|
Record |
Links |
|
Author |
Gholam, S.; Hadermann, J. |
|
|
Title |
The effect of the acceleration voltage on the quality of structure determination by 3D-electron diffraction |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Ultramicroscopy |
Abbreviated Journal |
Ultramicroscopy |
|
|
Volume |
266 |
Issue |
|
Pages |
114022 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Nowadays, 3D Electron Diffraction (3DED) is widely used for the structure determination of sub-micron-sized particles. In this work, we investigate the influence of the acceleration voltage on the quality of 3DED datasets acquired on BaTiO3 nanoparticles. Datasets were acquired using a wide range of beam energies, from common, high acceleration voltages (300 kV and 200 kV) to medium (120 kV and 80 kV) and low acceleration voltages (60 kV and 30 kV). In the integration process, Rint increases as the beam energy reduces, which is mainly due to the increased dynamical scattering. Nevertheless, the structure was solved successfully in all cases. The structure refinement was comparable for all beam energies with small deficiencies such as negative atomic displacements for the heaviest atom in the structure, barium. Including extinction correction in the refinement noticeably improved the model for low acceleration voltages, probably due to higher beam absorption in these cases. Dynamical refinement, however, shows superior results for higher acceleration voltages, since the dynamical refinement calculations currently discard inelastic scattering effects. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001297 |
Publication Date |
2024-08-05 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-3991 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
2.2 |
Times cited |
|
Open Access |
|
|
|
Notes |
The authors acknowledge funding from the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. The authors are also grateful to Dr. Armand Béché and Dr. Lars Riekehr for their technical support and to Prof. Lukáš Palatinus, Dr. Stefano Canossa, Dr. Maria Batuk and Amirhossein Hajizadeh for fruitful discussions. |
Approved |
Most recent IF: 2.2; 2024 IF: 2.843 |
|
|
Call Number |
EMAT @ emat @c:irua:208540 |
Serial |
9268 |
|
Permanent link to this record |