toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Based CO2Conversion: To Quench or Not to Quench? Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 124 Issue 34 Pages (down) 18401-18415  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma technology is gaining increasing interest for CO2 conversion. The gas temperature in (and after) the plasma reactor largely affects the performance. Therefore, we examine the effect of cooling/quenching, during and after the plasma, on the CO2 conversion and energy efficiency, for typical “warm” plasmas, by means of chemical kinetics modeling. For plasmas at low specific energy input (SEI ∼ 0.5 eV/molecule), it is best to quench at the plasma end, while for high-SEI plasmas (SEI ∼ 4 eV/molecule), quenching at maximum conversion is better. For low-SEI plasmas, quenching can even increase the conversion beyond the dissociation in the plasma, known as superideal quenching. To better understand the effects of quenching at different plasma conditions, we study the dissociation and recombination rates, as well as the vibrational distribution functions (VDFs) of CO2, CO, and O2. When a high vibrational−translational (VT) nonequilibrium exists at the moment of quenching, the dissociation and recombination reaction rates both increase. Depending on the conversion degree at the moment of quenching, this can lead to a net increase or decrease of CO2 conversion. In general, however, and certainly for equilibrium plasmas at high temperature, quenching after the plasma helps prevent recombination reactions and clearly enhances the final CO2 conversion. We also investigate the effect of different quenching cooling rates on the CO2 conversion and energy efficiency. Finally, we compare plasma-based conversion to purely thermal conversion. For warm plasmas with typical temperatures of 3000−4000 K, the conversion is roughly thermal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000566481000003 Publication Date 2020-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; H2020 European Research Council, 810182 ; This research was supported by the FWO project (grant no. G.0383.16N) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 810182SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:172052 Serial 6407  
Permanent link to this record
 

 
Author Meng, S.; Wu, L.; Liu, M.; Cui, Z.; Chen, Q.; Li, S.; Yan, J.; Wang, L.; Wang, X.; Qian, J.; Guo, H.; Niu, J.; Bogaerts, A.; Yi, Y. pdf  url
doi  openurl
  Title Plasma‐driven<scp>CO2</scp>hydrogenation to<scp>CH3OH</scp>over<scp>Fe2O3</scp>/<scp>γ‐Al2O3</scp>catalyst Type A1 Journal Article
  Year 2023 Publication AIChE Journal Abbreviated Journal AIChE Journal  
  Volume 69 Issue 10 Pages (down) e18154  
  Keywords A1 Journal Article; chemisorbed oxygen, CO2 hydrogenation, iron-based catalyst, methanol production, plasma catalysis; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract We report a plasma‐assisted CO<sub>2</sub>hydrogenation to CH<sub>3</sub>OH over Fe<sub>2</sub>O<sub>3</sub>/γ‐Al<sub>2</sub>O<sub>3</sub>catalysts, achieving 12% CO<sub>2</sub>conversion and 58% CH<sub>3</sub>OH selectivity at a temperature of nearly 80°C atm pressure. We investigated the effect of various supports and loadings of the Fe‐based catalysts, as well as optimized reaction conditions. We characterized catalysts by X‐ray powder diffraction (XRD), hydrogen temperature programmed reduction (H<sub>2</sub>‐TPR), CO<sub>2</sub>and CO temperature programmed desorption (CO<sub>2</sub>/CO‐TPD), high‐resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), x‐ray photoelectron spectroscopy (XPS), Mössbauer, and Fourier transform infrared<bold>(</bold>FTIR). The XPS results show that the enhanced CO<sub>2</sub>conversion and CH<sub>3</sub>OH selectivity are attributed to the chemisorbed oxygen species on Fe<sub>2</sub>O<sub>3</sub>/γ‐Al<sub>2</sub>O<sub>3</sub>. Furthermore, the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) and TPD results illustrate that the catalysts with stronger CO<sub>2</sub>adsorption capacity exhibit a higher reaction performance.<italic>In situ</italic>DRIFTS gain insight into the specific reaction pathways in the CO<sub>2</sub>/H<sub>2</sub>plasma. This study reveals the role of chemisorbed oxygen species as a key intermediate, and inspires to design highly efficient catalysts and expand the catalytic systems for CO<sub>2</sub>hydrogenation to CH<sub>3</sub>OH.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001022420000001 Publication Date 2023-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-1541 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access Not_Open_Access  
  Notes Fundamental Research Funds for the Central Universities, DUT18JC42 ; National Natural Science Foundation of China, 21908016 21978032 ; Approved Most recent IF: 3.7; 2023 IF: 2.836  
  Call Number PLASMANT @ plasmant @c:irua:197829 Serial 8959  
Permanent link to this record
 

 
Author Vermeiren, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Improving the Energy Efficiency of CO2Conversion in Nonequilibrium Plasmas through Pulsing Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 29 Pages (down) 17650-17665  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nonequilibrium plasmas offer a pathway for energy-efficient CO2 conversion through vibrationally induced dissociation. However, the efficiency of this pathway is limited by a rise in gas temperature, which increases vibrational−translational (VT) relaxation and quenches the vibrational levels. Therefore, we investigate here the effect of plasma pulsing on the VT nonequilibrium and on the CO2 conversion by means of a zerodimensional chemical kinetics model, with self-consistent gas temperature calculation. Specifically, we show that higher energy efficiencies can be reached by correctly tuning the plasma pulse and interpulse times. The ideal plasma pulse time corresponds to the time needed to reach the highest vibrational temperature. In addition, the highest energy efficiencies are obtained with long interpulse times, that is, ≥0.1 s, in which the gas temperature can entirely drop to room temperature. Furthermore, additional cooling of the reactor walls can give higher energy efficiencies at shorter interpulse times of 1 ms. Finally, our model shows that plasma pulsing can significantly improve the energy efficiency at low reduced electric fields (50 and 100 Td, typical for microwave and gliding arc plasmas) and intermediate ionization degrees (5 × 10−7 and 10−6).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477785000003 Publication Date 2019-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 1 Open Access  
  Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; This research was supported by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UAntwerpen. We also like to thank N. Britun (ChIPS) for the interesting discussions. Approved Most recent IF: 4.536  
  Call Number PLASMANT @ plasmant @c:irua:161621 Serial 5289  
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A. pdf  doi
openurl 
  Title Changing chirality during single-walled carbon nanotube growth : a reactive molecular dynamics/Monte Carlo study Type A1 Journal article
  Year 2011 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 43 Pages (down) 17225-17231  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The growth mechanism and chirality formation of a single-walled carbon nanotube (SWNT) on a surface-bound nickel nanocluster are investigated by hybrid reactive molecular dynamics/force-biased Monte Carlo simulations. The validity of the interatomic potential used, the so-called ReaxFF potential, for simulating catalytic SWNT growth is demonstrated. The SWNT growth process was found to be in agreement with previous studies and observed to proceed through a number of distinct steps, viz., the dissolution of carbon in the metallic particle, the surface segregation of carbon with the formation of aggregated carbon clusters on the surface, the formation of graphitic islands that grow into SWNT caps, and finally continued growth of the SWNT. Moreover, it is clearly illustrated in the present study that during the growth process, the carbon network is continuously restructured by a metal-mediated process, thereby healing many topological defects. It is also found that a cap can nucleate and disappear again, which was not observed in previous simulations. Encapsulation of the nanoparticle is observed to be prevented by the carbon network migrating as a whole over the cluster surface. Finally, for the first time, the chirality of the growing SWNT cap is observed to change from (11,0) over (9,3) to (7,7). It is demonstrated that this change in chirality is due to the metal-mediated restructuring process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297380900026 Publication Date 2011-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 116 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:92043 Serial 309  
Permanent link to this record
 

 
Author Van Boxem, W.; Van der Paal, J.; Gorbanev, Y.; Vanuytsel, S.; Smits, E.; Dewilde, S.; Bogaerts, A. url  doi
openurl 
  Title Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 1 Pages (down) 16478  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We evaluate the anti-cancer capacity of plasma-treated PBS (pPBS), by measuring the concentrations of NO2 − and H2O2 in pPBS, treated with a plasma jet, for different values of gas flow rate, gap and plasma treatment time, as well as the effect of pPBS on cancer cell cytotoxicity, for three different glioblastoma cancer cell lines, at exactly the same plasma treatment conditions. Our experiments reveal that pPBS is cytotoxic for all conditions investigated. A small variation in gap between plasma jet and liquid surface (10 mm vs 15 mm) significantly affects the chemical composition of pPBS and its anti-cancer capacity, attributed to the occurrence of discharges onto the liquid. By correlating the effect of gap, gas flow rate and plasma treatment time on the chemical composition and anti-cancer capacity of pPBS, we may conclude that H2O2 is a more important species for the anti-cancer capacity of pPBS than NO2 −. We also used a 0D model, developed for plasma-liquid interactions, to elucidate the most important mechanisms for the generation of H2O2 and NO2 −. Finally, we found that pPBS might be more suitable for practical applications in a clinical setting than (commonly used) plasma-activated media (PAM), because of its higher stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416398100028 Publication Date 2017-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 40 Open Access OpenAccess  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant No. 11U5416N), the Research Council of the University of Antwerp and the European Marie Skłodowska-Curie Individual Fellowship “LTPAM” within Horizon2020 (Grant No. 743151). Finally, we would like to thank P. Attri and A. Privat Maldonado for the valuable discussions. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:147192 Serial 4766  
Permanent link to this record
 

 
Author Yan, M.; Bogaerts, A.; Gijbels, R.; Goedheer, W.J. url  doi
openurl 
  Title Local and fast relaxation phenomena after laser-induced photodetachment in a strongly electronegative rf discharge Type A1 Journal article
  Year 2002 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 65 Issue Pages (down) 016408  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000173407500073 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-651X;1095-3787; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.366; 2002 IF: 2.397  
  Call Number UA @ lucian @ c:irua:37255 Serial 1823  
Permanent link to this record
 

 
Author Snoeckx, R.; Setareh, M.; Aerts, R.; Simon, P.; Maghari, A.; Bogaerts, A. pdf  doi
openurl 
  Title Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2 Type A1 Journal article
  Year 2013 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ  
  Volume 38 Issue 36 Pages (down) 16098-16120  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a combined study of experimental and computational work for a dielectric barrier discharge (DBD) used for CH4 conversion into H2. More specifically, we investigated the influence of N2 as an impurity (150,000 ppm) and as additive gas (199%) on the CH4 conversion and H2 yield. For this purpose, a zero-dimensional chemical kinetics model is applied to study the plasma chemistry. The calculated conversions and yields for various gas mixing ratios are compared to the obtained experimental values, and good agreement is achieved. The study reveals the significance of the View the MathML source and View the MathML source metastable states for the CH4 conversion into H2, based on a kinetic analysis of the reaction chemistry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000327904500027 Publication Date 2013-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.582 Times cited 40 Open Access  
  Notes Approved Most recent IF: 3.582; 2013 IF: 2.930  
  Call Number UA @ lucian @ c:irua:111372 Serial 1642  
Permanent link to this record
 

 
Author Snoeckx, R.; Wang, W.; Zhang, X.; Cha, M.S.; Bogaerts, A. url  doi
openurl 
  Title Plasma-based multi-reforming for Gas-To-Liquid: tuning the plasma chemistry towards methanol Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 1 Pages (down) 15929  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Because of its unique properties, plasma technology has gained much prominence in the

microelectronics industry. Recently, environmental and energy applications of plasmas have gained a lot of attention. In this area, the focus is on converting CO 2 and reforming hydrocarbons, with the goal of developing an efficient single-step ‘gas-to-liquid’ (GTL) process. Here we show that applying tri-reforming principles to plasma—further called ‘plasma-based multi-reforming’—allows us to better control the plasma chemistry and thus the formed products. To demonstrate this, we used chemical kinetics calculations supported by experiments and reveal that better control of the plasma chemistry can be achieved by adding O 2 or H 2 O to a mixture containing CH 4 and CO 2 (diluted in N 2 ). Moreover, by adding O 2 and H 2 O simultaneously, we can tune the plasma chemistry even further, improving the conversions, thermal efficiency and methanol yield. Unlike thermocatalytic reforming, plasma-based reforming is capable of producing methanol in a single step; and compared with traditional plasma-based dry reforming, plasma-based multi-reforming increases the methanol yield by more than seven times and the thermal efficiency by 49%, as revealed by our model calculations. Thus, we believe that by using plasma-based multi-reforming, ‘gas-to-liquid’ conversion may be made efficient and scalable.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448589200005 Publication Date 2018-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Competitive Research Funding from King Abdullah University of Science and Technology (KAUST), the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304), the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N) and the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). This work was carried out, in part, using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:154868 Serial 5066  
Permanent link to this record
 

 
Author Li, S.; Sun, J.; Gorbanev, Y.; van’t Veer, K.; Loenders, B.; Yi, Y.; Kenis, T.; Chen, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-Assisted Dry Reforming of CH4: How Small Amounts of O2Addition Can Drastically Enhance the Oxygenate Production─Experiments and Insights from Plasma Chemical Kinetics Modeling Type A1 Journal Article
  Year 2023 Publication ACS Sustainable Chemistry & Engineering Abbreviated Journal ACS Sustainable Chem. Eng.  
  Volume 11 Issue 42 Pages (down) 15373-15384  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based dry reforming of methane (DRM) into

high-value-added oxygenates is an appealing approach to enable

otherwise thermodynamically unfavorable chemical reactions at

ambient pressure and near room temperature. However, it suffers

from coke deposition due to the deep decomposition of CH4. In this

work, we assess the DRM performance upon O2 addition, as well as

varying temperature, CO2/CH4 ratio, discharge power, and gas

residence time, for optimizing oxygenate production. By adding O2,

the main products can be shifted from syngas (CO + H2) toward

oxygenates. Chemical kinetics modeling shows that the improved

oxygenate production is due to the increased concentration of

oxygen-containing radicals, e.g., O, OH, and HO2, formed by electron

impact dissociation [e + O2 → e + O + O/O(1D)] and subsequent

reactions with H atoms. Our study reveals the crucial role of oxygen-coupling in DRM aimed at oxygenates, providing practical

solutions to suppress carbon deposition and at the same time enhance the oxygenates production in plasma-assisted DRM.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082603900001 Publication Date 2023-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access Not_Open_Access  
  Notes Fonds Wetenschappelijk Onderzoek, S001619N ; China Scholarship Council, 202006060029 ; National Natural Science Foundation of China, 21975018 ; H2020 European Research Council, 810182 ; Approved Most recent IF: 8.4; 2023 IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:201013 Serial 8966  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 2 : radial uniformity of the plasma characteristics Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue 1 Pages (down) 015203-015203,13  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional fluid model, including the full set of Maxwell equations, has been developed and applied to investigate the effect of a phase shift between two power sources on the radial uniformity of several plasma characteristics in a hydrogen capacitively coupled plasma. This study was carried out at various frequencies in the range 13.56200 MHz. When the frequency is low, at 13.56 MHz, the plasma density is characterized by an off-axis peak when both power sources are in-phase (phgr = 0), and the best radial uniformity is obtained at phgr = π. This trend can be explained because the radial nonuniformity caused by the electrostatic edge effect can be effectively suppressed by the phase-shift effect at a phase difference equal to π. When the frequency rises to 60 MHz, the plasma density profiles shift smoothly from edge-peaked over uniform to centre-peaked as the phase difference increases, due to the pronounced standing-wave effect, and the best radial uniformity is reached at phgr = 0.3π. At a frequency of 100 MHz, a similar behaviour is observed, except that the maximum of the plasma density moves again towards the radial edge at the reverse-phase case (phgr = π), because of the dominant skin effect. When the frequency is 200 MHz, the bulk plasma density increases significantly with increasing phase-shift values, and a better uniformity is obtained at phgr = 0.4π. This is because the density in the centre increases faster than at the radial edge as the phase difference rises, due to the increasing power deposition Pz in the centre and the decreasing power density Pr at the radial edge. As the phase difference increases to π, the maximum near the radial edge becomes obvious again. This is because the skin effect has a predominant influence on the plasma density under this condition, resulting in a high density at the radial edge. Moreover, the axial ion flux increases monotonically with phase difference, and exhibits similar profiles to the plasma density. The calculation results illustrate that the radial uniformity of the various plasma characteristics is strongly dependent on the applied frequency and the phase shift between both power sources, which is important to realize, for controlling the uniformity of the plasma etch and deposition processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000298290000012 Publication Date 2011-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 15 Open Access  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:92852 Serial 1231  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Fluid simulation of the phase-shift effect in hydrogen capacitively coupled plasmas: 1 : transient behaviour of electrodynamics and power deposition Type A1 Journal article
  Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 45 Issue 1 Pages (down) 015202-015202,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model coupled with the full set of Maxwell equations is established to investigate the phase-shift effect on the transient behaviour of electrodynamics and power deposition in a hydrogen capacitively coupled plasma. The effect has been examined at 13.56 MHz and 100 MHz, respectively, because of the different phase-shift modulation when the electromagnetic effects are dominant. The results indicate that the spatiotemporal distributions of the plasma characteristics obtained for various phase-shift cases are obviously different both in shape and especially in absolute values. Indeed, when the phase difference varies from 0 to π, there is an increase in the electron flux, thus the power deposition becomes more pronounced. At the frequency of 13.56 MHz, the axial electron flux in the bulk plasma becomes uniform along the z-axis, and the radial electron flux exhibits two peaks within one period at the reverse-phase case, whereas the oscillation is less pronounced at the in-phase case. Furthermore, in the very high frequency discharge, the radial electron flux is alternately positive and negative with four peaks during one period, and the ionization mainly occurs in the sheath region, due to the prominent power deposition there at a phase difference equal to π.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000298290000011 Publication Date 2011-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 57 Open Access  
  Notes Approved Most recent IF: 2.588; 2012 IF: 2.528  
  Call Number UA @ lucian @ c:irua:92851 Serial 1230  
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title A 2D model for a gliding arc discharge Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages (down) 015025  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000348298200026 Publication Date 2014-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial 3  
Permanent link to this record
 

 
Author Kozák, T.; Bogaerts, A. pdf  url
doi  openurl
  Title Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages (down) 015024  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We use a zero-dimensional reaction kinetics model to simulate CO2 conversion in microwave discharges where the excitation of the vibrational levels plays a significant role in the dissociation kinetics. The model includes a description of the CO2 vibrational kinetics, taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is used to simulate a general tubular microwave reactor, where a stream of CO2 flows through a plasma column generated by microwave radiation. We study the effects of the internal plasma parameters, namely the reduced electric field, electron density and the total specific energy input, on the CO2 conversion and its energy efficiency. We report the highest energy efficiency (up to 30%) for a specific energy input in the range 0.41.0 eV/molecule and a reduced electric field in the range 50100 Td and for high values of the electron density (an ionization degree greater than 10−5). The energy efficiency is mainly limited by the VT relaxation which contributes dominantly to the vibrational energy losses and also contributes significantly to the heating of the reacting gas. The model analysis provides useful insight into the potential and limitations of CO2 conversion in microwave discharges.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000348298200025 Publication Date 2014-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 100 Open Access  
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:122243 Serial 1087  
Permanent link to this record
 

 
Author Belov, I.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Appearance of a conductive carbonaceous coating in a CO2dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages (down) 015023  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO2, but also O2), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metaldielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO2 conversion, more specifically, the CO2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and subsequently the CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370974800030 Publication Date 2016-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 25 Open Access  
  Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under Grant Agreement № 606889 (RAPID—Reactive Atmospheric Plasma processIng—eDucation network). Approved Most recent IF: 3.302  
  Call Number c:irua:130790 Serial 4006  
Permanent link to this record
 

 
Author Zhao, S.-X.; Gao, F.; Wang, Y.-N.; Bogaerts, A. pdf  doi
openurl 
  Title Gas ratio effects on the Si etch rate and profile uniformity in an inductively coupled Ar/CF4 plasma Type A1 Journal article
  Year 2013 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 22 Issue 1 Pages (down) 015017-15018  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a hybrid model is used to investigate the effect of different gas ratios on the Si etching and polymer film deposition characteristics in an Ar/CF4 inductively coupled plasma. The influence of the surface processes on the bulk plasma properties is studied, and also the spatial characteristics of important gas phase and etched species. The densities of F and CF2 decrease when the surface module is included in the simulations, due to the species consumption caused by etching and polymer deposition. The influence of the surface processes on the bulk plasma depends on the Ar/CF4 gas ratio. The deposited polymer becomes thicker at high CF4 content because of more abundant CFx radicals. As a result of the competition between the polymer thickness and the F flux, the etch rate first increases and then decreases upon increasing the CF4 content. The electron properties, more specifically the electron density profile, affect the Si etch characteristics substantially by determining the radical density and flux profiles. In fact, the radial profile of the etch rate is more uniform at low CF4 content since the electron density has a smooth distribution. At high CF4 content, the etch rate is less uniform with a minimum halfway along the wafer radius, because the electron density distribution is more localized. Therefore, our calculations predict that it is better to work at relatively high Ar/CF4 gas ratios, in order to obtain high etch rate and good profile uniformity for etch applications. This, in fact, corresponds to the typical experimental etch conditions in Ar/CF4 gas mixtures as found in the literature, where Ar is typically present at a much higher concentration than CF4.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000314966300022 Publication Date 2012-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2013 IF: 3.056  
  Call Number UA @ lucian @ c:irua:102583 Serial 1320  
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A. doi  openurl
  Title Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition Type A1 Journal article
  Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue 1 Pages (down) 015008-015008,10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an O2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al2O3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O2, while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000286592200009 Publication Date 2011-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:85285 Serial 467  
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A. pdf  url
doi  openurl
  Title Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages (down) 015003  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present a 3D and 2D Cartesian quasi-neutral plasma model for a low current argon gliding arc discharge, including strong interactions between the gas flow and arc plasma column.

The 3D model is applied only for a short time of 0.2 ms due to its huge computational cost. It mainly serves to verify the reliability of the 2D model. As the results in 2D compare well with those in 3D, they can be used for a better understanding of the gliding arc basic characteristics. More specifically, we investigate the back-breakdown phenomenon induced by an artificially controlled plasma channel, and we discuss its effect on the gliding arc characteristics. The

back-breakdown phenomenon, or backward-jump motion of the arc, as observed in the experiments, results in a drop of the gas temperature, as well as in a delay of the arc velocity with respect to the gas flow velocity, allowing more gas to pass through the arc, and thus increasing the efficiency of the gliding arc for gas treatment applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000419253000001 Publication Date 2016-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 9 Open Access OpenAccess  
  Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). S R Sun thanks the financial support from the China Scholarship Council. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:138993 Serial 4337  
Permanent link to this record
 

 
Author Van Laer, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Fluid modelling of a packed bed dielectric barrier discharge plasma reactor Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages (down) 015002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A packed bed dielectric barrier discharge plasma reactor is computationally studied with a fluid model. Two different complementary axisymmetric 2D geometries are used to mimic the intrinsic 3D problem. It is found that a packing enhances the electric field strength and electron temperature at the contact points of the dielectric material due to polarization of the beads by the applied potential. As a result, these contact points prove to be of direct importance to initiate the plasma. At low applied potential, the discharge stays at the contact points, and shows the properties of a Townsend discharge. When a high enough potential is applied, the plasma will be able to travel through the gaps in between the beads from wall to wall, forming a kind of glow discharge. Therefore, the inclusion of a so-called ‘channel of voids’ is indispensable in any type of packed bed modelling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370974800009 Publication Date 2015-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 50 Open Access  
  Notes The authors gratefully thank St Kolev for the many interesting discussions and the useful advise in setting up the models. This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO). K Van Laer is indebted to the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders) for financial support. Approved Most recent IF: 3.302  
  Call Number c:irua:129802 Serial 3982  
Permanent link to this record
 

 
Author Bissonnette-Dulude, J.; Heirman, P.; Coulombe, S.; Bogaerts, A.; Gervais, T.; Reuter, S. url  doi
openurl 
  Title Coupling the COST reference plasma jet to a microfluidic device: a computational study Type A1 Journal article
  Year 2024 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci. Technol.  
  Volume 33 Issue 1 Pages (down) 015001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The use of microfluidic devices in the field of plasma-liquid interaction can unlock unique possibilities to investigate the effects of plasma-generated reactive species for environmental and biomedical applications. So far, very little simulation work has been performed on microfluidic devices in contact with a plasma source. We report on the modelling and computational simulation of physical and chemical processes taking place in a novel plasma-microfluidic platform. The main production and transport pathways of reactive species both in plasma and liquid are modelled by a novel modelling approach that combines 0D chemical kinetics and 2D transport mechanisms. This combined approach, applicable to systems where the transport of chemical species occurs in unidirectional flows at high Péclet numbers, decreases calculation times considerably compared to regular 2D simulations. It takes advantage of the low computational time of the 0D reaction models while providing spatial information through multiple plug-flow simulations to yield a quasi-2D model. The gas and liquid flow profiles are simulated entirely in 2D, together with the chemical reactions and transport of key chemical species. The model correctly predicts increased transport of hydrogen peroxide into the liquid when the microfluidic opening is placed inside the plasma effluent region, as opposed to inside the plasma region itself. Furthermore, the modelled hydrogen peroxide production and transport in the microfluidic liquid differs by less than 50% compared with experimental results. To explain this discrepancy, the limits of the 0D–2D combined approach are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001136607100001 Publication Date 2024-01-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access Not_Open_Access  
  Notes Natural Sciences and Engineering Research Council of Canada, RGPIN-06820 ; FWO, 1100421N ; McGill University, the TransMedTech Institute; Approved Most recent IF: 3.8; 2024 IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:202783 Serial 8990  
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; van de Sanden, M.C.M. doi  openurl
  Title Unraveling the deposition mechanism in a-C:H thin-film growth: a molecular-dynamics study for the reaction behavior of C3 and C3H radicals with a-C:H surfaces Type A1 Journal article
  Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 99 Issue 1 Pages (down) 014902,1-8  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000234607200071 Publication Date 2006-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 25 Open Access  
  Notes Approved Most recent IF: 2.068; 2006 IF: 2.316  
  Call Number UA @ lucian @ c:irua:55831 Serial 3815  
Permanent link to this record
 

 
Author Liang, D.; Follens, L.R.A.; Aerts, A.; Martens, J.A.; Van Tendeloo, G.; Kirschhock, C.E.A. pdf  doi
openurl 
  Title TEM observation of aggregation steps in room-temperature silicalite-1 zeolite formation Type A1 Journal article
  Year 2007 Publication Journal of physical chemistry C Abbreviated Journal J Phys Chem C  
  Volume 111 Issue 39 Pages (down) 14283-14285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000249838300002 Publication Date 2007-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 41 Open Access  
  Notes ESA; IWT – Flanders; FWO Approved Most recent IF: 4.536; 2007 IF: NA  
  Call Number UA @ lucian @ c:irua:66617 Serial 3481  
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Mumtaz, S.; Lim, J.S.; Jang, J.H.; Kim, D.; Sahu, B.D.; Bogaerts, A.; Choi, E.H. url  doi
openurl 
  Title Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation Type A1 Journal Article
  Year 2021 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk  
  Volume 11 Issue 1 Pages (down) 14003  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract A growing body of literature has recognized the non-thermal effect of pulsed microwave radiation (PMR) on bacterial systems. However, its mode of action in deactivating bacteria has not yet been extensively investigated. Nevertheless, it is highly important to advance the applications of PMR from simple to complex biological systems. In this study, we first optimized the conditions of the PMR device and we assessed the results by simulations, using ANSYS HFSS (High Frequency Structure Simulator) and a 3D particle-in-cell code for the electron behavior, to provide a better overview of the bacterial cell exposure to microwave radiation. To determine the sensitivity of PMR,<italic>Escherichia coli</italic> and<italic>Staphylococcus aureus</italic>cultures were exposed to PMR (pulse duration: 60 ns, peak frequency: 3.5 GHz) with power density of 17 kW/cm<sup>2</sup>at the free space of sample position, which would induce electric field of 8.0 kV/cm inside the PBS solution of falcon tube in this experiment at 25 °C. At various discharges (D) of microwaves, the colony forming unit curves were analyzed. The highest ratios of viable count reductions were observed when the doses were increased from 20D to 80D, which resulted in an approximate 6 log reduction in <italic>E. coli</italic>and 4 log reduction in<italic>S. aureus.</italic>Moreover, scanning electron microscopy also revealed surface damage in both bacterial strains after PMR exposure. The bacterial inactivation was attributed to the deactivation of oxidation-regulating genes and DNA damage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000674547300011 Publication Date 2021-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited Open Access OpenAccess  
  Notes Department of Biotechnology, Ministry of Science and Technology, India, D.O.NO.BT/HRD/35/02/2006 ; National Research Foundation of Korea, NRF-2016K1A4A3914113 ; This research was supported by the National Research Foundation (NRF) of Korea, funded by the Korean government (MSIT) under the Grant Number NRF-2016K1A4A3914113, and in part by Kwangwoon University, Seoul, Korea, 2021. We also gratefully acknowledge the financial support obtained from Department of Biotechnology (DBT) Ramalingaswami Re-entry Fellowship, India, Grant Number D.O.NO.BT/HRD/35/02/2006. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:179844 Serial 6800  
Permanent link to this record
 

 
Author Hoon Park, J.; Kumar, N.; Hoon Park, D.; Yusupov, M.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.; Ho Kang, M.; Sup Uhm, H.; Ha Choi, E.; Attri, P.; url  doi
openurl 
  Title A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages (down) 13849  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000360909000001 Publication Date 2015-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 32 Open Access  
  Notes Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number c:irua:127410 Serial 419  
Permanent link to this record
 

 
Author Klinkhammer, C.; Verlackt, C.; Smilowicz, D.; Kogelheide, F.; Bogaerts, A.; Metzler-Nolte, N.; Stapelmann, K.; Havenith, M.; Lackmann, J.-W. url  doi
openurl 
  Title Elucidation of plasma-induced chemical modifications on glutathione and glutathione disulphide Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue Pages (down) 13828  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000413401300003 Publication Date 2017-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 17 Open Access OpenAccess  
  Notes Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:146666 Serial 4783  
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.K.; Sunkara, M.K.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis: Synergistic Effects at the Nanoscale Type A1 Journal article
  Year 2015 Publication Chemical reviews Abbreviated Journal Chem Rev  
  Volume 115 Issue 115 Pages (down) 13408-13446  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Thermal-catalytic gas processing is integral to many current industrial processes. Ever-increasing demands on conversion and energy efficiencies are a strong driving force for the development of alternative approaches. Similarly, synthesis of several functional materials (such as nanowires and nanotubes) demands special processing conditions. Plasma catalysis provides such an alternative, where the catalytic process is complemented by the use of plasmas that activate the source gas. This combination is often observed to result in a synergy between plasma and catalyst. This Review introduces the current state-of-the-art in plasma catalysis, including numerous examples where plasma catalysis has demonstrated its benefits or shows future potential, including CO2 conversion, hydrocarbon reforming, synthesis of nanomaterials, ammonia production, and abatement of toxic waste gases. The underlying mechanisms governing these applications, as resulting from the interaction between the plasma and the catalyst, render the process highly complex, and little is known about the factors leading to the often-observed synergy. This Review critically examines the catalytic mechanisms relevant to each specific application.  
  Address Department of Chemistry, Research Group PLASMANT, Universiteit Antwerpen , Universiteitsplein 1, 2610 Wilrijk-Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000367563000006 Publication Date 2015-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2665 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 47.928 Times cited 204 Open Access  
  Notes ECN and AB gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant Number G.0217.14N. KO acknowledges partial support by the Australian Research Council and CSIRO’s OCE Science Leaders Program. MKS acknowledges partial support from US National Science Foundation through grants DMS 1125909 and EPSCoR 1355448 and also PhD students Babajide Ajayi, Apolo Nambo and Maria Carreon for their help. Approved Most recent IF: 47.928; 2015 IF: 46.568  
  Call Number c:irua:130001 Serial 3993  
Permanent link to this record
 

 
Author Bultinck, E.; Kolev, I.; Bogaerts, A.; Depla, D. doi  openurl
  Title The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron Type A1 Journal article
  Year 2008 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 103 Issue 1 Pages (down) 013309,1-9  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000252890700024 Publication Date 2008-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.068; 2008 IF: 2.201  
  Call Number UA @ lucian @ c:irua:66176 Serial 1564  
Permanent link to this record
 

 
Author Gorbanev, Y.; Privat-Maldonado, A.; Bogaerts, A. pdf  url
doi  openurl
  Title Analysis of Short-Lived Reactive Species in Plasma–Air–Water Systems: The Dos and the Do Nots Type A1 Journal Article
  Year 2018 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 90 Issue 22 Pages (down) 13151-13158  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This Feature addresses the analysis of the reactive species generated by nonthermal atmospheric

pressure plasmas, which are widely employed in industrial and biomedical research, as well as first

clinical applications. We summarize the progress in detection of plasma-generated short-lived

reactive oxygen and nitrogen species in aqueous solutions, discuss the potential and limitations of

various analytical methods in plasma−liquid systems, and provide an outlook on the possible future

research goals in development of short-lived reactive species analysis methods for a general

nonspecialist audience.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451246100002 Publication Date 2018-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 17 Open Access Not_Open_Access  
  Notes European Commission, 743151 ; This work was supported by the European Marie Sklodowska- Curie Individual Fellowship within Horizon2020 (“LTPAM”, Grant No. 743151). Approved Most recent IF: 6.32  
  Call Number PLASMANT @ plasmant @c:irua:156301 Serial 5152  
Permanent link to this record
 

 
Author Engelmann, Y.; van ’t Veer, K.; Gorbanev, Y.; Neyts, E.C.; Schneider, W.F.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma Catalysis for Ammonia Synthesis: A Microkinetic Modeling Study on the Contributions of Eley–Rideal Reactions Type A1 Journal Article;Plasma catalysis
  Year 2021 Publication Acs Sustainable Chemistry & Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 9 Issue 39 Pages (down) 13151-13163  
  Keywords A1 Journal Article;Plasma catalysis; Eley−Rideal reactions; Volcano plots; Vibrational excitation; Radical reactions; Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma catalysis is an emerging new technology for the electrification and downscaling of NH3 synthesis. Increasing attention is being paid to the optimization of plasma catalysis with respect to the plasma conditions, the catalyst material, and their mutual interaction. In this work we use microkinetic models to study how the total conversion process is impacted by the combination of different plasma conditions and transition metal catalysts. We study how plasma-generated radicals and vibrationally excited N2 (present in a dielectric barrier discharge plasma) interact with the catalyst and impact the NH3 turnover frequencies (TOFs). Both filamentary and uniform plasmas are studied, based on plasma chemistry models that provided plasma phase speciation and vibrational distribution functions. The Langmuir−Hinshelwood reaction rate coefficients (i.e., adsorption reactions and subsequent reactions among adsorbates) are determined using conventional scaling relations. An additional set of Eley−Rideal reactions (i.e., direct reactions of plasma radicals with adsorbates) was added and a sensitivity analysis on the assumed reaction rate coefficients was performed. We first show the impact of different vibrational distribution functions on the catalytic dissociation of N2 and subsequent production of NH3, and we gradually include more radical reactions, to illustrate the contribution of these species and their corresponding reaction pathways. Analysis over a large range of catalysts indicates that different transition metals (metals such as Rh, Ni, Pt, and Pd) optimize the NH3TOFs depending on the population of the vibrational levels of N2. At higher concentrations of plasma-generated radicals, the NH3 TOFs become less dependent on the catalyst material, due to radical adsorptions on the more noble catalysts and Eley−Rideal reactions on the less noble catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000705367800004 Publication Date 2021-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.951 Times cited Open Access OpenAccess  
  Notes Basic Energy Sciences, DE-SC0021107 ; Vlaamse regering, HBC.2019.0108 ; H2020 European Research Council, 810182 ; Methusalem project – University of Antwerp; Excellence of science FWO-FNRS, GoF9618n ; TOP-BOF – University of Antwerp; DOCPRO3 – University of Antwerp; We acknowledge the financial support from the DOC-PRO3, the TOP-BOF, and the Methusalem project of the University of Antwerp, as well as from the European Research Council (ERC) (grant agreement No, 810182−SCOPE ERC Synergy project), under the European Union’s Horizon 2020 research and innovation programme, the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). Calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), 13162 Approved Most recent IF: 5.951  
  Call Number PLASMANT @ plasmant @c:irua:182482 Serial 6811  
Permanent link to this record
 

 
Author Heirman, P.; Van Boxem, W.; Bogaerts, A. pdf  doi
openurl 
  Title Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 24 Pages (down) 12881-12894  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-treated liquids have great potential for biomedical applications. However, insight into the underlying mechanisms and the exact chemistry is still scarce. In this study, we present the combination of a 0D chemical kinetics and a 2D fluid dynamics model to investigate the plasma treatment of a buffered water solution with the kINPen (R) plasma jet. Using this model, we calculated the gas and liquid flow profiles and the transport and chemistry of all species in the gas and the liquid phase. Moreover, we evaluated the stability of the reactive oxygen and nitrogen species after plasma treatment. We found that of all species, only H2O2, HNO2/NO2-, and HNO3/NO3- are stable in the buffered solution after plasma treatment. This is because both their production and loss processes in the liquid phase are dependent on short-lived radicals (e.g. OH, NO, and NO2). Apart from some discrepancy in the absolute values of the concentrations, which can be explained by the model, all general trends and observations in our model are in qualitative agreement with experimental data and literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472214000012 Publication Date 2019-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:161314 Serial 6320  
Permanent link to this record
 

 
Author Heijkers, S.; Snoeckx, R.; Kozák, T.; Silva, T.; Godfroid, T.; Britun, N.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2 conversion in a microwave plasma reactor in the presence of N2 : elucidating the role of vibrational levels Type A1 Journal article
  Year 2015 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 119 Issue 119 Pages (down) 12815-12828  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A chemical kinetics model is developed for a CO2/N2 microwave plasma, focusing especially on the vibrational levels of both CO2 and N2. The model is used to calculate the CO2 and N2 conversion as well as the energy efficiency of CO2 conversion for different power densities and for N2 fractions in the CO2/N2 gas mixture ranging from 0 to 90%. The calculation results are compared with measurements, and agreements within 23% and 33% are generally found for the CO2 conversion and N2 conversion, respectively. To explain the observed trends, the destruction and formation processes of both CO2 and N2 are analyzed, as well as the vibrational distribution functions of both CO2 and N2. The results indicate that N2 contributes in populating the lower asymmetric levels of CO2, leading to a higher absolute CO2 conversion upon increasing N2 fraction. However, the effective CO2 conversion drops because there is less CO2 initially present in the gas mixture; thus, the energy efficiency also drops with rising N2 fraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000356317500005 Publication Date 2015-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 56 Open Access  
  Notes Approved Most recent IF: 4.536; 2015 IF: 4.772  
  Call Number c:irua:126325 Serial 3523  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: