toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arisnabarreta, N.; Hao, Y.; Jin, E.; Salame, A.; Muellen, K.; Robert, M.; Lazzaroni, R.; Van Aert, S.; Mali, K.S.; De Feyter, S. url  doi
openurl 
  Title Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO₂ reduction Type A1 Journal article
  Year 2024 Publication Advanced energy materials Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The reduction of carbon dioxide (CO2) using porphyrin-containing 2D covalent organic frameworks (2D-COFs) catalysts is widely explored nowadays. While these framework materials are normally fabricated as powders followed by their uncontrolled surface heterogenization or directly grown as thin films (thickness >200 nm), very little is known about the performance of substrate-supported single-layered (approximate to 0.5 nm thickness) 2D-COFs films (s2D-COFs) due to its highly challenging synthesis and characterization protocols. In this work, a fast and straightforward fabrication method of porphyrin-containing s2D-COFs is demonstrated, which allows their extensive high-resolution visualization via scanning tunneling microscopy (STM) in liquid conditions with the support of STM simulations. The as-prepared single-layered film is then employed as a cathode for the electrochemical reduction of CO2. Fe porphyrin-containing s2D-COF@graphite used as a single-layered heterogeneous catalyst provided moderate-to-high carbon monoxide selectivity (82%) and partial CO current density (5.1 mA cm(-2)). This work establishes the value of using single-layered films as heterogene ous catalysts and demonstrates the possibility of achieving high performance in CO2 reduction even with extremely low catalyst loadings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001177577200001 Publication Date 2024-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 27.8 Times cited Open Access  
  Notes N.A. acknowledges a postdoctoral fellowship from the Research Foundation- Flanders (FWO) via grant 12ZS623N. S.D.F. acknowledges support from FWO (G0A4120N, G0H2122N, G0A5U24N), KU Leuven Internal Funds (grants C14/18/06, C14/19/079, C14/23/090), European Union under the Horizon Europe grant 101046231 (FantastiCOF), and M-ERA.NET via FWO (G0K9822N). S.D.F., K.M., Y.H., R.L., and S.V.A. were thankful to the FWO and FNRS for the financial support through the EOS program (grant 30489208, 40007495). Research in Mons was also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif- CÉCI, and by the Walloon Region (ZENOBE and LUCIA Tier-1 supercomputers). E.J. appreciated the support from the Alexander von Humboldt Foundation, the Max Planck Society, the FLAG-ERA Grant OPERA by DFG 437130745, the National Natural Science Foundation of China (22288101), and the 111 Project (B17020). Partial financial support to M.R. from the Institut Universitaire de France (IUF) was warmly thanked. Approved Most recent IF: 27.8; 2024 IF: 16.721  
  Call Number UA @ admin @ c:irua:204856 Serial 9172  
Permanent link to this record
 

 
Author Arts, I.; Saniz, R.; Baldinozzi, G.; Leinders, G.; Verwerft, M.; Lamoen, D. pdf  url
doi  openurl
  Title Ab initio study of the adsorption of O, O2, H2O and H2O2 on UO2 surfaces using DFT+U and non-collinear magnetism Type A1 Journal Article
  Year 2024 Publication Journal of Nuclear Materials Abbreviated Journal Journal of Nuclear Materials  
  Volume 599 Issue (up) Pages 155249  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract In order to model correctly the corrosion of spent nuclear fuel under disposal conditions, it is important to understand its behavior in the presence of oxidants. To advance in this direction, we consider the oxidation of UO2. We investigate computationally the adsorption of various species on its three most stable surfaces: (111), (110), and (100), with emphasis on incorporating a full non-collinear PBE+U approach. Various species, namely O, O2, H2O and H2O2 are considered due to their relevance for the oxidation of UO2. The dissociation energy and an estimate for the dissociation barrier for O2 were obtained, using the preferred adsorption configurations of O and O2. The adsorption configurations for H2O in our study compare well with previous studies that used collinear approximations, both in terms of relative stability of configurations and bond lengths. Differences in adsorption energies were found, which may be important for reaction kinetics. Dissociative reactions in which the water molecule splits in hydrogen and hydroxyl occur only on one of the three surfaces. The hydrogen further reacts with a surface oxygen to also form a hydroxyl group. Not surprisingly, we find that H2O2 binds more strongly to the three surfaces than water (lower formation energy), and similar to H2O adsorption, dissociative reactions may occur. The dissociated hydrogen reacts with a surface oxygen to form a hydroxyl group and the hydroperoxyl molecule binds with a surface uranium. Our study, which includes a detailed study of electron transfer, magnetic structure and the preferred adsorption configurations, gives insight into the uranium oxidation states and the influence of surface geometry on adsorption. The findings contribute to a more comprehensive understanding of the early stages of UO2 oxidation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001262 Publication Date 2024-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 3.1 Times cited Open Access  
  Notes Financial support for this research was provided by the Energy Transition Fund of the Belgian FPS Economy (Project SF-CORMOD: Spent Fuel – Corrosion modeling). This work was performed using HPC resources from the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government department EWI (Economie, Wetenschap & Innovatie). Approved Most recent IF: 3.1; 2024 IF: 2.048  
  Call Number EMAT @ emat @c:irua:207055 Serial 9249  
Permanent link to this record
 

 
Author Ding, Y.; Wang, C.; Bandaru, S.; Pei, L.; Zheng, R.; Hau Ng, Y.; Arenas Esteban, D.; Bals, S.; Zhong, J.; Hofkens, J.; Van Tendeloo, G.; Roeffaers, M.B.J.; Chen, L.-H.; Su, B.-L. pdf  url
doi  openurl
  Title Cs3Bi2Br9 nanoparticles decorated C3N4 nanotubes composite photocatalyst for highly selective oxidation of benzylic alcohol Type A1 Journal Article
  Year 2024 Publication Journal of Colloid and Interface Science Abbreviated Journal Journal of Colloid and Interface Science  
  Volume 672 Issue (up) Pages 600-609  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Solar-light driven oxidation of benzylic alcohols over photocatalysts endows significant prospects in value-added organics evolution owing to its facile, inexpensive and sustainable process. However, the unsatisfactory performance of actual photocatalysts due to the inefficient charge separation, low photoredox potential and sluggish surface reaction impedes the practical application of this process. Herein, we developed an innovative Z-Scheme Cs3BiBr9 nanoparticles@porous C3N4 tubes (CBB-NP@P-tube-CN) heterojunction photocatalyst for highly selective benzyl alcohol oxidation. Such composite combining increased photo-oxidation potential, Z-Scheme charge migration route as well as the structural advantages of porous tubular C3N4 ensures the accelerated mass and ions diffusion kinetics, the fast photoinduced carriers dissociation and sufficient photoredox potentials. The CBB-NP@P-tube-CN photocatalyst demonstrates an exceptional performance for selective photo-oxidation of benzylic alcohol into benzaldehyde with 19, 14 and 3 times higher benzylic alcohols conversion rate than those of C3N4 nanotubes, Cs3Bi2Br9 and Cs3Bi2Br9@bulk C3N4 photocatalysts, respectively. This work offers a sustainable photocatalytic system based on lead-free halide perovskite toward large scale solar-light driven value-added chemicals production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001251644100001 Publication Date 2024-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.9 Times cited Open Access  
  Notes This work is financially supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ24E020011), and National Natural Science Foundation of China (No. 12374372, 52072101)., Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) of the Chinese Ministry of Education and Program of Introducing Talents of Discipline to Universities-Plan 111 (Grant No. B20002) from the Ministry of Science and Technology and the Ministry of Education of China. This research is also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project “DepollutAir”. Approved Most recent IF: 9.9; 2024 IF: 4.233  
  Call Number EMAT @ emat @c:irua:206675 Serial 9250  
Permanent link to this record
 

 
Author Wanten, B.; Gorbanev, Y.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based conversion of CO2 and CH4 into syngas: A dive into the effect of adding water Type A1 Journal Article
  Year 2024 Publication Fuel Abbreviated Journal Fuel  
  Volume 374 Issue (up) Pages 132355  
  Keywords A1 Journal Article; Plasma Bi-reforming of methane Atmospheric pressure glow discharge Hydrogen-rich syngas; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma technology can play a vital role in the electrification and decarbonization of chemical processes. In this work, we carried out the bi-reforming of methane (BRM), producing syngas out of H2O vapor and the greenhouse gases CO2 and CH4, in an atmospheric pressure glow discharge reactor. Compared to dry reforming of methane (DRM), the addition of H2O helps in counteracting soot formation, and thus avoids severe destabilization of the generated plasma. A mixture of 14–41-45 vol% (CO2-CH4-H2O) leads to the overall best results in terms of stable plasma and performance metrics. We obtained a CO2 and CH4 conversion of 49 % and 74 %, respectively, at a SEI of 210 kJ/mol. The energy cost is 390 kJ/mol converted reactants, which is below the target defined for plasmabased syngas production to be competitive with other technologies. Moreover, we reached CO and H2 yields of

59 % and 49 %, and a syngas ratio (SR) of 2, which is ideal for further methanol synthesis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-07-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links  
  Impact Factor 7.4 Times cited Open Access  
  Notes This project has received funding from the BlueApp Proof-of-Concept project “Optanic”, the VLAIO-Catalisti ICON project “BluePlasma” (grant ID HBC.2022.0445), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182─SCOPE ERC Synergy project). Approved Most recent IF: 7.4; 2024 IF: 4.601  
  Call Number PLASMANT @ plasmant @ Serial 9254  
Permanent link to this record
 

 
Author Quintelier, M.; Hajizadeh, A.; Zintler, A.; Gonçalves, B.F.; Fernández de Luis, R.; Esrafili Dizaji, L.; Vande Velde, C.M.L.; Wuttke, S.; Hadermann, J. pdf  url
doi  openurl
  Title In SituStudy of the Activation Process of MOF-74 Using Three-Dimensional Electron Diffraction Type A1 Journal Article
  Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.  
  Volume Issue (up) Pages  
  Keywords A1 Journal Article; 3DED; MOFs; in situ; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Metal–organic framework (MOF)-74 is known for its effectiveness in selectively capturing carbon dioxide (CO2). Especially the Zn and Cu versions of MOF-74 show high efficiency of this material for CO2. However, the activation of this MOF, which is a crucial step for its utilization, is so far not well understood. Here, we are closing the knowledge gap by examining the activation using, for the first time in the MOF, three-dimensional electron diffraction (3DED) during in situ heating. The use of state-of-the-art direct electron detectors enables rapid acquisition and minimal exposure times, therefore minimizing beam damage to the very electron beam-sensitive MOF material. The activation process of Zn-MOF-74 and Cu-MOF-74 is systematically studied in situ, proving the creation of open metal sites. Differences in thermal stability between Zn-MOF-74 and Cu-MOF-74 are attributed to the strength of the metal–oxygen bonds and Jahn–Teller distortions. In the case of Zn-MOF-74, we observe previously unknown remaining electrostatic potentials inside the MOF pores, which indicate the presence of remaining atoms that might impede gas flow throughout the structure when using the MOF for absorption purposes. We believe our study exemplifies the significance of employing advanced characterization techniques to enhance our material understanding, which is a crucial step for unlocking the full potential of MOFs in various applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access  
  Notes European Regional Development Fund, PID2021-122940OB-C31 ; H2020 Energy, 101022633 ; Universiteit Antwerpen, BOF TOP 38689 ; H2020 Marie Sklodowska-Curie Actions, 956099 ; Fonds Wetenschappelijk Onderzoek, I003218N ; Japan Science and Technology Agency, JPMJSC2102 ; Funda??o de Amparo ? Pesquisa do Estado de S?o Paulo; Agencia Estatal de Investigaci?n,Ministerio de Ciencia, Innovaci?n y Universidades, PID2021-122940OB-C31 TED2021-130621B-C42 ; Approved Most recent IF: 8.6; 2024 IF: 9.466  
  Call Number EMAT @ emat @c:irua:207555 Serial 9255  
Permanent link to this record
 

 
Author Pedrazo-Tardajos, A.; Claes, N.; Wang, D.; Sánchez-Iglesias, A.; Nandi, P.; Jenkinson, K.; De Meyer, R.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title Direct visualization of ligands on gold nanoparticles in a liquid environment Type A1 Journal Article
  Year 2024 Publication Nature Chemistry Abbreviated Journal Nat. Chem.  
  Volume Issue (up) Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The interaction among Au nanoparticles, their surface ligands and the solvent critically influences the properties of nanoparticles. Despite employing spectroscopic and scattering techniques to investigate their ensemble structure, a comprehensive understanding at the nanoscale remains elusive. Electron microscopy enables characterization of the local structure and composition but is limited by insufficient contrast, electron beam sensitivity and ultra-high vacuum, which prevent the investigation of dynamic aspects. Here we show that, by exploiting high-quality graphene liquid cells, we can overcome these limitations and investigate the structure of the ligand shell around the Au nanoparticles, as well as the ligand-Au interface in a liquid environment. Using this graphene liquid cell, we visualize the anisotropy, composition and dynamics of ligand distribution at the Au nanorod surface. Our results indicate a micellar model for the surfactant organisation. This work opens up a reliable and direct visualization of ligand distribution around colloidal nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001257 Publication Date 2024-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record  
  Impact Factor 21.8 Times cited Open Access  
  Notes S.B., and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant no. 731019 (EUSMI) and ERC Consolidator grant no. 815128 (REALNANO). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant 894254 SuprAtom). L.L.-M. acknowledges financial support from the European Research Council (ERC Advanced Grant 787510, 4DbioSERS) and the Spanish State Research Agency (Project PID2020-117779RB-I00 and MDM-2017-0720). The authors acknowledge Dr. J. Mosquera and Dr. Jimenez de Aberasturi for provision of samples and useful discussions. Approved Most recent IF: 21.8; 2024 IF: 25.87  
  Call Number EMAT @ emat @c:irua:207062 Serial 9256  
Permanent link to this record
 

 
Author Cavallo, M.; Dosa, M.; Nakazato, R.; Porcaro, N.G.; Signorile, M.; Quintelier, M.; Hadermann, J.; Bordiga, S.; Rosero-Navarro, N.C.; Tadanaga, K.; Crocellà, V.; Bonino, F. pdf  url
doi  openurl
  Title Insight on Zn-Al LDH as electrocatalyst for CO2 reduction reaction: An in-situ ATR-IR study Type A1 Journal Article
  Year 2024 Publication Journal of CO2 Utilization Abbreviated Journal Journal of CO2 Utilization  
  Volume 83 Issue (up) Pages 102804  
  Keywords A1 Journal Article; In-situ ATR-IR spectroscopy; Layered Double Hydroxide; CO2 reduction reaction; Electrocatalysis; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Electrochemical reduction of CO2 (CO2RR) is expected to play a key role among the various strategies being explored to limit global warming. In this scenario, Layered Double Hydroxides (LDHs) are emerging as a promising class of electrocatalysts to replace the most used noble metals. In this work three Zn-Al LDH with different Zn2+/Al3+ ratio were synthesized and characterized by means of XRD, STEM-EDX and HR-TEM. Their suitability for CO2RR to CO was assessed by means of a custom-made three-compartment cell, showing an increase in CO selectivity by decreasing the Zn2+/Al3+ ratio. The CO2 interaction with the samples was firstly

characterized by means of volumetric adsorption measurements, exhibiting an increase in capture capacity by decreasing the Zn2+/Al3+ ratio. The evolution of the samples in interaction with a CO2-saturated liquid flow was then deeply investigated by means of in-situ ATR-IR spectroscopy. The samples displayed a different evolution in the vibrational region of the carbonate-like species (1800–1200 cm???? 1). To better discriminate the different carbonate cyclohexane was also employed. A definitive assignment of the main IR bands of the carbonate was

carried out by studying the spectral behavior of the different bands observed in the ATR-IR experiments and by comparing these results with the existing literature. Interestingly, Zn-Al 1:2 LDH, the most efficient electrocatalyst for CO2RR, is also the sole sample exhibiting a higher monodentate to total bidentate carbonates ratio, suggesting that the existence of a higher content of low coordination oxygen anions with stronger basic character can influence the final catalytic activity.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001264 Publication Date 2024-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 7.7 Times cited Open Access  
  Notes This work was supported by 4AirCRAFT project under the strategic international cooperation between Europe and Japan. 4AirCRAFT has received funding from the European Union’s Horizon 2020 research and innovation programme (No 101022633) and Japan Science and Technology Agency (JST) (No JPMJSC2102). We acknowledge the Hercules fund ’Direct electron detector for soft matter TEM’ from Flemish Government for the purchase of the K2 DED. MC, MD, NGP, MS, SB, VC and FB acknowledge support from the Project CH4.0 under the MUR program “Dipartimenti di Eccellenza 2023–2027” (CUP: D13C22003520001) Approved Most recent IF: 7.7; 2024 IF: 4.292  
  Call Number EMAT @ emat @c:irua:207069 Serial 9259  
Permanent link to this record
 

 
Author Lv, H.; Meng, S.; Cui, Z.; Li, S.; Li, D.; Gao, X.; Guo, H.; Bogaerts, A.; Yi, Y. pdf  url
doi  openurl
  Title Plasma-catalytic direct oxidation of methane to methanol over Cu-MOR: Revealing the zeolite-confined Cu2+ active sites Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 496 Issue (up) Pages 154337  
  Keywords A1 Journal Article; Direct oxidation Methanol production Plasma catalysis Copper-mordenite catalysts; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Efficient methane conversion to methanol remains a significant challenge in chemical industry. This study investigates the direct oxidation of methane to methanol under mild conditions, employing a synergy of nonthermal plasma and Cu-MOR (Copper-Mordenite) catalysts. Catalytic tests demonstrate that the Cu-MOR IE-3 catalyst (i.e., prepared by three cycles of ion exchange) exhibits superior catalytic performance (with 51 % methanol selectivity and 7.9 % methane conversion). Conversely, the Cu-MOR catalysts prepared via wetness impregnation tend to over-oxidize CH4 to CO and CO2. Through systematic catalyst characterizations (XRD, TPR, UV–Vis, HRTEM, XPS), we elucidate that ion exchange mainly leads to the formation of zeolite-confined Cu2+ species, while wetness impregnation predominantly results in CuO particles. Based on the catalytic performance, catalyst characterizations and in-situ FTIR spectra, we conclude that zeolite-confined Cu2+ species serve as the active sites for plasma-catalytic direct oxidation of methane to methanol.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes PetroChina Innovation Foundation, 2018D-5007-0501 ; Fundamental Research Funds for the Central Universities, DUT21JC40 ; Fundamental Research Funds for the Central Universities; China Scholarship Council; National Natural Science Foundation of China, 22272015 ; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9260  
Permanent link to this record
 

 
Author Espona‐Noguera, A.; Živanić, M.; Smits, E.; Bogaerts, A.; Privat‐Maldonado, A.; Canal, C. url  doi
openurl 
  Title Unlocking Novel Anticancer Strategies: Bioactive Hydrogels for Local Delivery of Plasma‐Derived Oxidants in an In Ovo Cancer Model Type A1 Journal Article
  Year 2024 Publication Macromolecular Bioscience Abbreviated Journal Macromolecular Bioscience  
  Volume Issue (up) Pages  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Cold atmospheric plasma (CAP) is a tool with the ability to generate reactive oxygen and nitrogen species (RONS), which can induce therapeutic effects like disinfection, wound healing, and cancer treatment. In the plasma oncology field, CAP‐treated hydrogels (PTHs) are being explored for the local administration of CAP‐derived RONS as a novel anticancer approach. PTHs have shown anticancer effects in vitro, however, they have not yet been studied in more relevant cancer models. In this context, the present study explores for the first time the therapeutic potential of PTHs using an advanced in ovo cancer model. PTHs composed of alginate (Alg), gelatin (Gel), Alg/Gel combination, or Alg/hyaluronic acid (HA) combination are investigated. All embryos survived the PTHs treatment, suggesting that the in ovo model could become a time‐ and cost‐effective tool for developing hydrogel‐based anticancer approaches. Results revealed a notable reduction in CD44+ cell population and their proliferative state for the CAP‐treated Alg‐HA condition. Moreover, the CAP‐treated Alg‐HA formulation alters the extracellular matrix composition, which may help combat drug‐resistance. In conclusion, the present study validates the utility of in ovo cancer model for PTHs exploration and highlights the promising potential of Alg‐based PTHs containing HA and CAP‐derived RONS for cancer treatment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-5187 ISBN Additional Links  
  Impact Factor 4.6 Times cited Open Access  
  Notes Generalitat de Catalunya, SGR2022‐1368 ; European Cooperation in Science and Technology, COSTActionCA20114(TherapeuticalApplicationsofColdPlasmas) ; Approved Most recent IF: 4.6; 2024 IF: 3.238  
  Call Number PLASMANT @ plasmant @ Serial 9263  
Permanent link to this record
 

 
Author Sun, J.; Chen, Q.; Qin, W.; Wu, H.; Liu, B.; Li, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic dry reforming of CH4: Effects of plasma-generated species on the surface chemistry Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 498 Issue (up) Pages 155847  
  Keywords A1 Journal Article; Dry reforming of methane Plasma catalysis Plasma-enhanced surface chemistry Path flux and sensitivity analysis Coking kinetics; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract By means of steady-state experiments and a global model, we studied the effects of plasma-generated reactive species on the surface chemistry and coking in plasma-catalytic CH4/CO2 reforming at reduced pressure (8–40 kPa). We used a hybrid ZDPlasKin-CHEMKIN model to predict the species densities over time. The detailed plasma-catalytic mechanism consists of the plasma discharge scheme, a gas-phase chemistry set and a surface mechanism. Our experimental results show that the coupling of Ni/SiO2 catalyst with plasma is more effective in CH4/CO2 activation and conversion than unpacked DBD plasma, with syngas being the main products. The

highest total conversion of 16 % was achieved at 8000 V and 473 K, with corresponding CO and H2 yields of 15 % and 12 %, respectively. The reactants conversion and product selectivity are well captured by the kinetic model. Our simulation results suggest that vibrational species and radicals can accelerate the dissociative adsorption and Eley-Rideal (E-R) reactions. Path flux analysis shows that E-R reactions dominate the surface reaction pathways, which differs from thermal catalysis, indicating that the coupling of non-equilibrium plasma and catalysis can effectively shift the formation and consumption pathways of important adsorbates. For instance, our model suggests that HCOO(s) is primarily generated through the E-R reaction CO2(v) + H(s) → HCOO(s), while the hydrogenation reaction HCOO(s) + H → HCOOH(s) is the main source of HCOOH(s). Carbon deposition on the

catalyst surface is primarily formed through the stepwise dehydrogenation of CH4, while the E-R reactions enhanced by plasma-generated H and O atoms dominate the consumption of carbon deposition. This work provides new insights into the effects of reactive species on the surface chemistry in plasma-catalytic CH4/CO2 reforming.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes National Natural Science Foundation of China; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9266  
Permanent link to this record
 

 
Author Fedirchyk, I.; Tsonev, I.; Quiroz Marnef, R.; Bogaerts, A. url  doi
openurl 
  Title Plasma-assisted NH3 cracking in warm plasma reactors for green H2 production Type A1 Journal Article
  Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal  
  Volume 499 Issue (up) Pages 155946  
  Keywords A1 Journal Article; Plasma-assisted NH3 cracking Plasma reactors Warm plasma H2 production from NH3; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract renewable energy. Plasma technology is promising for this purpose, as it can crack NH3 without the need for a catalyst and is highly compatible with renewable electricity, reducing the environmental footprint of the cracking process. This work investigates the NH3 cracking performance of four different warm plasma reactors with different configurations and operating in a wide range of conditions. We show that the NH3 conversion in warm plasma reactors is primarily determined by the specific energy input, with the main difference observed in the energy cost (EC) of cracking. The lowest EC obtained is 146 kJ/mol but at a conversion of only 8 %. A more reasonable conversion of around 50 % yields an EC of around 200 kJ/mol in two of the reactors investigated. Plasma reactors operating at higher feed flow rates are more efficient and yield a higher H2 production rate. Our data indicate that NH3 cracking in these warm plasma reactors occurs mainly via thermal chemistry, with nonthermal plasma chemistry playing a less prominent role. NH3 decomposes not only inside the plasma core but also in a hot volume around it, which reduces the EC. Our study shows that warm plasmas are significantly more efficient for NH3 cracking than cold plasmas, even when the latter are combined with catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links  
  Impact Factor 15.1 Times cited Open Access  
  Notes Belgian Federal Government; European Commission Marie Sklodowska-Curie Actions; Approved Most recent IF: 15.1; 2024 IF: 6.216  
  Call Number PLASMANT @ plasmant @ Serial 9267  
Permanent link to this record
 

 
Author Gholam, S.; Hadermann, J. pdf  url
doi  openurl
  Title The effect of the acceleration voltage on the quality of structure determination by 3D-electron diffraction Type A1 Journal Article
  Year 2024 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 266 Issue (up) Pages 114022  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Nowadays, 3D Electron Diffraction (3DED) is widely used for the structure determination of sub-micron-sized particles. In this work, we investigate the influence of the acceleration voltage on the quality of 3DED datasets acquired on BaTiO3 nanoparticles. Datasets were acquired using a wide range of beam energies, from common, high acceleration voltages (300 kV and 200 kV) to medium (120 kV and 80 kV) and low acceleration voltages (60 kV and 30 kV). In the integration process, Rint increases as the beam energy reduces, which is mainly due to the increased dynamical scattering. Nevertheless, the structure was solved successfully in all cases. The structure refinement was comparable for all beam energies with small deficiencies such as negative atomic displacements for the heaviest atom in the structure, barium. Including extinction correction in the refinement noticeably improved the model for low acceleration voltages, probably due to higher beam absorption in these cases. Dynamical refinement, however, shows superior results for higher acceleration voltages, since the dynamical refinement calculations currently discard inelastic scattering effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001297 Publication Date 2024-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.2 Times cited Open Access  
  Notes The authors acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. The authors are also grateful to Dr. Armand Béché and Dr. Lars Riekehr for their technical support and to Prof. Lukáš Palatinus, Dr. Stefano Canossa, Dr. Maria Batuk and Amirhossein Hajizadeh for fruitful discussions. Approved Most recent IF: 2.2; 2024 IF: 2.843  
  Call Number EMAT @ emat @c:irua:208540 Serial 9268  
Permanent link to this record
 

 
Author Stoops, T.; De Backer, A.; Lobato, I.; Van Aert, S. pdf  url
doi  openurl
  Title Obtaining 3D Atomic Reconstructions from Electron Microscopy Images Using a Bayesian Genetic Algorithm: Possibilities, Insights, and Limitations Type A1 Journal Article
  Year 2024 Publication Microscopy and Microanalysis Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The Bayesian genetic algorithm (BGA) is a powerful tool to reconstruct the 3D structure of mono-atomic single-crystalline metallic nanoparticles imaged using annular dark field scanning transmission electron microscopy. The number of atoms in a projected atomic column in the image is used as input to obtain an accurate and atomically precise reconstruction of the nanoparticle, taking prior knowledge and the finite precision of atom counting into account. However, as the number of parameters required to describe a nanoparticle with atomic detail rises quickly with the size of the studied particle, the computational costs of the BGA rise to prohibitively expensive levels. In this study, we investigate these computational costs and propose methods and control parameters for efficient application of the algorithm to nanoparticles of at least up to 10 nm in size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276 ISBN Additional Links  
  Impact Factor 2.8 Times cited Open Access  
  Notes European Research Council, 770887 ; Research Foundation Flanders, G034621N G0A7723N 40007495 ; FWO and F.R.S-FNRS; Flemish Government; Approved Most recent IF: 2.8; 2024 IF: 1.891  
  Call Number EMAT @ emat @ Serial 9270  
Permanent link to this record
 

 
Author Poppe, R.; Hadermann, J. pdf  url
doi  openurl
  Title Optimization of three-dimensional electron diffuse scattering data acquisition Type A1 Journal Article
  Year 2024 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 265 Issue (up) Pages 114023  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The diffraction patterns of crystalline materials with local order contain sharp Bragg reflections as well as highly structured diffuse scattering. In this study, we quantitatively show how the diffuse scattering in three-dimensional electron diffraction (3D ED) data is influenced by various parameters, including the data acquisition mode, the detector type and the use of an energy filter. We found that diffuse scattering data used for quantitative analysis are preferably acquired in selected area electron diffraction (SAED) mode using a CCD and an energy filter. In this study, we also show that the diffuse scattering in 3D ED data can be obtained with a quality comparable to that from single-crystal X-ray diffraction. As electron diffraction requires much smaller crystal sizes than X-ray diffraction, this opens up the possibility to investigate the local structure of many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001294 Publication Date 2024-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.2 Times cited Open Access  
  Notes The authors would like to thank Dr. Nikolaj Roth for fruitful discussions and Dr. Lukas Palatinus for providing an option to apply symmetry averaging in the three-dimensional reciprocal lattice in PETS2. The authors also acknowledge the Hercules fund ’Direct electron detector for soft matter TEM’ from Flemish Government for the purchase of the Merlin detector. Approved Most recent IF: 2.2; 2024 IF: 2.843  
  Call Number EMAT @ emat @c:irua:207457 Serial 9271  
Permanent link to this record
 

 
Author Zani, V.; Renero-Lecuna, C.; Jimenez de Aberasturi, D.; di Silvio, D.; Kavak, S.; Bals, S.; Signorini, R.; Liz-Marzán, L.M. url  doi
openurl 
  Title Core–Shell Colloidal Nanocomposites for Local Temperature Monitoring during Photothermal Heating Type A1 Journal Article
  Year 2024 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C  
  Volume Issue (up) Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Determining temperature changes at the heating site to accurately control thermal treatments has been a major goal in the field of nanothermometry. In this study, we address the need to effectively monitor local temperature during the application of photothermal therapies, which is essential to prevent uncontrolled heating induced by nanoparticle sensitizers used in such treatments. For this purpose, we developed a synthetic protocol to produce a nanocomposite probe that allows local photothermal heating and simultaneous in situ optical nanothermometry, within the biological transparency windows. The nanocomposite material comprises gold nanorods for light-to-heat conversion and neodymium (Nd3+)-based nanoparticles for local temperature monitoring. An inert spacer made of mesoporous silica provides a core-shell structure and ensures uniform separation between both functionalities to prevent photoluminescence quenching. By using an 808 nm laser as the source for both heating and photoluminescence excitation, we demonstrate a direct correlation between local temperature and near infrared Nd3+ emission intensities, thereby providing precise local temperature monitoring. Different levels of local heating were studied by varying the incident laser power, resulting in a maximum temperature increase of 47 °C detected with the nanothermometers. Albeit presented here as a proof of concept, this concept can be translated to the design of materials for photothermal therapy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links  
  Impact Factor 3.7 Times cited Open Access  
  Notes L.L.L.-M. acknowledges financial support by the Spanish Agencia Estatal de Investigación and FEDER (PID2023-151281OB-I00), S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (Project numbers: 1181122N & 1181124N) and the European Research Council (CoG 815128, REALNANO). Approved Most recent IF: 3.7; 2024 IF: 4.536  
  Call Number EMAT @ emat @ Serial 9328  
Permanent link to this record
 

 
Author Heirman, P.; Verswyvel, H.; Bauwens, M.; Yusupov, M.; De Waele, J.; Lin, A.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Effect of plasma-induced oxidation on NK cell immune checkpoint ligands: A computational-experimental approach Type A1 Journal Article
  Year 2024 Publication Redox Biology Abbreviated Journal Redox Biology  
  Volume 77 Issue (up) Pages 103381  
  Keywords A1 Journal Article; Non-thermal plasma Natural killer cells Immune checkpoints Cancer immunotherapy Umbrella sampling Oxidative stress; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Non-thermal plasma (NTP) shows promise as a potent anti-cancer therapy with both cytotoxic and immunomodulatory effects. In this study, we investigate the chemical and biological effects of NTP-induced oxidation on several key, determinant immune checkpoints of natural killer (NK) cell function. We used molecular dynamics (MD) and umbrella sampling simulations to investigate the effect of NTP-induced oxidative changes on the MHCI complexes HLA-Cw4 and HLA-E. Our simulations indicate that these chemical alterations do not significantly affect the binding affinity of these markers to their corresponding NK cell receptor, which is supported with

experimental read-outs of ligand expression on human head and neck squamous cell carcinoma cells after NTP application. Broadening our scope to other key ligands for NK cell reactivity, we demonstrate rapid reduction in CD155 and CD112, target ligands of the inhibitory TIGIT axis, and in immune checkpoint CD73 immediately after treatment. Besides these transient chemical alterations, the reactive species in NTP cause a cascade of downstream cellular reactions. This is underlined by the upregulation of the stress proteins MICA/B, potent ligands for NK cell activation, 24 h post treatment. Taken together, this work corroborates the immunomodulatory potential of NTP, and sheds light on the interaction mechanisms between NTP and cancer cells.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213-2317 ISBN Additional Links  
  Impact Factor 11.4 Times cited Open Access  
  Notes This research was funded by the Impuls project of the University of Antwerp, grant number 46381. We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 1100421N (Pepijn Heirman), 1S67621N (Hanne Verswyvel), G044420N (Abraham Lin) and G033020N (Pepijn Heirman, Annemie Bogaerts)). M.Y. ac knowledges the Agency for Innovative Development of the Republic of Uzbekistan, grant number AL-4821012320. The computational sources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish percomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. This article is based upon work from COST Action CA20114 PlasTHER “Therapeutical Applications of Cold Plasmas”, supported by COST (European Cooperation in Science and Technology). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Finally, we thank Robin De Meyer, Rani Vertongen and Louize Brants for their valuable input. Approved Most recent IF: 11.4; 2024 IF: 6.337  
  Call Number PLASMANT @ plasmant @ Serial 9331  
Permanent link to this record
 

 
Author Bissonnette-Dulude, J.; Heirman, P.; Coulombe, S.; Bogaerts, A.; Gervais, T.; Reuter, S. url  doi
openurl 
  Title Coupling the COST reference plasma jet to a microfluidic device: a computational study Type A1 Journal article
  Year 2024 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume 33 Issue (up) 1 Pages 015001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The use of microfluidic devices in the field of plasma-liquid interaction can unlock unique possibilities to investigate the effects of plasma-generated reactive species for environmental and biomedical applications. So far, very little simulation work has been performed on microfluidic devices in contact with a plasma source. We report on the modelling and computational simulation of physical and chemical processes taking place in a novel plasma-microfluidic platform. The main production and transport pathways of reactive species both in plasma and liquid are modelled by a novel modelling approach that combines 0D chemical kinetics and 2D transport mechanisms. This combined approach, applicable to systems where the transport of chemical species occurs in unidirectional flows at high Péclet numbers, decreases calculation times considerably compared to regular 2D simulations. It takes advantage of the low computational time of the 0D reaction models while providing spatial information through multiple plug-flow simulations to yield a quasi-2D model. The gas and liquid flow profiles are simulated entirely in 2D, together with the chemical reactions and transport of key chemical species. The model correctly predicts increased transport of hydrogen peroxide into the liquid when the microfluidic opening is placed inside the plasma effluent region, as opposed to inside the plasma region itself. Furthermore, the modelled hydrogen peroxide production and transport in the microfluidic liquid differs by less than 50% compared with experimental results. To explain this discrepancy, the limits of the 0D–2D combined approach are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001136607100001 Publication Date 2024-01-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes Natural Sciences and Engineering Research Council of Canada, RGPIN-06820 ; FWO, 1100421N ; McGill University, the TransMedTech Institute; Approved Most recent IF: 3.8; 2024 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:202783 Serial 8990  
Permanent link to this record
 

 
Author Lobato, I.; Friedrich, T.; Van Aert, S. pdf  url
doi  openurl
  Title Deep convolutional neural networks to restore single-shot electron microscopy images Type A1 Journal article
  Year 2024 Publication N P J Computational Materials Abbreviated Journal npj Comput Mater  
  Volume 10 Issue (up) 1 Pages 10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Advanced electron microscopy techniques, including scanning electron microscopes (SEM), scanning transmission electron microscopes (STEM), and transmission electron microscopes (TEM), have revolutionized imaging capabilities. However, achieving high-quality experimental images remains a challenge due to various distortions stemming from the instrumentation and external factors. These distortions, introduced at different stages of imaging, hinder the extraction of reliable quantitative insights. In this paper, we will discuss the main sources of distortion in TEM and S(T)EM images, develop models to describe them, and propose a method to correct these distortions using a convolutional neural network. We validate the effectiveness of our method on a range of simulated and experimental images, demonstrating its ability to significantly enhance the signal-to-noise ratio. This improvement leads to a more reliable extraction of quantitative structural information from the images. In summary, our findings offer a robust framework to enhance the quality of electron microscopy images, which in turn supports progress in structural analysis and quantification in materials science and biology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001138183000001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2057-3960 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N, G0A7723N and EOS 40007495). S.V.A. acknowledges funding from the University of Antwerp Research Fund (BOF). The authors thank Lukas Grünewald for data acquisition and support for Fig. 7. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:202714 Serial 8994  
Permanent link to this record
 

 
Author Morais, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling the dynamics of hydrogen synthesis from methane in nanosecond‐pulsed plasmas Type A1 Journal article
  Year 2024 Publication Plasma processes and polymers Abbreviated Journal Plasma Processes & Polymers  
  Volume 21 Issue (up) 1 Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A chemical kinetics model was developed to characterise the gas‐phase dynamics of H<sub>2</sub>production in nanosecond‐pulsed CH<sub>4</sub>plasmas. Pulsed behaviour was observed in the calculated electric field, electron temperature and species densities at all pressures. The model agrees reasonably with experimental results, showing CH<sub>4</sub>conversion at 30% and C<sub>2</sub>H<sub>2</sub>and H<sub>2</sub>as major products. The underlying mechanisms in CH<sub>4</sub>dissociation and H<sub>2</sub>formation were analysed, highlighting the large contribution of vibrationally excited CH<sub>4</sub>and H<sub>2</sub>to coupling energy from the plasma into gas‐phase heating, and revealing that H<sub>2</sub>synthesis is not affected by applied pressure, with selectivity remaining unchanged at ~42% in the 1–5 bar range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001091258700001 Publication Date 2023-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited Open Access Not_Open_Access  
  Notes We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project “Power‐to‐Olefins” (P2O; HBC.2020.2620) and funding from the Independent Research Fund Denmark (project nr. 0217‐00231B). Approved Most recent IF: 3.5; 2024 IF: 2.846  
  Call Number PLASMANT @ plasmant @c:irua:201192 Serial 8983  
Permanent link to this record
 

 
Author Jorissen, B.; Covaci, L.; Partoens, B. url  doi
openurl 
  Title Comparative analysis of tight-binding models for transition metal dichalcogenides Type A1 Journal article
  Year 2024 Publication SciPost physics core Abbreviated Journal  
  Volume 7 Issue (up) 1 Pages 004-30  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract We provide a comprehensive analysis of the prominent tight-binding (TB) models for transition metal dichalcogenides (TMDs) available in the literature. We inspect the construction of these TB models, discuss their parameterization used and conduct a thorough comparison of their effectiveness in capturing important electronic properties. Based on these insights, we propose a novel TB model for TMDs designed for enhanced computational efficiency. Utilizing MoS2 as a representative case, we explain why specific models offer a more accurate description. Our primary aim is to assist researchers in choosing the most appropriate TB model for their calculations on TMDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001170769300001 Publication Date 2024-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202983 Serial 9012  
Permanent link to this record
 

 
Author Steijlen, A.S.M.; Parrilla, M.; Van Echelpoel, R.; De Wael, K. pdf  doi
openurl 
  Title Dual microfluidic sensor system for enriched electrochemical profiling and identification of illicit drugs on-site Type A1 Journal article
  Year 2024 Publication Analytical chemistry Abbreviated Journal  
  Volume 96 Issue (up) 1 Pages 590-598  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Electrochemical sensors have emerged as a new analytical tool for illicit drug detection to facilitate ultrafast and accurate identification of suspicious compounds on-site. Drugs of abuse can be identified using their unique voltammetric fingerprint at a given pH. Today, the right buffer solution is manually selected based on drug appearance, and in some cases, a consecutive analysis in two different pH solutions is required. In this work, we present a disposable microfluidic multichannel sensor system that automatically records fingerprints in two pH solutions (e.g., pH 5 and pH 12). This system has two advantages. It will overcome the manual selection of a buffer solution at the right pH, decrease analysis time, and minimize the risk of human errors. Second, the combination of two fingerprints, the superfingerprint, contains more detailed information about the samples, which enhances the selectivity of the analytical technique. First, real-time pH measurements proved that the sample can be brought to the desired pH within a minute. Subsequently, an electrochemical study on the microfluidic platform with 1 mM illicit drug standards of MDMA, cocaine, heroin, and methamphetamine showed that the characteristic voltammetric fingerprints and peak potentials are reproducible, also in the presence of common cutting agents. Finally, the microfluidic concept was validated with real confiscated samples, showing promising results for the user-friendly identification of drugs of abuse. In short, this paper presents a successful proof-of-concept study of a multichannel microfluidic sensor system to enrich the fingerprints of illicit drugs at pH 5 and pH 12, thus providing a low-cost, portable, and rapid identification system of illicit drugs with minimal user intervention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139443500001 Publication Date 2023-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 7.4; 2024 IF: 6.32  
  Call Number UA @ admin @ c:irua:201877 Serial 9024  
Permanent link to this record
 

 
Author Zhang, L.; Quinn, B.K.; Hui, C.; Lian, M.; Gielis, J.; Gao, J.; Shi, P. url  doi
openurl 
  Title New indices to balance α-diversity against tree size inequality Type A1 Journal article
  Year 2024 Publication Journal of forestry research Abbreviated Journal  
  Volume 35 Issue (up) 1 Pages 31-39  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The number and composition of species in a community can be quantified with alpha-diversity indices, including species richness (R), Simpson's index (D), and the Shannon-Wiener index (HGREEK TONOS). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological processes and ecosystem functions. However, tree size inequality (TSI) has been largely neglected in studies using the available diversity indices. The TSI in the diameter at breast height (DBH) data for each of 999 20 m x 20 m forest census quadrats was quantified using the Gini index (GI), a measure of the inequality of size distribution. The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat. We also examined the relationships of alpha-diversity indices with the GI using correlation tests. The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions, with most root-mean-square errors (990 out of 999 quadrats) being < 0.0030. There were significant positive correlations between each of three alpha-diversity indices (i.e., R, D, and H') and the GI. Nevertheless, the total abundance of trees in each quadrat did not significantly influence the GI. This means that the TSI increased with increasing species diversity. Thus, two new indices are proposed that can balance alpha-diversity against the extent of TSI in the community: (1 – GI) x D, and (1 – GI) x H'. These new indices were significantly correlated with the original D and HGREEK TONOS, and did not increase the extent of variation within each group of indices. This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities, especially in the face of cumulative species loss under global climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001131698000001 Publication Date 2023-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1007-662x; 1993-0607 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3; 2024 IF: 0.774  
  Call Number UA @ admin @ c:irua:201972 Serial 9061  
Permanent link to this record
 

 
Author Verbeelen, T.; Fernandez, C.A.; Nguyen, T.H.; Gupta, S.; Aarts, R.; Tabury, K.; Leroy, B.; Wattiez, R.; Vlaeminck, S.E.; Leys, N.; Ganigué, R.; Mastroleo, F. url  doi
openurl 
  Title Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity Type A1 Journal article
  Year 2024 Publication NPJ microgravity Abbreviated Journal  
  Volume 10 Issue (up) 1 Pages 3-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140007100001 Publication Date 2024-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2373-8065 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202285 Serial 9113  
Permanent link to this record
 

 
Author Deben, C.; Freire Boullosa, L.; Rodrigues Fortes, F.; Cardenas De La Hoz, E.; Le Compte, M.; Seghers, S.; Peeters, M.; Vanlanduit, S.; Lin, A.; Dijkstra, K.K.; Van Schil, P.; Hendriks, J.M.H.; Prenen, H.; Roeyen, G.; Lardon, F.; Smits, E. url  doi
openurl 
  Title Auranofin repurposing for lung and pancreatic cancer : low CA12 expression as a marker of sensitivity in patient-derived organoids, with potentiated efficacy by AKT inhibition Type A1 Journal article
  Year 2024 Publication Journal of Experimental and Clinical Cancer Research Abbreviated Journal  
  Volume 43 Issue (up) 1 Pages 88-15  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)  
  Abstract Background This study explores the repurposing of Auranofin (AF), an anti-rheumatic drug, for treating non-small cell lung cancer (NSCLC) adenocarcinoma and pancreatic ductal adenocarcinoma (PDAC). Drug repurposing in oncology offers a cost-effective and time-efficient approach to developing new cancer therapies. Our research focuses on evaluating AF's selective cytotoxicity against cancer cells, identifying RNAseq-based biomarkers to predict AF response, and finding the most effective co-therapeutic agents for combination with AF. Methods Our investigation employed a comprehensive drug screening of AF in combination with eleven anticancer agents in cancerous PDAC and NSCLC patient-derived organoids (n = 7), and non-cancerous pulmonary organoids (n = 2). Additionally, we conducted RNA sequencing to identify potential biomarkers for AF sensitivity and experimented with various drug combinations to optimize AF's therapeutic efficacy. Results The results revealed that AF demonstrates a preferential cytotoxic effect on NSCLC and PDAC cancer cells at clinically relevant concentrations below 1 µM, sparing normal epithelial cells. We identified Carbonic Anhydrase 12 (CA12) as a significant RNAseq-based biomarker, closely associated with the NF-κB survival signaling pathway, which is crucial in cancer cell response to oxidative stress. Our findings suggest that cancer cells with low CA12 expression are more susceptible to AF treatment. Furthermore, the combination of AF with the AKT inhibitor MK2206 was found to be particularly effective, exhibiting potent and selective cytotoxic synergy, especially in tumor organoid models classified as intermediate responders to AF, without adverse effects on healthy organoids. Conclusion Our research offers valuable insights into the use of AF for treating NSCLC and PDAC. It highlights AF's cancer cell selectivity, establishes CA12 as a predictive biomarker for AF sensitivity, and underscores the enhanced efficacy of AF when combined with MK2206 and other therapeutics. These findings pave the way for further exploration of AF in cancer treatment, particularly in identifying patient populations most likely to benefit from its use and in optimizing combination therapies for improved patient outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001190581500001 Publication Date 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1756-9966 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:204924 Serial 9136  
Permanent link to this record
 

 
Author Poppe, R.; Roth, N.; Neder, R.B.; Palatinus, L.; Iversen, B.B.; Hadermann, J. url  doi
openurl 
  Title Refining short-range order parameters from the three-dimensional diffuse scattering in single-crystal electron diffraction data Type A1 Journal article
  Year 2024 Publication IUCrJ Abbreviated Journal  
  Volume 11 Issue (up) 1 Pages 82-91  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Our study compares short-range order parameters refined from the diffuse scattering in single-crystal X-ray and single-crystal electron diffraction data. Nb0.84CoSb was chosen as a reference material. The correlations between neighbouring vacancies and the displacements of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS. The difference between the Sb and Co displacements refined from the diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray diffraction data is 0.012 (7) angstrom for the refinement on diffuse scattering in single-crystal X-ray diffraction data and 0.03 (2) angstrom for the refinement on the diffuse scattering in single-crystal electron diffraction data. As electron diffraction requires much smaller crystals than X-ray diffraction, this opens up the possibility of refining short-range order parameters in many technologically relevant materials for which no crystals large enough for single-crystal X-ray diffraction are available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001168018300012 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-2525 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access  
  Notes Approved Most recent IF: 3.9; 2024 IF: 5.793  
  Call Number UA @ admin @ c:irua:205513 Serial 9170  
Permanent link to this record
 

 
Author Gebremariam, Y.A.; Dessein, J.; Wondimagegnhu, B.A.; Breusers, M.; Lenaerts, L.; Adgo, E.; Van Passel, S.; Minale, A.S.; Frankl, A. url  doi
openurl 
  Title Listen to the radio and go on field trips : a study on farmers' attributes to opt for extension methods in Northwest Ethiopia Type A1 Journal article
  Year 2024 Publication AIMS Agriculture and Food Abbreviated Journal  
  Volume 9 Issue (up) 1 Pages 3-29  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering Management (ENM)  
  Abstract Extension professionals are expected to help disseminate agricultural technologies, information, knowledge and skills to farmers. In order to develop valuable and long-lasting extension services, it is essential to understand the methods of extension that farmers find most beneficial. This understanding helps adopt improved practices, overcome barriers, provide targeted interventions and continuously improve agricultural extension programs. Thus, assessing factors affecting farmers' choice of agricultural extension methods is essential for developing extension methods that comply with farmers' needs and socio-economic conditions. Therefore, we analyzed the factors affecting farmers' preferences in extension methods, using cross-sectional data collected from 300 households in two sample districts and 16 Kebelles in Ethiopia between September 2019 and March 2020. Four extension methods, including training, demonstration, office visits and phone calls were considered as outcome variables. We fitted a multivariate probit model to estimate the factors that influence farmers' choice of extension methods. The results of the study showed that the number of dependents in the household head, formal education and membership of Idir (an informal insurance program a community or group runs to meet emergencies) were negatively associated with farmers' choices to participate in different extension methods compared to no extension. On the other hand, the sex of the household head, farm experience, participation in non-farm activities, monetary loan access, owning a mobile phone, radio access and membership of cooperatives were found to have a statistically significant positive impact on farmers' choices of extension methods. Based on these findings, the government and the concerned stakeholders should take farmers' socio-economic and institutional traits into account when selecting and commissioning agricultural extension methods. This could help to develop contextually relevant extension strategies that are more likely to be chosen and appreciated by farmers. Furthermore, such strategies can aid policymakers in designing extension programs that cater to farmers' needs and concerns. In conclusion, farmers' socio-economic and institutional affiliation should be taken into consideration when selecting agricultural extension methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001124466300001 Publication Date 2023-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-2086 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.8 Times cited Open Access  
  Notes Approved Most recent IF: 1.8; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:202154 Serial 9209  
Permanent link to this record
 

 
Author Finizola e Silva, M.; Van Schoubroeck, S.; Cools, J.; Aboge, D.O.; Ouma, M.; Olweny, C.; Van Passel, S. pdf  url
doi  openurl
  Title Local actors' perspectives on sustainable food value chains : evidence from a Q-methodology study in Kenya Type Administrative Services
  Year 2024 Publication Journal of Environmental Studies and Sciences Abbreviated Journal  
  Volume 14 Issue (up) 1 Pages 36-51  
  Keywords Administrative Services; A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Governments and international organizations are increasingly determined to create more sustainable food value chains (SFVCs). However, only little empirical evidence is available on how SFVCs are understood. Enquiring African food value chain actors allows gathering valuable insights into their perception of sustainability, which characteristics of sustainable food value chains they prioritize, and which obstacles to a sustainable transformation they identify. By means of a Q-methodology involving interviews with 33 Kenyan respondents, four perspectives were distinguished. The first perspective, “economic productivity and growth,” prioritizes economic growth and has only limited attention to the social dimension of sustainability. The second perspective, “food security and food availability,” believes that ensuring food security should be the key goal of SFVCs. The third perspective, “environment first,” is dedicated to the environmental dimension of sustainability; the perspective implies that protecting natural resources is the primary way to sustain this level of production. The fourth perspective, “transformative knowledge,” entails that by innovating and sharing knowledge, food value chains can become more sustainable in different areas. Overall, this study provides reliable insights into how Kenyan food value chain actors perceive sustainability in their sector and which elements they believe should be prioritized when rethinking food systems. The study results are valuable for policy-making to further define an SFVC in Kenya and to pave the way for a sustainable transformation of the food sector in developing countries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001063371200001 Publication Date 2023-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-6483 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199200 Serial 9210  
Permanent link to this record
 

 
Author Vanden Abeele, M.M.P.; Vandebosch, H.; Koster, E.H.W.; De Leyn, T.; Van Gaeveren, K.; de Segovia Vicente, D.; Van Bruyssel, S.; van Timmeren, T.; De Marez, L.; Poels, K.; DeSmet, A.; De Wever, B.; Verbruggen, M.; Baillien, E. url  doi
openurl 
  Title Why, how, when, and for whom does digital disconnection work? A process-based framework of digital disconnection Type A1 Journal article
  Year 2024 Publication Communication theory Abbreviated Journal  
  Volume 34 Issue (up) 1 Pages 3-17  
  Keywords A1 Journal article; Mass communications; Media, ICT and interpersonal relations in Organisations and Society (MIOS)  
  Abstract Digital disconnection has emerged as a concept describing the actions people take to limit their digital connectivity to enhance their well-being. To date, evidence on its effectiveness is mixed, leading to calls for greater consideration of why, how, when, and for whom digital disconnection works. This article responds to these calls, presenting a framework that differentiates four key harms that contribute to experiences of digital ill-being (time displacement, interference, role blurring, and exposure effects). Using these four harms as a starting point, the framework explains: (1) why people are motivated to digitally disconnect; (2) how specific disconnection strategies (i.e., placing limits on time, access, channels, and contents, interactions and features) may help them; and for whom (3) and under which conditions (when) these strategies can be effective.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001154547700001 Publication Date 2024-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-3293; 1468-2885 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203874 Serial 9245  
Permanent link to this record
 

 
Author Arenas Esteban, D.; Wang, D.; Kadu, A.; Olluyn, N.; Sánchez-Iglesias, A.; Gomez-Perez, A.; González-Casablanca, J.; Nicolopoulos, S.; Liz-Marzán, L.M.; Bals, S. url  doi
openurl 
  Title Quantitative 3D structural analysis of small colloidal assemblies under native conditions by liquid-cell fast electron tomography Type A1 Journal Article
  Year 2024 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 15 Issue (up) 1 Pages 6399  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Electron tomography has become a commonly used tool to investigate the three-dimensional (3D) structure of nanomaterials, including colloidal nanoparticle assemblies. However, electron microscopy is typically done under high-vacuum conditions, requiring sample preparation for assemblies obtained by wet colloid chemistry methods. This involves solvent evaporation and deposition on a solid support, which consistently alters the nanoparticle organization. Here, we suggest using electron tomography to study nanoparticle assemblies in their original colloidal liquid environment. To address the challenges related to electron tomography in liquid, we devise a method that combines fast data acquisition in a commercial liquid-cell with a dedicated alignment and reconstruction workflow. We present the advantages of this methodology in accurately characterizing two different systems. 3D reconstructions of assemblies comprising polystyrene-capped Au nanoparticles encapsulated in polymeric shells reveal less compact and more distorted configurations for experiments performed in a liquid medium compared to their dried counterparts. A similar expanded trend can be observed in quantitative analysis of the surface-to-surface distances of self-assembled Au nanorods in water rather than in a vacuum, which agrees with bulk measurements. This study, therefore, emphasizes the importance of developing high-resolution characterization tools that preserve the native environment of colloidal nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001281 Publication Date 2024-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 16.6 Times cited Open Access  
  Notes S.B., D.A.E., D.W., N.O., and A.K. acknowledge financial support from ERC Consolidator Grant Number 815128 REALNANO and Horizon Europe MSCA-SE no. 101131111 – DELIGHT. D.W. acknowledges an Individual Fellowship funded by the Marie Skłodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). L.M.L.M. acknowledges financial support from Project PID2020-117779RB-I00, State Research Agency of Spain, Ministry of Science and Innovation. Approved Most recent IF: 16.6; 2024 IF: 12.124  
  Call Number EMAT @ emat @c:irua:207654 Serial 9272  
Permanent link to this record
 

 
Author De Keyser, N.; Broers, F.T.H.; Vanmeert, F.; van Loon, A.; Gabrieli, F.; De Meyer, S.; Gestels, A.; Gonzalez, V.; Hermens, E.; Noble, P.; Meirer, F.; Janssens, K.; Keune, K. url  doi
openurl 
  Title Discovery of pararealgar and semi-amorphous pararealgar in Rembrandt's The Night Watch : analytical study and historical contextualization Type A1 Journal article
  Year 2024 Publication Heritage science Abbreviated Journal  
  Volume 12 Issue (up) 1 Pages 237-20  
  Keywords A1 Journal article; Art; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract This article reports on the discovery of pararealgar and semi-amorphous pararealgar in Rembrandt's masterpiece The Night Watch. A large-scale research project named Operation Night Watch was started in 2019. A variety of non-invasive analytical imaging techniques, together with paint sample research, has provided new information about Rembrandt's pigments, materials, and techniques as well as the current condition of the painting. Macroscopic X-ray fluorescence, macroscopic X-ray powder diffraction and reflectance imaging spectroscopy identified the presence of arsenic sulfide pigments and degradation products of these pigments in the doublet sleeves and embroidered buff coat worn by Lieutenant Willem van Ruytenburch (central figure to the right of Captain Frans Banninck Cocq). Examination by light microscopy of two paint samples taken from this area shows a mixture of large sharp-edged tabular yellow and orange to red pigment particles, and scanning electron microscopy-energy dispersive X-ray analysis identified these particles as containing arsenic and sulfur. Using micro-Raman spectroscopy, the yellow particles were identified as pararealgar, and the orange to red particles as semi-amorphous pararealgar. Synchrotron-based X-ray diffraction allowed visualization of the presence of multiple degradation products associated with arsenic sulfides throughout the paint layer. The discovery of pararealgar and semi-amorphous pararealgar is a new addition to Rembrandt's pigment palette. To contextualize our findings and to hypothesize why, how, and where Rembrandt obtained the pigments, we studied related historical sources. A comprehensive review of historical sources gives insight into the types of artificial arsenic sulfides that were available and suggests that a broader range of arsenic pigments could have been available in Amsterdam in the seventeenth century than previously thought. This is supported by the use of a very similar mixture of pigments by Willem Kalf (1619-1693), a contemporary artist based in Amsterdam. Together with the condition of the particles in the paint cross sections, this brings us to the conclusion that Rembrandt intentionally used pararealgar and semi-amorphous pararealgar, together with lead-tin yellow and vermilion, to create an orange paint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001270 Publication Date 2024-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved Most recent IF: 2.5; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:207665 Serial 9284  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: