|   | 
Details
   web
Records
Author Hajizadeh, A.; Shahalizade, T.; Riahifar, R.; Yaghmaee, M.S.; Raissi, B.; Gholam, S.; Aghaei, A.; Rahimisheikh, S.; Ghazvini, A.S.
Title Electrophoretic deposition as a fabrication method for Li-ion battery electrodes and separators : a review Type A1 Journal article
Year 2022 Publication Journal of power sources Abbreviated Journal J Power Sources
Volume 535 Issue Pages 231448-26
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrophoretic Deposition (EPD) is one of the alternative methods to fabricate and enhance the performance of Li-ion batteries. It enables the fabrication of electrodes with outstanding qualities and different electrochemical properties by the great domination over various parameters. EPD facilitates the processing of electrodes by binder-free grafting of nanomaterials, such as graphene derivatives, carbon nanotube, and nanoparticles, into the battery electrodes. It also enables the assembly of the free-standing electrodes with 3D structure and provides possibilities, such as the fabrication of the electrodes with an oriented microstructure, even on 3D substrates to improve the energy or power density. In this review, after an introduction to EPD, the effect of EPD parameters on the properties of the prepared electrodes is reviewed. Then, EPD is compared with tape cast, and its advantages over the conventional method are evaluated. Also, employing the EPD method as an intermediate process is discussed. Finally, the application of EPD in the fabrication of separators is assessed, and the prospects for the future are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000913348500001 Publication Date 2022-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-7753 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.2
Call Number UA @ admin @ c:irua:194403 Serial 7303
Permanent link to this record
 

 
Author Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M.;
Title Au@Ag nanoparticles : halides stabilize {100} facets Type A1 Journal article
Year 2013 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 4 Issue 13 Pages 2209-2216
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Seed-mediated growth is the most efficient methodology to control the size and shape of colloidal metal nanoparticles. In this process, the final nanocrystal shape is defined by the crystalline structure of the initial seed as well as by the presence of ligands and other additives that help to stabilize certain crystallographic facets. We analyze here the growth mechanism in aqueous solution of silver shells on presynthesized gold nanoparticles displaying various well-defined crystalline structures and morphologies. A thorough three-dimensional electron microscopy characterization of the morphology and internal structure of the resulting core-shell nanocrystals indicates that {100} facets are preferred for the outer silver shell, regardless of the morphology and crystallinity of the gold cores. These results are in agreement with theoretical analysis based on the relative surface energies of the exposed facets in the presence of halide ions.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000321809500018 Publication Date 2013-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.353 Times cited 131 Open Access
Notes 267867 Plasmaquo; 246791 COUNTATOMS; 262348 ESMI; FWO Approved Most recent IF: 9.353; 2013 IF: 6.687
Call Number UA @ lucian @ c:irua:109811 Serial 204
Permanent link to this record
 

 
Author Berends, A.C.; Rabouw, F.T.; Spoor, F.C.M.; Bladt, E.; Grozema, F.C.; Houtepen, A.J.; Siebbeles, L.D.A.; de Donega, C.M.
Title Radiative and nonradiative recombination in CuInS2 nanocrystals and CuInS2-based core/shell nanocrystals Type A1 Journal article
Year 2016 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 7 Issue 7 Pages 3503-3509
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Luminescent copper indium sulfide (CIS) nanocrystals are a potential solution to the toxicity issues associated with Cd- and Pb-based nanocrystals. However, the development of high-quality CIS nanocrystals has been complicated by insufficient knowledge of the electronic structure and of the factors that lead to luminescence quenching. Here we investigate the exciton decay pathways in CIS nanocrystals using time resolved photoluminescence and transient absorption spectroscopy. Core-only CIS nanocrystals with low quantum yield are compared to core/shell nanocrystals (CIS/ZnS and CIS/CdS) with higher quantum yield. Our measurements support the model of photoluminescence by radiative recombination of a conduction band electron with a localized hole. Moreover, we find that photoluminescence quenching in low-quantum-yield nanocrystals involves initially uncoupled decay pathways for the electron and hole. The electron decay pathway determines whether the exciton recombines radiatively or nonradiatively. The development of high-quality CIS nanocrystals should therefore focus on the elimination of electron traps.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000382603300037 Publication Date 2016-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.353 Times cited 67 Open Access
Notes Approved Most recent IF: 9.353
Call Number UA @ lucian @ c:irua:135715 Serial 4308
Permanent link to this record
 

 
Author Yang, C.; Laberty-Robert, C.; Batuk, D.; Cibin, G.; Chadwick, A.V.; Pimenta, V.; Yin, W.; Zhang, L.; Tarascon, J.-M.; Grimaud, A.
Title Phosphate ion functionalization of perovskite surfaces for enhanced oxygen evolution reaction Type A1 Journal article
Year 2017 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 8 Issue 15 Pages 3466-3472
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recent findings revealed that surface oxygen can participate in the oxygen evolution reaction (OER) for the most active catalysts, which eventually triggers a new mechanism for which the deprotonation of surface intermediates limits the OER activity. We propose in this work a “dual strategy” in which tuning the electronic properties of the oxide, such as La1-xSrxCoO3-delta, can be dissociated from the use of surface functionalization with phosphate ion groups (P-i) that enhances the interfacial proton transfer. Results show that the P-i functionalized La0.5Sr0.5CoO3-delta gives rise to a significant enhancement of the OER activity when compared to La0.5Sr0.5Co3-delta and LaCoO3. We further demonstrate that the P-i surface functionalization selectivity enhances the activity when the OER kinetics is limited by the proton transfer. Finally, this work suggests that tuning the catalytic activity by such a “dual approach” may be a new and largely unexplored avenue for the design of novel high-performance catalysts.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000407191300003 Publication Date 2017-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.353 Times cited 31 Open Access OpenAccess
Notes ; C.Y., J.-M.T., D.B., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. ; Approved Most recent IF: 9.353
Call Number UA @ lucian @ c:irua:145730 Serial 4747
Permanent link to this record
 

 
Author Wu, Y.; Chen, G.; Yu, J.; Wang, D.; Ma, C.; Li, C.; Pennycook, S.J.; Yan, Y.; Wei, S.-H.
Title Hole-induced spontaneous mutual annihilation of dislocation pairs Type A1 Journal article
Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume 10 Issue 23 Pages 7421-7425
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Dislocations are always observed during crystal growth, and it is usually desirable to reduce the dislocation density in high-quality crystals. Here, the annihilation process of the 30 degrees Shockley partial dislocation pairs in CdTe is studied by first-principles calculations. We found that the dislocations can glide relatively easily due to the weak local bonding. Our systematic study of the slipping mechanism of the dislocations suggests that the energy barrier for the annihilation process is low. Band structure calculations reveal that the band bending caused by the charge transfer between the two dislocation cores depends on the core-core distance. A simple linear model is proposed to describe the mechanism of formation of the dislocation pair. More importantly, we demonstrate that hole injection can affect the core structure, increase the mobility, and eventually trigger a spontaneous mutual annihilation, which could be employed as a possible facile way to reduce the dislocation density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000501622700017 Publication Date 2019-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) 9.353 Times cited Open Access
Notes Approved Most recent IF: 9.353
Call Number UA @ admin @ c:irua:165068 Serial 6302
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Stergar, E.; Pakarinen, J.; Verwerft, M.; Yang, Y.; Hofer, C.; Schnitzer, R.; Lamm, S.; Felfer, P.; Schryvers, D.
Title The role of Ti and TiC nanoprecipitates in radiation resistant austenitic steel: A nanoscale study Type A1 Journal article
Year 2020 Publication Acta Materialia Abbreviated Journal Acta Mater
Volume 197 Issue Pages 184-197
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work encompasses an in-depth transmission electron microscopy and atom probe tomography study of Ti-stabilized austenitic steel irradiated with Fe-ions. The focus is on radiation induced segregation and precipitation, and in particular on how Ti and TiC affect these processes. A 15-15Ti steel (grade: DIN 1.4970) in two thermo-mechanical states (cold-worked and aged) was irradiated at different temperatures up to a dose of 40 dpa. At low irradiation temperatures, the cold-worked and aged materials evolved to a similar microstructure dominated by small Si and Ni clusters, corresponding to segregation to small point defect clusters. TiC precipitates, initially present in the aged material, were found to be unstable under these irradiation conditions. Elevated irradiation temperatures resulted in the nucleation of nanometer sized Cr enriched TiC precipitates surrounded by Si and Ni enriched shells. In addition, nanometer sized Ti- and Mn-enriched G-phase (M6Ni16Si7) precipitates formed, often attached to TiC precipitates. Post irradiation, larger number densities of TiC were observed in the cold-worked material compared to the aged material. This was correlated with a lower volume fraction of G-phase. The findings suggest that at elevated irradiation temperatures, the precipitate-matrix interface is an important point defect sink and contributes to the improved radiation resistance of this material. The study is a first of its kind on stabilized steel and demonstrates the significance of the small Ti addition to the evolution of the microstructure under irradiation. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000564767000001 Publication Date 2020-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.4 Times cited Open Access Not_Open_Access
Notes ; This work was supported by ENGIE [contract number 2015-AC-007 e BSUEZ6900]; the U.S. Department of Energy, Office of Nuclear Energy under DOE Idaho Operations Office Contract DE-AC07051D14517 as part of a Nuclear Science User Facilities experiment; and by the MYRRHA program at SCK-CEN, Belgium. Funding of the Austrian BMK (846933) in the framework of the program “Production of the future” and the “BMK Professorship for Industry” is gratefully acknowledged. We want to thank the staffat MIBL for assisting with the ion irradiations as well as the staffat CAES for assisting with FIB work and conducting APT measurements. ; Approved Most recent IF: 9.4; 2020 IF: 5.301
Call Number UA @ admin @ c:irua:171956 Serial 6626
Permanent link to this record
 

 
Author Choisez, L.; Ding, L.; Marteleur, M.; Kashiwar, A.; Idrissi, H.; Jacques, P.J.
Title Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti – 12 wt % Mo alloy Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 235 Issue Pages 118088-13
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Dynamic recrystallization (DRX) within adiabatic shear bands forming during the fracture of TRIP-TWIP β−metastable Ti-12Mo (wt %) alloy was recently reported. The formation of 1-3 µm thick-adiabatic shear bands, and of dynamic recrystallization, was quite surprising as their occurrence generally requires high temperature and/or high strain rate loading while these samples were loaded in quasi-static conditions at room temperature. To better understand the fracture mechanism and associated microstructural evolution, thin foils representative of different stages of the fracture process were machined from the fracture surface by Focused Ion Beam (FIB) and analyzed by Transmission Electron Microscopy (TEM) and Automated Crystal Orientation mapping (ACOM-TEM). Complex microstructure transformations involving severe plastic deformed nano-structuration, crystalline rotation and local precipitation of the omega phase were identified. The spatial and temporal evolution of the microstructure during the propagation of the crack was explained through dynamic recovery and continuous dynamic recrystallization, and linked to the modelled distribution of temperature and strain level where TEM samples were extracted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000814729300005 Publication Date 2022-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:188505 Serial 7096
Permanent link to this record
 

 
Author Mary Joy, R.; Pobedinskas, P.; Baule, N.; Bai, S.; Jannis, D.; Gauquelin, N.; Pinault-Thaury, M.-A.; Jomard, F.; Sankaran, K.J.; Rouzbahani, R.; Lloret, F.; Desta, D.; D’Haen, J.; Verbeeck, J.; Becker, M.F.; Haenen, K.
Title The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films Type A1 Journal article
Year 2024 Publication Acta materialia Abbreviated Journal Acta Materialia
Volume 264 Issue Pages 119548
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This study reports the impact of film microstructure and composition on the Young’s modulus and residual stress in nanocrystalline diamond (NCD) thin films ( thick) grown on silicon substrates using a linear antenna microwave plasma-enhanced chemical vapor deposition (CVD) system. Combining laser acoustic wave spectroscopy to determine the elastic properties with simple wafer curvature measurements, a straightforward method to determine the intrinsic stress in NCD films is presented. Two deposition parameters are varied: (1) the substrate temperature from 400 °C to 900 °C, and (2) the [P]/[C] ratio from 0 ppm to 8090 ppm in the H2/CH4/CO2/PH3 diamond CVD plasma. The introduction of PH3 induces a transition in the morphology of the diamond film, shifting from NCD with larger grains to ultra-NCD with a smaller grain size, concurrently resulting in a decrease in Young’s modulus. Results show that the highest Young’s modulus of (113050) GPa for the undoped NCD deposited at 800 °C is comparable to single crystal diamond, indicating that NCD with excellent mechanical properties is achievable with our process for thin diamond films. Based on the film stress results, we propose the origins of tensile intrinsic stress in the diamond films. In NCD, the tensile intrinsic stress is attributed to larger grain size, while in ultra-NCD films the tensile intrinsic stress is due to grain boundaries and impurities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001126632800001 Publication Date 2023-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.4 Times cited Open Access Not_Open_Access
Notes This work was financially supported by the Special Research Fund (BOF) via Methusalem NANO network, the Research Foundation – Flanders (FWO) via Project G0D4920N, and the CORNET project nr 263-EN “ULTRAHARD: Ultrahard optical diamond coatings” (2020–2021). Approved Most recent IF: 9.4; 2024 IF: 5.301
Call Number EMAT @ emat @c:irua:202169 Serial 8989
Permanent link to this record
 

 
Author Arseenko, M.; Hannard, F.; Ding, L.; Zhao, L.; Maire, E.; Villanova, J.; Idrissi, H.; Simar, A.
Title A new healing strategy for metals : programmed damage and repair Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 238 Issue Pages 118241-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Self-healing strategies aim at avoiding part repair or even replacement, which is time consuming, expen-sive and generates waste. However, strategies for metallic systems are still under-developed and solid-state solutions for room temperature service are limited to nano-scale damage repair. Here we propose a new healing strategy of micron-sized damage requiring only short and low temperature heating. This new strategy is based on damage localization particles, which can be healed by fast diffusing atoms of the matrix activated during heat treatment. The healing concept was successfully validated with a com-mercial aluminum alloy and manufactured by Friction Stir Processing (FSP). Damage was demonstrated to initiate on particles that were added to the matrix during material processing. In situ 2D and 3D nano -imaging confirmed healing of the damaged material and showed that heating this material for 10 min at 400 degrees C is sufficient to heal incipient damage with complete filling of 70% of all damage (and up to 90% when their initial size is below 0.2 mu m). Furthermore, strength is retained and the work of fracture of the alloy is improved by about 40% after healing. The proposed Programmed Damage and Repair healing strategy could be extended to other metal based systems presenting precipitation. (C) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000843502700006 Publication Date 2022-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:190561 Serial 7121
Permanent link to this record
 

 
Author Idrissi, H.; Béché, A.; Gauquelin, N.; Ul-Haq, I.; Bollinger, C.; Demouchy, S.; Verbeeck, J.; Pardoen, T.; Schryvers, D.; Cordier, P.
Title On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization Type A1 Journal article
Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 239 Issue Pages 118247-118249
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Intragranular amorphization shear lamellae are found in deformed olivine aggregates. The detailed trans-mission electron microscopy analysis of intragranular lamella arrested in the core of a grain provides novel information on the amorphization mechanism. The deformation field is complex and heteroge-neous, corresponding to a shear crack type instability involving mode I, II and III loading components. The formation and propagation of the amorphous lamella is accompanied by the formation of crystal defects ahead of the tip. These defects are geometrically necessary [001] dislocations, characteristics of high-stress deformation in olivine, and rotational nanodomains which are tentatively interpreted as disclinations. We show that these defects play an important role in dictating the path followed by the amorphous lamella. Stress-induced amorphization in olivine would thus result from a direct crystal-to -amorphous transformation associated with a shear instability and not from a mechanical destabilization due to the accumulation of high number of defects from an intense preliminary deformation. The pref-erential alignment of some lamellae along (010) is a proof of the lower ultimate mechanical strength of these planes.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000861076600004 Publication Date 2022-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.4 Times cited 5 Open Access OpenAccess
Notes The QuanTEM microscope was partially funded by the Flemish government. The K2 camera was funded by FWO Hercules fund G0H4316N 'Direct electron detector for soft matter TEM'. A. Beche acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T011322F and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 787,198 Time Man. J-L Rouviere is acknowledged for his support with the GPA softawre. Approved Most recent IF: 9.4
Call Number UA @ admin @ c:irua:191432 Serial 7186
Permanent link to this record
 

 
Author Coulombier, M.; Baral, P.; Orekhov, A.; Dohmen, R.; Raskin, J.P.; Pardoen, T.; Cordier, P.; Idrissi, H.
Title On-chip very low strain rate rheology of amorphous olivine films Type A1 Journal article
Year 2024 Publication Acta materialia Abbreviated Journal
Volume 266 Issue Pages 119693-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recent observations made by the authors revealed the activation of stress induced amorphization and sliding at grain boundary in olivine [1], a mechanism which is expected to play a pivotal role in the viscosity drop at the lithosphere-asthenosphere boundary and the brittle -ductile transition in the lithospheric mantle. However, there is a lack of information in the literature regarding the intrinsic mechanical properties and the elementary deformation mechanisms of this material, especially at time scales relevant for geodynamics. In the present work, amorphous olivine films were obtained by pulsed laser deposition (PLD). The mechanical response including the rate dependent behavior are investigated using a tension -on -chip (TOC) method developed at UCLouvain allowing to perform creep/relaxation tests on thin films at extremely low strain rates. In the present work, strain rate down to 10-12 s- 1 was reached which is unique. High strain rate sensitivity of 0.054 is observed together with the activation of relaxation at the very early stage of deformation. Furthermore, digital image correlation (DIC), used for the first time on films deformed by TOC, reveals local strain heterogeneities. The relationship between such heterogeneities, the high strain rate sensitivity and the effect of the electron beam in the scanning electron microscope is discussed and compared to the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001170513400001 Publication Date 2024-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.4 Times cited Open Access
Notes Approved Most recent IF: 9.4; 2024 IF: 5.301
Call Number UA @ admin @ c:irua:204864 Serial 9163
Permanent link to this record
 

 
Author Baral, P.; Kashiwar, A.; Coulombier, M.; Delannay, L.; Hoummada, K.; Raskin, J.P.; Idrissi, H.; Pardoen, T.
Title Grain boundary-mediated plasticity in aluminum films unraveled by a statistical approach combining nano-DIC and ACOM-TEM Type A1 Journal article
Year 2024 Publication Acta materialia Abbreviated Journal
Volume 276 Issue Pages 120081-14
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanomechanical on-chip testing is combined with nanoscale in situ digital image correlation and automated crystal orientation mapping in TEM to deliver novel statistically representative quantitative data about the deformation mechanisms in nanocrystalline aluminum films. The films are very ductile, with a rare stable multiple necking process with local strains reaching up to 0.45 and macroscopic elongation up to 0.17. The strain fields with resolution below 100 nm are related to the underlying microstructure and crystallographic orientation maps. This reveals nanoscopic shear bands forming preferentially along GB with high misorientations, tilted at +/− 45° with respect to loading direction. The analysis of these data prove that the strong strain delocalization process is promoted by GB migration and grain rotation, leading to large strain rate sensitivity. The distribution of misorientation angles between grains evolve during deformation. The GBs with misorientation between 20° and 40°, which are the GBs with highest energy, involve the largest strains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001258 Publication Date 2024-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record
Impact Factor (up) 9.4 Times cited Open Access
Notes Approved Most recent IF: 9.4; 2024 IF: 5.301
Call Number UA @ admin @ c:irua:206419 Serial 9294
Permanent link to this record
 

 
Author Liu, J.; Hu, Z.-Y.; Peng, Y.; Huang, H.-W.; Li, Y.; Wu, M.; Ke, X.-X.; Van Tendeloo, G.; Su, B.-L.
Title 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 181 Issue 181 Pages 138-145
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Two dimensional (2D) ZnO nanosheets are ideal system for dimensionally confined transport phenomenon investigation owing to specific surface atomic configuration. Therefore, 2D ZnO porous nanosheets with single-crystal nature and {0001} polar facets, likely display some specific physicochemical properties. In this work, for the first time, 2D ZnO mesoporous single-crystal nanosheets (ZnO-MSN) with {0001} polar facets have been designed and prepared via an intriguing colloidal templating approach through controlling the infiltration speed for the suspension of EG-capped ZnO nanoparticles and polymer colloids. The EG-capped ZnO nanoparticles are very helpful for single-crystal nanosheet formation, while the polymer colloids play dual roles on the mesoporosity generation and {0001} polar facets formation within the mesopores. Such special 2D structure not only accelerates the hole-electron separation and the electron transportation owing to the single-crystal nature, but also enhances the selective adsorption of organic molecules owing to the porous structure and the exposed {0001} polar facets with more O-termination (000-1) surfaces: the 2D ZnO-MSN shows highly selective adsorption and significantly higher photodegradation for positively charged rhodamine B than those for negatively charged methyl orange and neutral phenol, comparing with ZnO nanoparticles (ZnO-NP) and ZnO commercial nanoparticles (ZnO-CNP) with high surface areas. This work may shed some light on better understanding the synthesis of 2D porous single-crystal nanosheet with exposed polar surfaces and photocatalytic mechanism of nanostructured semiconductors in a mixed organic molecules system.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000364256000015 Publication Date 2015-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 60 Open Access
Notes 246791 Countatoms Approved Most recent IF: 9.446
Call Number c:irua:127638 c:irua:127638 c:irua:127638 Serial 10
Permanent link to this record
 

 
Author Beyers, E.; Biermans, E.; Ribbens, S.; de Witte, K.; Mertens, M.; Meynen, V.; Bals, S.; Van Tendeloo, G.; Vansant, E.F.; Cool, P.
Title Combined TiO2/SiO2 mesoporous photocatalysts with location and phase controllable TiO2 nanoparticles Type A1 Journal article
Year 2009 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 88 Issue 3/4 Pages 515-524
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Combined TiO2/SiO2 mesoporous materials were prepared by deposition of TiO2 nanoparticles synthesised via the acid-catalysed solgel method. In the first synthesis step a titania solution is prepared, by dissolving titaniumtetraisopropoxide in nitric acid. The influences of the initial titaniumtetraisopropoxide concentration and the temperature of dissolving on the final structural properties were investigated. In the second step of the synthesis, the titania nanoparticles were deposited on a silica support. Here, the influence of the temperature during deposition was studied. The depositions were carried out on two different mesoporous silica supports, SBA-15 and MCF, leading to substantial differences in the catalytic and structural properties. The samples were analysed with N2-sorption, X-ray diffraction (XRD), electron probe microanalysis (EPMA) and transmission electron microscopy (TEM) to obtain structural information, determining the amount of titania, the crystal phase and the location of the titania particles on the mesoporous material (inside or outside the mesoporous channels). The structural differences of the support strongly determine the location of the nanoparticles and the subsequent photocatalytic activity towards the degradation of rhodamine 6G in aqueous solution under UV irradiation.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000266513400032 Publication Date 2008-10-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 69 Open Access
Notes Goa-Bof; Fwo Approved Most recent IF: 9.446; 2009 IF: 5.252
Call Number UA @ lucian @ c:irua:77150 Serial 403
Permanent link to this record
 

 
Author de Witte, K.; Meynen, V.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F.; Vansant, E.F.; Cool, P.
Title Multi-step loading of titania on mesoporous silica: influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOC's Type A1 Journal article
Year 2008 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 84 Issue 1/2 Pages 125-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Titania nanoparticles have been deposited on inert porous silica supports with high specific surface area. These materials have potential applications in paint and textile industry as the titania particles selectively deposited on the inner surface of the silica supports act as a photocatalyst. The inert external surface is necessary to avoid photodegradation of the textile material or the paint components. The photocatalytic activity of the catalysts has been evaluated with two catalytic setups. One setup in aqueous phase, for the degradation of dyes such as rhodamine-6G, is commonly used. The second setup is a continuous flow gaseous phase setup which was used for the mineralization of ethanol as a representative volatile organic compound (VOC). The influence of the porosity and the morphology of the silica supports on the photocatalytic activity are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000260728300017 Publication Date 2008-04-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 24 Open Access
Notes Iwt 30916; Fwo Approved Most recent IF: 9.446; 2008 IF: 4.853
Call Number UA @ lucian @ c:irua:68279 Serial 2213
Permanent link to this record
 

 
Author Sheng, X.; Daems, N.; Geboes, B.; Kurttepeli, M.; Bals, S.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.J.; Pescarmona, P.P.
Title N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2 Type A1 Journal article
Year 2015 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 176-177 Issue 176-177 Pages 212-224
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A new, two-step nanocasting method was developed to prepare N-doped ordered mesoporous carbon (NOMC) electrocatalysts for the reduction of O2 to H2O2. Our strategy involves the sequential pyrolysis of two inexpensive and readily available N and C precursors, i.e. aniline and dihydroxynaphthalene (DHN), inside the pores of a SBA-15 hard silica template to obtain N-doped graphitic carbon materials with well-ordered pores and high surface areas (764 and 877 m2g−1). By tuning the ratio of carbon sources to silica template, it was possible to achieve an optimal filling of the pores of the SBA-15 silica and to minimise carbon species outside the pores. These NOMC materials displayed outstanding electrocatalytic activity in the oxygen reduction reaction, achieving a remarkably enhanced kinetic current density compared to state-of-the-art N-doped carbon materials (−16.7 mA cm−2 at −0.35 V vs. Ag/AgCl in a 0.1 M KOH solution as electrolyte). The NOMC electrocatalysts showed high selectivity toward the two-electron reduction of oxygen to hydrogen peroxide and excellent long-term stability.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000356549200022 Publication Date 2015-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 111 Open Access OpenAccess
Notes 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2015 IF: 7.435
Call Number c:irua:125370 Serial 2246
Permanent link to this record
 

 
Author Verbruggen, S.W.; Deng, S.; Kurttepeli, M.; Cott, D.J.; Vereecken, P.M.; Bals, S.; Martens, J.A.; Detavernier, C.; Lenaerts, S.
Title Photocatalytic acetaldehyde oxidation in air using spacious TiO2 films prepared by atomic layer deposition on supported carbonaceous sacrificial templates Type A1 Journal article
Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 160 Issue Pages 204-210
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Supported carbon nanosheets and carbon nanotubes served as sacrificial templates for preparing spacious TiO2 photocatalytic thin films. Amorphous TiO2 was deposited conformally on the carbonaceous template material by atomic layer deposition (ALD). Upon calcination at 550 °C, the carbon template was oxidatively removed and the as-deposited continuous amorphous TiO2 layers transformed into interlinked anatase nanoparticles with an overall morphology commensurate to the original template structure. The effect of type of template, number of ALD cycles and gas residence time of pollutant on the photocatalytic activity, as well as the stability of the photocatalytic performance of these thin films was investigated. The TiO2 films exhibited excellent photocatalytic activity toward photocatalytic degradation of acetaldehyde in air as a model reaction for photocatalytic indoor air pollution abatement. Optimized films outperformed a reference film of commercial PC500.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000340687900024 Publication Date 2014-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 37 Open Access OpenAccess
Notes 335078 Colouratom; Iap-Pai P7/05; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446; 2014 IF: 7.435
Call Number UA @ lucian @ c:irua:117094 Serial 2608
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Van Tendeloo, G.; Lacombe, S.; Martens, J.A.; Lenaerts, S.
Title Plasmonic goldsilver alloy on TiO2 photocatalysts with tunable visible light activity Type A1 Journal article
Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 156 Issue Pages 116-121
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Adaptation of the photoresponse of anatase TiO2 to match the solar spectrum is an important scientific challenge. Modification of TiO2 with noble metal nanoparticles displaying surface plasmon resonance effects is one of the promising approaches. Surface plasmon resonance typically depends on chemical composition, size, shape and spatial organization of the metal nanoparticles in contact with TiO2. AuxAg(1 − x) alloy nanoparticles display strong composition-dependent surface plasmon resonance in the visible light region of the spectrum. In this work, a general strategy is presented to prepare plasmonic TiO2-based photocatalysts with a visible light response that can be accurately tuned over a broad range of the spectrum. The application as self-cleaning material toward the degradation of stearic acid is demonstrated for a plasmonic TiO2 photocatalyst displaying visible light photoactivity at the intensity maximum of solar light around 490 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000336013200014 Publication Date 2014-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 84 Open Access
Notes Flanders(FWO); Methusalem Approved Most recent IF: 9.446; 2014 IF: 7.435
Call Number UA @ lucian @ c:irua:115552 Serial 2646
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Goris, B.; Blommaerts, N.; Bals, S.; Martens, J.A.; Lenaerts, S.
Title Plasmonic ‘rainbow’ photocatalyst with broadband solar light response for environmental applications Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 188 Issue 188 Pages 147-153
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract We propose the concept of a ‘rainbow’ photocatalyst that consists of TiO2 modified with gold-silver alloy nanoparticles of various sizes and compositions, resulting in a broad plasmon absorption band that covers the entire UV–vis range of the solar spectrum. It is demonstrated that this plasmonic ‘rainbow’ photocatalyst is 16% more effective than TiO2 P25 under both simulated and real solar light for pollutant degradation at the solid-gas interface. With this we provide a promising strategy to maximize the spectral response for solar to chemical energy conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372677500016 Publication Date 2016-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 47 Open Access OpenAccess
Notes S.W.V. and B.G. acknowledge the Research Foundation—Flanders (FWO) for a postdoctoral fellowship. M.K. acknowledges IWT for the doctoral scholarship. S.B. acknowledges the European Research Council (ERC) for financial support through the ERC grant agreement no. 335078-COLOURATOM. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446
Call Number c:irua:130995 Serial 4061
Permanent link to this record
 

 
Author Vanrenterghem, B.; Geboes, B.; Bals, S.; Ustarroz, J.; Hubin, A.; Breugelmans, T.
Title Influence of the support material and the resulting particle distribution on the deposition of Ag nanoparticles for the electrocatalytic activity of benzyl bromide reduction Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 181 Issue 181 Pages 542-549
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract tSilver nanoparticles (NPs) were deposited on nickel, titanium and gold substrates using a potentiostaticdouble-pulse method. The influence of the support material on both the morphology and the electro-catalytic activity of Ag NPs for the reduction reaction of benzyl bromide was investigated and comparedwith previous research regarding silver NPs on glassy carbon. Scanning electron microscopy (SEM) dataindicated that spherical monodispersed NPs were obtained on Ni, Au and GC substrate with an averageparticle size of respectively 216 nm, 413 nm and 116 nm. On a Ti substrate dendritic NPs were obtainedwith a larger average particle density of 480 nm. The influence of the support material on the electrocat-alytic activity was tested by means of cyclic voltammetry (CV) for the reduction reaction of benzylbromide(1 mM) in acetonitrile + 0.1 M tetrabutylammonium perchlorate (Bu4NClO4). When the nucleation poten-tial (En) was applied at high cathodic overpotential, a positive shift of the reduction potential was obtained.The nucleation (tn) and growth time (tg) mostly had an influence on the current density whereas longerdeposition times lead to larger current densities. For these three parameters an optimum was present.The best electrocatalytic activity was obtained with Ag NPs deposited on Ni were a shift of the reduc-tion peak potential of 145 mV for the reaction of benzyl bromide was measured in comparance to bulksilver. The deposition on Au substrate yielded a positive shift of 114 mV. There was no indication of analtered reaction mechanism as the reaction was characterized as diffusion controlled and the transfercoefficients were in accordance with bulk silver. There was a beneficial catalitic activity measured due tothe interplay between support and NPs. This resulted in a shift of the reduction peak potential of 34 mV(Ag NPs on Au) and 65 mV (Ag NPs on Ni) compared to Ag NPs on a GC substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364256000052 Publication Date 2015-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 16 Open Access OpenAccess
Notes The Quanta 250 FEG microscope of the Electron Microscopy forMaterial Science group at the University of Antwerp was fundedby the Hercules foundation of the Flemish Government. Sara Balsacknowledges financial support from European Research Council(ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446
Call Number c:irua:128345 Serial 4064
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W.
Title Silver-polymer core-shell nanoparticles for ultrastable plasmon-enhanced photocatalysis Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 200 Issue 200 Pages 31-38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Affordable silver-polymer core-shell nanoparticles are prepared using the layer-by-layer (LbL) technique. The metallic silver core is encapsulated with an ultra-thin protective shell that prevents oxidation and clustering without compromising the plasmonic properties. The core-shell nanoparticles retain their plasmonic near field enhancement effect, as studied from finite element numerical simulations. Control over the shell thickness up to the sub-nanometer level is there for key. The particles are used to prepare a plasmonic Ag-TiO2 photocatalyst of which the gas phase photocatalytic activity is monitored over a period of four months. The described system outperforms pristine TiO2 and retains its plasmonic enhancement in contrast to TiO2 modified with bare silver nanoparticles. With this an important step is made toward the development of long-term stable plasmonic (photocatalytic) applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384775600004 Publication Date 2016-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 45 Open Access OpenAccess
Notes CD, SL and SWV acknowledge the Research Foundation − Flanders (FWO) for financial support. CD further acknowledges BOF-UGent (GOA 01G01513) and the Hercules Foundation (AUGE/09/014). SB acknowledges the European Research Council for the ERC Starting Grant #335078-COLOURATOM.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446
Call Number c:irua:134384 c:irua:134384UA @ admin @ c:irua:134384 Serial 4104
Permanent link to this record
 

 
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguig, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L.
Title BiVO4/3DOM TiO2 nanocomposites: Effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
Year 2016 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue 205 Pages 121-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393931000013 Publication Date 2016-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 52 Open Access OpenAccess
Notes Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 9.446
Call Number EMAT @ emat @ Serial 4323
Permanent link to this record
 

 
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L.
Title BiVo4/3DOM TiO2 nanocomposites : effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 205 Issue 205 Pages 121-132
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000393931000013 Publication Date 2016-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 52 Open Access OpenAccess
Notes ; This work was realized with the financial support of Chinese Ministry of Education in a framework of the Changjiang Scholar Innovative Research Team Program (IRT_15R52). B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Member, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is also supported by PhD Programs Foundation (20120143120019) of Chinese Ministry of Education, the Wuhan Youth Chenguang Program of Science and Technology (2013070104010003), Hubei Provincial Natural Science Foundation (2014CFB160, 2015CFB516), the National Science Foundation for Young Scholars of China (No. 51502225) and Self-determined and Innovative Research Funds of the SKLWUT (2015-ZD-7). MZ thanks the scholarship support from the Laboratory of Inorganic Materials Chemistry ay the University of Namur. Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of University of Namur thanks to Dr. P. Louette. XRD measurements, UV-vis and photoluminescent spectroscopic analyses and N<INF>2</ INF> adsorption-desorption measurements were made with the facility of the “Plateforme Technologique Physico-Chimique”. ; Approved Most recent IF: 9.446
Call Number UA @ lucian @ c:irua:138601 Serial 4405
Permanent link to this record
 

 
Author Bigiani, L.; Barreca, D.; Gasparotto, A.; Andreu, T.; Verbeeck, J.; Sada, C.; Modin, E.; Lebedev, O.I.; Morante, J.R.; Maccato, C.
Title Selective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process Type A1 Journal article
Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 284 Issue Pages 119684
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electrolysis of seawater, a significantly more abundant natural reservoir than freshwater, stands as a promising alternative for sustainable hydrogen production, provided that the competitive chloride electro-oxidation is minimized. Herein, we propose an original material combination to selectively trigger oxygen evolution from seawater at expenses of chlorine generation. The target systems, based on MnO2 or Mn2O3 decorated with Fe2O3 or Co3O4, are fabricated by plasma enhanced-chemical vapor deposition of manganese oxides, functionalization with Fe2O3 and Co3O4 by sputtering, and annealing in air/Ar to obtain Mn(IV)/Mn(III) oxides. Among the various options, MnO2 decorated with Co3O4 yields the best performances in alkaline seawater splitting, with an outstanding Tafel slope of approximate to 40 mV x dec(-1) and an overpotential of 450 mV, enabling to rule out chlorine evolution. These attractive performances, resulting from the synergistic contribution of catalytic and electronic effects, open the door to low-cost hydrogen generation from seawater under real-world conditions, paving the way to eventual large-scale applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000623591500008 Publication Date 2020-11-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited 67 Open Access OpenAccess
Notes The authors thank Padova University (DOR 2017–2020 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects), as well as the INSTM Consortium (INSTMPD004 – NETTUNO project) and AMGA Foundation (Mn4Energy project), for financial support. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. J.V. acknowledges funding from a GOA project 'Solarpaint' (University of Antwerp) and from the EU-H2020 programme (grant agreement No. 823717 – ESTEEM3). J.R.M. and T.A. acknowledge Generalitat de Catalunya for financial support through the CERCA Programme, 27 M2E (2017SGR1246) and by ERDEF-MINECO coordinated projects ENE2017-85087-C3 and ENE2016-80788-C5-5-R. Thanks are also due to Proff. Gloria Tabacchi and Ettore Fois (Department of Science and High Technology, Insubria University, Como, Italy) for valuable discussions and support. Dr. Daniele Valbusa, Dr. Gianluca Corrò, Dr. Andrea Gallo and Dr. Dileep Khrishnan are gratefully acknowledged for helpful technical assistance. Approved Most recent IF: 9.446
Call Number UA @ admin @ c:irua:176718 Serial 6733
Permanent link to this record
 

 
Author Fu, Y.; Ding, L.; Singleton, M.L.; Idrissi, H.; Hermans, S.
Title Synergistic effects altering reaction pathways : the case of glucose hydrogenation over Fe-Ni catalysts Type A1 Journal article
Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 288 Issue Pages 119997
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbon black (CB) supported Ni, Fe, or Fe-Ni alloy catalysts were synthesized by sol-gel to elucidate the reaction pathways over each catalyst, as well as synergistic effects in glucose to sorbitol hydrogenation. The bimetallic materials presented small and alloyed nanoparticles that were richer in reduced metallic sites at the surface than their monometallic counterparts. Glucose isomerization to fructose was favoured over Fe/CB, while glucose hydrogenation to sorbitol is the dominating pathway over Ni/CB catalyst. By contrast, sorbitol production was promoted and undesired isomerization was suppressed when Fe and Ni formed a nanoalloy. In addition, the alloy catalyst presented better stability than the corresponding monometallic catalyst. A comparison with a mechanical mixture of Fe/CB and Ni/CB monometallic catalysts demonstrated the synergy at the nanoscale in the alloy. By comparing different Fe:Ni ratios, the 1:1 formulation was identified as the best compromise to achieve a high activity while maintaining high sorbitol selectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000632996500002 Publication Date 2021-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.446 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 9.446
Call Number UA @ admin @ c:irua:177621 Serial 6789
Permanent link to this record
 

 
Author Corbel, G.; Attfield, J.P.; Hadermann, J.; Abakumov, A.M.; Alekseeva, A.M.; Rozova, M.G.; Antipov, E.V.
Title Anion rearrangements in fluorinated Nd2CuO3.5 Type A1 Journal article
Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 15 Issue Pages 189-195
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000180368000029 Publication Date 2003-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.466 Times cited 9 Open Access
Notes Approved Most recent IF: 9.466; 2003 IF: 4.374
Call Number UA @ lucian @ c:irua:40348 Serial 123
Permanent link to this record
 

 
Author Casavola, M.; van Huis, M.A.; Bals, S.; Lambert, K.; Hens, Z.; Vanmaekelbergh, D.
Title Anisotropic cation exchange in PbSe/CdSe core/shell nanocrystals of different geometry Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 2 Pages 294-302
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a study of Cd2+-for-Pb2+ exchange in PbSe nanocrystals (NCs) with cube, star, and rod shapes. Prolonged temperature-activated cation exchange results in PbSe/CdSe heterostructured nanocrystals (HNCs) that preserve their specific overall shape, whereas the PbSe core is strongly faceted with dominance of {111} facets. Hence, cation exchange proceeds while the Se anion lattice is preserved, and well-defined {111}/{111} PbSe/CdSe interfaces develop. Interestingly, by quenching the reaction at different stages of the cation exchange new structures have been isolated, such as coreshell nanorods, CdSe rods that contain one or two separated PbSe dots and fully zinc blende CdSe nanorods. The crystallographically anisotropic cation exchange has been characterized by a combined HRTEM/HAADF-STEM study of heterointerface evolution over reaction time and temperature. Strikingly, Pb and Cd are only intermixed at the PbSe/CdSe interface. We propose a plausible model for the cation exchange based on a layer-by-layer replacement of Pb2+ by Cd2+ enabled by a vacancy-assisted cation migration mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000299367500008 Publication Date 2011-11-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.466 Times cited 136 Open Access
Notes Esteem 026019 Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:94211 Serial 124
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, D.; Hadermann, J.; Rozova, M.G.; Sheptyakov, D.V.; Tsirlin, A.A.; Niermann, D.; Waschowski, F.; Hemberger, J.; Van Tendeloo, G.; Antipov, E.V.
Title Antiferroelectric (Pb,Bi)1-xFe1+xO3-y perovskites modulated by crystallographic shear planes Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 2 Pages 255-265
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We demonstrate for the first time a possibility to vary the anion content in perovskites over a wide range through a long-range-ordered arrangement of crystallographic shear (CS) planes. Anion-deficient perovskites (Pb,Bi)1−xFe1+xO3−y with incommensurately modulated structures were prepared as single phases in the compositional range from Pb0.857Bi0.094Fe1.049O2.572 to Pb0.409Bi0.567Fe1.025O2.796. Using a combination of electron diffraction and high-resolution scanning transmission electron microscopy, we constructed a superspace model describing a periodic arrangement of the CS planes. The model was verified by refinement of the Pb0.64Bi0.32Fe1.04O2.675 crystal structure from neutron powder diffraction data ((3 + 1)D S.G. X2/m(α0γ), X = [1/2,1/2,1/2,1/2], a = 3.9082(1) Å, b = 3.90333(8) Å, c = 4.0900(1) Å, β = 91.936(2)°, q = 0.05013(4)a* + 0.09170(3)c* at T = 700 K, RP = 0.036, RwP = 0.048). The (Pb,Bi)1−xFe1+xO3−y structures consist of perovskite blocks separated by CS planes confined to nearly the (509)p perovskite plane. Along the CS planes, the perovskite blocks are shifted with respect to each other over the 1/2[110]p vector that transforms the corner-sharing connectivity of the FeO6 octahedra in the perovskite framework to an edge-sharing connectivity of the FeO5 pyramids at the CS plane, thus reducing the oxygen content. Variation of the chemical composition in the (Pb,Bi)1−xFe1+xO3−y series occurs mainly because of a changing thickness of the perovskite block between the interfaces, that can be expressed through the components of the q vector as Pb6γ+2αBi1−7γ−αFe1+γ−αO3−3γ−α. The Pb, Bi, and Fe atoms are subjected to strong displacements occurring in antiparallel directions on both sides of the perovskite blocks, resulting in an antiferroelectric-type structure. This is corroborated by the temperature-, frequency-, and field-dependent complex permittivity measurements. Pb0.64Bi0.32Fe1.04O2.675 demonstrates a remarkably high resistivity >0.1 T Ω cm at room temperature and orders antiferromagnetically below TN = 608(10) K.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000286160800018 Publication Date 2010-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.466 Times cited 29 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:88651 Serial 136
Permanent link to this record
 

 
Author Belik, A.A.; Abakumov, A.M.; Tsirlin, A.A.; Hadermann, J.; Kim, J.; Van Tendeloo, G.; Takayama-Muromachi, E.
Title Article Structure and magnetic properties of BiFe0.75Mn0.25O3 perovskite prepared at ambient and high pressure Type A1 Journal article
Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 23 Issue 20 Pages 4505-4514
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Solid solutions of BiFe1xMnxO3 (0.0 ≤ x ≤ 0.4) were prepared at ambient pressure and at 6 GPa. The ambient-pressure (AP) phases crystallize in space group R3c similarly to BiFeO3. The high-pressure (HP) phases crystallize in space group R3c for x = 0.05 and in space group Pnma for 0.15 ≤ x ≤ 0.4. The structure of HP-BiFe0.75Mn0.25O3 was investigated using synchrotron X-ray powder diffraction, electron diffraction, and transmission electron microscopy. HP-BiFe0.75Mn0.25O3 has a PbZrO3-related √2ap × 4ap × 2√2ap (ap is the parameter of the cubic perovskite subcell) superstructure with a = 5.60125(9) Å, b = 15.6610(2) Å, and c = 11.2515(2) Å similar to that of Bi0.82La0.18FeO3. A remarkable feature of this structure is the unconventional octahedral tilt system, with the primary ab0a tilt superimposed on pairwise clockwise and counterclockwise rotations around the b-axis according to the oioi sequence (o stands for out-of-phase tilt, and i stands for in-phase tilt). The (FeMn)O6 octahedra are distorted, with one longer metaloxygen bond (2.222.23 Å) that can be attributed to a compensation for covalent BiO bonding. Such bonding results in the localization of the lone electron pair on Bi3+ cations, as confirmed by electron localization function analysis. The relationship between HP-BiFe0.75Mn0.25O3 and antiferroelectric structures of PbZrO3 and NaNbO3 is discussed. On heating in air, HP-BiFe0.75Mn0.25O3 irreversibly transforms to AP-BiFe0.75Mn0.25O3 starting from about 600 K. Both AP and HP phases undergo an antiferromagnetic ordering at TN ≈ 485 and 520 K, respectively, and develop a weak net magnetic moment at low temperatures. Additionally, ceramic samples of AP-BiFe0.75Mn0.25O3 show a peculiar phenomenon of magnetization reversal.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000295897400015 Publication Date 2011-09-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.466 Times cited 57 Open Access
Notes Approved Most recent IF: 9.466; 2011 IF: 7.286
Call Number UA @ lucian @ c:irua:93581 Serial 151
Permanent link to this record
 

 
Author Turner, S.; Verbeeck, J.; Ramezanipour, F.; Greedan, J.E.; Van Tendeloo, G.; Botton, G.A.
Title Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 10 Pages 1904-1909
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Using a combination of high-angle annular dark field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy at high energy resolution in an aberration-corrected electron microscope, we demonstrate the capability of coordination mapping in complex oxides. Brownmillerite compound Ca2FeCoO5, consisting of repetitive octahedral and tetrahedral coordination layers with Fe and Co in a fixed 3+ valency, is selected to demonstrate the principle of atomic resolution coordination mapping. Analysis of the Co-L2,3 and the Fe-L2,3 edges shows small variations in the fine structure that can be specifically attributed to Co/Fe in tetrahedral or in octahedral coordination. Using internal reference spectra, we show that the coordination of the Fe and Co atoms in the compound can be mapped at atomic resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000304237500024 Publication Date 2012-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor (up) 9.466 Times cited 33 Open Access
Notes A.M. Abakumov is thanked for fruitful discussions. S.T. gratefully acknowledges the Fund for Scientific Research Flanders (FWO). J.E.G. and GAB. acknowledge the support of the NSERC of Canada through Discovery Grants. The Canadian Centre for Electron Microscopy is a National Facility supported by NSERC and McMaster University and was funded by the Canada Foundation for Innovation and the Ontario Government. Part of this work was supported by funding from the European Research Council under the FP7, ERC Grant N 246791 COUNTATOMS and ERC Starting Grant N 278510 VORTEX. The EMAT microscope is partially funded by the Hercules fund of the Flemish Government. ECASJO_; Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:98379UA @ admin @ c:irua:98379 Serial 175
Permanent link to this record