|
Record |
Links |
|
Author |
Vanrenterghem, B.; Geboes, B.; Bals, S.; Ustarroz, J.; Hubin, A.; Breugelmans, T. |
|
|
Title |
Influence of the support material and the resulting particle distribution on the deposition of Ag nanoparticles for the electrocatalytic activity of benzyl bromide reduction |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Applied catalysis : B : environmental |
Abbreviated Journal |
Appl Catal B-Environ |
|
|
Volume |
181 |
Issue |
181 |
Pages |
542-549 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT) |
|
|
Abstract |
tSilver nanoparticles (NPs) were deposited on nickel, titanium and gold substrates using a potentiostaticdouble-pulse method. The influence of the support material on both the morphology and the electro-catalytic activity of Ag NPs for the reduction reaction of benzyl bromide was investigated and comparedwith previous research regarding silver NPs on glassy carbon. Scanning electron microscopy (SEM) dataindicated that spherical monodispersed NPs were obtained on Ni, Au and GC substrate with an averageparticle size of respectively 216 nm, 413 nm and 116 nm. On a Ti substrate dendritic NPs were obtainedwith a larger average particle density of 480 nm. The influence of the support material on the electrocat-alytic activity was tested by means of cyclic voltammetry (CV) for the reduction reaction of benzylbromide(1 mM) in acetonitrile + 0.1 M tetrabutylammonium perchlorate (Bu4NClO4). When the nucleation poten-tial (En) was applied at high cathodic overpotential, a positive shift of the reduction potential was obtained.The nucleation (tn) and growth time (tg) mostly had an influence on the current density whereas longerdeposition times lead to larger current densities. For these three parameters an optimum was present.The best electrocatalytic activity was obtained with Ag NPs deposited on Ni were a shift of the reduc-tion peak potential of 145 mV for the reaction of benzyl bromide was measured in comparance to bulksilver. The deposition on Au substrate yielded a positive shift of 114 mV. There was no indication of analtered reaction mechanism as the reaction was characterized as diffusion controlled and the transfercoefficients were in accordance with bulk silver. There was a beneficial catalitic activity measured due tothe interplay between support and NPs. This resulted in a shift of the reduction peak potential of 34 mV(Ag NPs on Au) and 65 mV (Ag NPs on Ni) compared to Ag NPs on a GC substrate. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000364256000052 |
Publication Date |
2015-08-18 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0926-3373 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
9.446 |
Times cited |
16 |
Open Access |
OpenAccess |
|
|
Notes |
The Quanta 250 FEG microscope of the Electron Microscopy forMaterial Science group at the University of Antwerp was fundedby the Hercules foundation of the Flemish Government. Sara Balsacknowledges financial support from European Research Council(ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); |
Approved |
Most recent IF: 9.446 |
|
|
Call Number |
c:irua:128345 |
Serial |
4064 |
|
Permanent link to this record |