|
Record |
Links |
|
Author |
Liu, J.; Hu, Z.-Y.; Peng, Y.; Huang, H.-W.; Li, Y.; Wu, M.; Ke, X.-X.; Van Tendeloo, G.; Su, B.-L. |
|
|
Title |
2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Applied catalysis : B : environmental |
Abbreviated Journal |
Appl Catal B-Environ |
|
|
Volume |
181 |
Issue |
181 |
Pages |
138-145 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Two dimensional (2D) ZnO nanosheets are ideal system for dimensionally confined transport phenomenon investigation owing to specific surface atomic configuration. Therefore, 2D ZnO porous nanosheets with single-crystal nature and {0001} polar facets, likely display some specific physicochemical properties. In this work, for the first time, 2D ZnO mesoporous single-crystal nanosheets (ZnO-MSN) with {0001} polar facets have been designed and prepared via an intriguing colloidal templating approach through controlling the infiltration speed for the suspension of EG-capped ZnO nanoparticles and polymer colloids. The EG-capped ZnO nanoparticles are very helpful for single-crystal nanosheet formation, while the polymer colloids play dual roles on the mesoporosity generation and {0001} polar facets formation within the mesopores. Such special 2D structure not only accelerates the hole-electron separation and the electron transportation owing to the single-crystal nature, but also enhances the selective adsorption of organic molecules owing to the porous structure and the exposed {0001} polar facets with more O-termination (000-1) surfaces: the 2D ZnO-MSN shows highly selective adsorption and significantly higher photodegradation for positively charged rhodamine B than those for negatively charged methyl orange and neutral phenol, comparing with ZnO nanoparticles (ZnO-NP) and ZnO commercial nanoparticles (ZnO-CNP) with high surface areas. This work may shed some light on better understanding the synthesis of 2D porous single-crystal nanosheet with exposed polar surfaces and photocatalytic mechanism of nanostructured semiconductors in a mixed organic molecules system. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Amsterdam |
Editor |
|
|
|
Language |
|
Wos |
000364256000015 |
Publication Date |
2015-08-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0926-3373; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.446 |
Times cited |
60 |
Open Access |
|
|
|
Notes |
246791 Countatoms |
Approved |
Most recent IF: 9.446 |
|
|
Call Number |
c:irua:127638 c:irua:127638 c:irua:127638 |
Serial |
10 |
|
Permanent link to this record |