o* /3P
ratio is a good measure of the relative strength of the Rashba
and Dresselhaus spin-orbit couplings, which can be estimated
from the analytic expression in Eq. (24).

The experiment of Ref. 21 found ¢pac = 59°, and we can use
Eq. (24) to calculate the relative strength of the SO interactions.
However, as the orientation of the anisotropic potential of the
dot with respect to the crystal directions was not resolved in
the experiment we need to assume a value for 6. We take
6 = 0 and by matching the absolute value of the SO-coupling
constants (through the maximal value of Exc) we obtained
a*/y?P ~ 1.66 by fitting the experimentally measured values
for the AC width with our simulation results. In the inset
to Fig. 10(a), we plot our results (purple curve) for the SO-
coupling constants y = 29.58 meV nm?® and o = 4.731 nm?
together with the data points from Ref. 21. However, as the
relation between the crystal directions and the long axis of
the dot is not known, the fit only proves the validity of the
discussed process behind the anisotropy and not the exact
value of the ratio a*/y?P. Moreover, as the electrostatics of
the actual device is complex the presented result is not the
exact simulation of the experiment. Therefore, we present in
Table I the strength ratios for different orientations of the
dot. Note that Eq. (24) does not allow us to calculate the
relative strength of the couplings for a dot aligned with long
axis exactly along [110] or [110]. In such a configuration, for
pure Dresselhaus as well as for pure Rashba coupling the AC
vanishes for ¢pac = 90° [compare dotted curves in Fig. 5(a)
with green dotted curve in Fig. 5(b)] and because of that,
for both couplings present simultaneously the minimum of the
E ac dependence on ¢ is not shifted irrespective of the coupling
strength ratio.

IV. DISCUSSION

In the present paper we discussed the avoided crossings
of energy levels induced by the presence of different SO
couplings. Only for the case of a square-based quantum-dot
[see Figs. 7(a) and 7(b)] the dependence of AC width on
the magnetic-field direction was observed solely for both
couplings present with comparable strength. This result is
related to those of Ref. 23 where the spin-splitting of
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single-electron energy levels in strictly two-dimensional circu-
lar quantum dots in the presence of a small in-plane magnetic
field (before the crossings and avoided crossings appear)
was calculated. When the Dresselhaus- and Rashba-coupling
strengths are equal, a well-known high-symmetric case is
found, which is beneficial for many spintronic applications.>!
For that special case, the energy spectrum is not affected
by SO-interaction effects and the spin in the [110] direc-
tion is strictly defined. The Zeeman interaction lifts this
symmetry and results in a spectrum that depends on the
orientation of the magnetic field as discussed in Ref. 23.
Since for equal coupling strengths the spins in the [110]
direction are well defined, the Zeeman interaction for B
oriented along [110] does not produce any AC between
energy levels of spin-orthogonal states [see the blue curve in
Fig. 7(d)].

On the other hand, in the presence of a vertically oriented
magnetic field, the size of the Zeeman interaction induced
lifting of the symmetry depends on the in-plane orientation 3*
and also on the width® of the dot, which results in changes
of both the AC width and the effective g factor, which are
solely observed when both SO interactions are present with a
comparable strength. However, changing the dot orientation is
hardly achievable experimentally and therefore, in the present
work, we considered an anisotropy that can be probed by
changing the orientation of the magnetic field.

In the present work, we investigated the anisotropic de-
pendence of the avoided-crossing width that occurs even for a
single type of SO coupling [see Figs. 3(a) and 3(b)]. This effect
is strictly connected to both the elongation of the confinement
potential and the in-plane alignment of the magnetic field (see
the discussion in Sec. III B). The exact shape of the confine-
ment potential is not important for the studied phenomena,
which is a generic propriety of a spin-orbit-coupled quantum
dot. In our analysis, we indicated the trends that determined
the dependence of Eac on ¢, in particular, the dependence
on the dot geometry [for the dot with increased height and
for different lateral sizes of the dot the black symbols in
Fig. 10 still undergo the same analytical dependence Eq. (24)
in spite of the different geometries of the dot] or the orientation
of the quantum dot with respect to the crystallographic
directions (which influences the position of the minima of
Eac purely due to Dresselhaus coupling—see discussion in
Sec. III D).

The present study shows that for an elongated quantum dot
with pure Rashba coupling the anticrossing vanishes always
when the magnetic field is aligned along the short axis of the
dot [see the minima of the dotted curves in Figs. 4 and 5(a), and
10(a)]. Only the presence of Dresselhaus coupling can result
in a ¢gac value that is different from 90°. The magnetic-field
direction (¢pac = 59°) for which the anticrossing vanished in
the experiment of Ref. 21 suggests that both SO couplings are
present, contrary to the argumentation provided in Ref. 21.
The authors suggested that the Dresselhaus coupling would
not induce mixing between the two lowest-energy states due
to their well-defined and different values of the total angular
momentum J_ = L — § in a high magnetic field. However,
we found that due to the in-plane alignment of the magnetic
field*® the Dresselhaus coupling, in fact, induces avoided
crossings in the energy spectrum of a flat quantum dot [see
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Fig. 2] and leads also to a shift in the dependence of the AC
width on the magnetic-field direction [see Figs. 3, 5(a), 5(b),
and 8].

V. SUMMARY AND CONCLUSIONS

We presented a study of the energy spectrum of one and
two-electron spin-orbit-coupled three-dimensional quantum
dots in the presence of an external in-plane magnetic field.
We found that the size of the avoided crossings in the one-
and two-electron energy spectrum oscillates as a function of
the orientation of the magnetic field. The oscillatory behavior
could accurately be described by |sin(¢ — ¢ac)|, which
agrees with recent excited-state-spectroscopy measurements
performed on an InAs gated self-organized quantum dot.”!

For a quantum dot that is elongated in the [100] direction,
and when only a single type of SO coupling is present, the
avoided crossing vanishes for gac = 0 (¢pac = 90°),1.e., when
the magnetic field is aligned parallel to the long (short) axis
of the dot for Dresselhaus (Rashba) coupling. We explain
this behavior as a consequence of parity and spin-dependent
mixing of the states caused by the SO interaction. When both
couplings are present the ¢ac value varies between 0 and
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90° and the ratio of the relative strength of the interactions
follows a tan(¢ac) dependence. The change of the in-plane
dot orientation results in a change of ¢ac, which is observed
only when the Dresselhaus coupling is present. We show
that the experimentally measured ¢ac value?' along with
the knowledge of the orientation of the dot can be used to
determine the ratio of the strengths of the individual SO
interactions in the case of anisotropic quantum dots.
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