|
Record |
Links |
|
Author |
Yang, C.; Laberty-Robert, C.; Batuk, D.; Cibin, G.; Chadwick, A.V.; Pimenta, V.; Yin, W.; Zhang, L.; Tarascon, J.-M.; Grimaud, A. |
|
|
Title |
Phosphate ion functionalization of perovskite surfaces for enhanced oxygen evolution reaction |
Type |
A1 Journal article |
|
Year |
2017 |
Publication |
The journal of physical chemistry letters |
Abbreviated Journal |
J Phys Chem Lett |
|
|
Volume |
8 |
Issue |
15 |
Pages |
3466-3472 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Recent findings revealed that surface oxygen can participate in the oxygen evolution reaction (OER) for the most active catalysts, which eventually triggers a new mechanism for which the deprotonation of surface intermediates limits the OER activity. We propose in this work a “dual strategy” in which tuning the electronic properties of the oxide, such as La1-xSrxCoO3-delta, can be dissociated from the use of surface functionalization with phosphate ion groups (P-i) that enhances the interfacial proton transfer. Results show that the P-i functionalized La0.5Sr0.5CoO3-delta gives rise to a significant enhancement of the OER activity when compared to La0.5Sr0.5Co3-delta and LaCoO3. We further demonstrate that the P-i surface functionalization selectivity enhances the activity when the OER kinetics is limited by the proton transfer. Finally, this work suggests that tuning the catalytic activity by such a “dual approach” may be a new and largely unexplored avenue for the design of novel high-performance catalysts. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Chemical Society |
Place of Publication |
Washington, D.C |
Editor |
|
|
|
Language |
|
Wos |
000407191300003 |
Publication Date |
2017-07-07 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1948-7185 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.353 |
Times cited |
31 |
Open Access |
OpenAccess |
|
|
Notes |
; C.Y., J.-M.T., D.B., and A.G. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. We acknowledge Diamond Light Source for time awarded to the Energy Materials BAG on Beamline B18, under Proposal sp12559. ; |
Approved |
Most recent IF: 9.353 |
|
|
Call Number |
UA @ lucian @ c:irua:145730 |
Serial |
4747 |
|
Permanent link to this record |