|
Record |
Links |
|
Author |
Pogosov, W.V.; Misko, V.R. |
|
|
Title |
Vortex quantum tunneling versus thermal activation in ultrathin superconducting nanoislands |
Type |
A1 Journal article |
|
Year |
2012 |
Publication |
Physical review : B : condensed matter and materials physics |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
85 |
Issue |
22 |
Pages |
224508-224508,5 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
We consider two possible mechanisms for single-vortex fluctuative entry/exit through the surface barrier in ultrathin superconducting disk-shaped nanoislands made of Pb and consisting of just a few monoatomic layers, which can be fabricated using modern techniques. We estimate tunneling probabilities and establish criteria for the crossover between these two mechanisms depending on magnetic field and system sizes. For the case of vortex entry, quantum tunneling dominates on the major part of the temperature/flux phase diagram. For the case of vortex exit, thermal activation turns out to be more probable. This nontrivial result is due to the subtle balance between the barrier height and width, which determine rates of the thermal activation and quantum tunneling, respectively. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000304856600003 |
Publication Date |
2012-06-07 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1098-0121;1550-235X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
2 |
Open Access |
|
|
|
Notes |
; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). W. V. P. acknowledges numerous discussions with A. O. Sboychakov and the support from the Dynasty Foundation, the RFBR (Project No. 12-02-00339), and RFBR-CNRS programme (Project No. 12-02-91055). ; |
Approved |
Most recent IF: 3.836; 2012 IF: 3.767 |
|
|
Call Number |
UA @ lucian @ c:irua:98908 |
Serial |
3882 |
|
Permanent link to this record |