|
Record |
Links |
|
Author |
Quintelier, M.; Hajizadeh, A.; Zintler, A.; Gonçalves, B.F.; Fernández de Luis, R.; Esrafili Dizaji, L.; Vande Velde, C.M.L.; Wuttke, S.; Hadermann, J. |
|
|
Title |
In SituStudy of the Activation Process of MOF-74 Using Three-Dimensional Electron Diffraction |
Type |
A1 Journal article |
|
Year |
2024 |
Publication |
Chemistry of materials |
Abbreviated Journal |
Chem. Mater. |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS) |
|
|
Abstract |
Metal–organic framework (MOF)-74 is known for its effectiveness in selectively capturing carbon dioxide (CO2). Especially the Zn and Cu versions of MOF-74 show high efficiency of this material for CO2. However, the activation of this MOF, which is a crucial step for its utilization, is so far not well understood. Here, we are closing the knowledge gap by examining the activation using, for the first time in the MOF, three-dimensional electron diffraction (3DED) during in situ heating. The use of state-of-the-art direct electron detectors enables rapid acquisition and minimal exposure times, therefore minimizing beam damage to the very electron beam-sensitive MOF material. The activation process of Zn-MOF-74 and Cu-MOF-74 is systematically studied in situ, proving the creation of open metal sites. Differences in thermal stability between Zn-MOF-74 and Cu-MOF-74 are attributed to the strength of the metal–oxygen bonds and Jahn–Teller distortions. In the case of Zn-MOF-74, we observe previously unknown remaining electrostatic potentials inside the MOF pores, which indicate the presence of remaining atoms that might impede gas flow throughout the structure when using the MOF for absorption purposes. We believe our study exemplifies the significance of employing advanced characterization techniques to enhance our material understanding, which is a crucial step for unlocking the full potential of MOFs in various applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 |
Publication Date |
2024-07-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0897-4756 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
8.6 |
Times cited |
|
Open Access |
|
|
|
Notes |
European Regional Development Fund, PID2021-122940OB-C31 ; H2020 Energy, 101022633 ; Universiteit Antwerpen, BOF TOP 38689 ; H2020 Marie Sklodowska-Curie Actions, 956099 ; Fonds Wetenschappelijk Onderzoek, I003218N ; Japan Science and Technology Agency, JPMJSC2102 ; Funda??o de Amparo ? Pesquisa do Estado de S?o Paulo; Agencia Estatal de Investigaci?n,Ministerio de Ciencia, Innovaci?n y Universidades, PID2021-122940OB-C31 TED2021-130621B-C42 ; |
Approved |
Most recent IF: 8.6; 2024 IF: 9.466 |
|
|
Call Number |
EMAT @ emat @c:irua:207555 |
Serial |
9255 |
|
Permanent link to this record |