toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, L.; Elibol, K.; Cai, H.; Jiang, C.; Shi, W.; Chen, C.; Wang, H.S.; Wang, X.; Mu, X.; Li, C.; Watanabe, K.; Taniguchi, T.; Guo, Y.; Meyer, J.C.; Wang, H. pdf  url
doi  openurl
  Title Direct observation of layer-stacking and oriented wrinkles in multilayer hexagonal boron nitride Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 2 Pages 024001  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hexagonal boron nitride (h-BN) has long been recognized as an ideal substrate for electronic devices due to its dangling-bond-free surface, insulating nature and thermal/chemical stability. These properties of the h-BN multilayer are mainly determined by its lattice structure. Therefore, to analyse the lattice structure and orientation of h-BN crystals becomes important. Here, the stacking order and wrinkles of h-BN are investigated by transmission electron microscopy. It is experimentally confirmed that the layers in the h-BN flakes are arranged in the AA ' stacking. The wrinkles in a form of threefold network throughout the h-BN crystal are oriented along the armchair direction, and their formation mechanism was further explored by molecular dynamics simulations. Our findings provide a deep insight about the microstructure of h-BN and shed light on the structural design/electronic modulations of two-dimensional crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000605937500001 Publication Date 2020-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:174950 Serial 6723  
Permanent link to this record
 

 
Author Kashiwar, A.; Hahn, H.; Kubel, C. url  doi
openurl 
  Title In situ TEM observation of cooperative grain rotations and the Bauschinger effect in nanocrystalline palladium Type A1 Journal article
  Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 2 Pages 432  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report on cooperative grain rotation accompanied by a strong Bauschinger effect in nanocrystalline (nc) palladium thin film. A thin film of nc Pd was subjected to cyclic loading-unloading using in situ TEM nanomechanics, and the evolving microstructural characteristics were investigated with ADF-STEM imaging and quantitative ACOM-STEM analysis. ADF-STEM imaging revealed a partially reversible rotation of nanosized grains with a strong out-of-plane component during cyclic loading-unloading experiments. Sets of neighboring grains were shown to rotate cooperatively, one after the other, with increasing/decreasing strain. ACOM-STEM in conjunction with these experiments provided information on the crystallographic orientation of the rotating grains at different strain levels. Local Nye tensor analysis showed significantly different geometrically necessary dislocation (GND) density evolution within grains in close proximity, confirming a locally heterogeneous deformation response. The GND density analysis revealed the formation of dislocation pile-ups at grain boundaries (GBs), indicating the generation of back stresses during unloading. A statistical analysis of the orientation changes of individual grains showed the rotation of most grains without global texture development, which fits to both dislocation- and GB sliding-based mechanisms. Overall, our quantitative in situ experimental approach explores the roles of these different deformation mechanisms operating in nanocrystalline metals during cyclic loading.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000622951500001 Publication Date 2021-02-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 3.553  
  Call Number UA @ admin @ c:irua:176770 Serial 6729  
Permanent link to this record
 

 
Author Li, C.-F.; Zhao, K.; Liao, X.; Hu, Z.-Y.; Zhang, L.; Zhao, Y.; Mu, S.; Li, Y.; Li, Y.; Van Tendeloo, G.; Sun, C. pdf  url
doi  openurl
  Title Interface cation migration kinetics induced oxygen release heterogeneity in layered lithium cathodes Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 36 Issue Pages 115-122  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irreversible release of the lattice oxygen in layered cathodes is one of the major degradation mechanisms of lithium ion batteries, which accounts for a number of battery failures including the voltage/capacity fade, loss of cation ions and detachment of the primary particles, etc. Oxygen release is generally attributed to the stepwise thermodynamic controlled phase transitions from the layered to spinel and rock salt phases. Here, we report a strong kinetic effect from the mobility of cation ions, whose migration barrier can be significantly modulated by the phase epitaxy at the degrading interface. It ends up with a clear oxygen release heterogeneity and completely different reaction pathways between the thin and thick areas, as well as the interparticle valence boundaries, both of which widely exist in the mainstream cathode design with the secondary agglomerates. This work unveils the origin of the heterogenous oxygen release in the layered cathodes. It also sheds light on the rational design of cathode materials with enhanced oxygen stability by suppressing the cation migration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620584300009 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176654 Serial 6730  
Permanent link to this record
 

 
Author Xia, C.; Pedrazo-Tardajos, A.; Wang, D.; Meeldijk, J.D.; Gerritsen, H.C.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Seeded growth combined with cation exchange for the synthesis of anisotropic Cu2-xS/ZnS, Cu2-xS, and CuInS2 nanorods Type A1 Journal article
  Year 2021 Publication Chemistry of materials Abbreviated Journal  
  Volume 33 Issue 1 Pages 102-116  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Colloidal copper(I) sulfide (Cu2-xS) nanocrystals (NCs) have attracted much attention for a wide range of applications because of their unique optoelectronic properties, driving scientists to explore the potential of using Cu2-xS NCs as seeds in the synthesis of heteronanocrystals to achieve new multifunctional materials. Herein, we developed a multistep synthesis strategy toward Cu2-xS/ZnS heteronanorods. The Janus-type Cu2-xS/ZnS heteronanorods are obtained by the injection of hexagonal high-chalcocite Cu2-xS seed NCs in a hot zinc oleate solution in the presence of suitable surfactants, 20 s after the injection of sulfur precursors. The Cu2-xS seed NCs undergo rapid aggregation and coalescence in the first few seconds after the injection, forming larger NCs that act as the effective seeds for heteronucleation and growth of ZnS. The ZnS heteronucleation occurs on a single (100) facet of the Cu2-xS seed NCs and is followed by fast anisotropic growth along a direction that is perpendicular to the c-axis, thus leading to Cu2-xS/ZnS Janus-type heteronanorods with a sharp heterointerface. Interestingly, the high-chalcocite crystal structure of the injected Cu2-xS seed NCs is preserved in the Cu2-xS segments of the heteronanorods because of the highthermodynamic stability of this Cu2-xS phase. The Cu2-xS/ZnS heteronanorods are subsequently converted into single-component Cu2-xS and CuInS2 nanorods by postsynthetic topotactic cation exchange. This work expands the possibilities for the rational synthesis of colloidal multicomponent heteronanorods by allowing the design principles of postsynthetic heteroepitaxial seeded growth and nanoscale cation exchange to be combined, yielding access to a plethora of multicomponent heteronanorods with diameters in the quantum confinement regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000610984700009 Publication Date 2020-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access (down) OpenAccess  
  Notes C.X. acknowledges China Scholarship Council (CSC) for the financial support (grant number 201406330055). C.d.M.D. acknowledges funding from the European Commission for access to the EMAT facilities (grant number EUSMI E180900184). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. acknowledges support by means of the ERC Consolidator grant no. 815128 REALNANO. The authors thank Donglong Fu for XRD measurements.; sygma Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:176587 Serial 6732  
Permanent link to this record
 

 
Author González‐Rubio, G.; Díaz‐Núñez, P.; Albrecht, W.; Manzaneda‐González, V.; Bañares, L.; Rivera, A.; Liz‐Marzán, L.M.; Peña‐Rodríguez, O.; Bals, S.; Guerrero‐Martínez, A. url  doi
openurl 
  Title Controlled Alloying of Au@Ag Core–Shell Nanorods Induced by Femtosecond Laser Irradiation Type A1 Journal article
  Year 2021 Publication Advanced Optical Materials Abbreviated Journal Adv Opt Mater  
  Volume Issue Pages 2002134  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000625964300001 Publication Date 2021-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2195-1071 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.875 Times cited 10 Open Access (down) OpenAccess  
  Notes G.G.‐R., P.D.‐N., and W.A. contributed equally to this work. This work was funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grant Nos. RTI2018‐095844‐B‐I00, PID2019‐105325RB, and PGC2018‐096444‐B‐I00), the Madrid Regional Government (Grant Nos. P2018/NMT‐4389 and S2018/EMT‐4437), and the EUROfusion Consortium (grant ENR‐IFE19.CCFE‐01). This work was supported by COST (European Cooperation in Science and Technology) Action TUMIEE (Grant No. CA17126). S.B. and W.A. acknowledge funding from the European Research Council under the European Union's Horizon 2020 Research and Innovation Program (ERC Consolidator Grant No. 815128 – REALNANO). All the authors acknowledge funding from the European Commission (Grant No. E180900184‐EUSMI). G.G.‐R. thanks the Spanish MICIU for an FPI (Grant No. BES‐2014‐068972) fellowship. W.A. acknowledges an Individual Fellowship from the Marie Sklodowska‐Curie actions (MSCA) under the EU's Horizon 2020 Program (Grant No. 797153, SOPMEN). The facilities provided by the Center for Ultrafast Laser of Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by CESVIMA (UPM).; sygmaSB Approved Most recent IF: 6.875  
  Call Number EMAT @ emat @c:irua:177586 Serial 6758  
Permanent link to this record
 

 
Author Vishwakarma, M.; Kumar, M.; Hendrickx, M.; Hadermann, J.; Singh, A.P.; Batra, Y.; Mehta, B.R. pdf  url
doi  openurl
  Title Enhancing the hydrogen evolution properties of kesterite absorber by Si-doping in the surface of CZTS thin film Type A1 Journal article
  Year 2021 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume Issue Pages 2002124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this work, the effects of Si-doping in Cu2ZnSnS4 are examined computationally and experimentally. The density functional theory calculations show that an increasing concentration of Si (from x = 0 to x = 1) yields a band gap rise due to shifting of the conduction band minimum towards higher energy states in the Cu2Zn(Sn1-xSix)S-4. CZTSiS thin film prepared by co-sputtering process shows Cu2Zn(Sn1-xSix)S-4 (Si-rich) and Cu2ZnSnS4 (S-rich) kesterite phases on the surface and in the bulk of the sample, respectively. A significant change in surface electronic properties is observed in CZTSiS thin film. Si-doping in CZTS inverts the band bending at grain-boundaries from downward to upward and the Fermi level of CZTSiS shifts upward. Further, the coating of the CdS and ZnO layer improves the photocurrent to approximate to 5.57 mA cm(-2) at -0.41 V-RHE in the CZTSiS/CdS/ZnO sample, which is 2.39 times higher than that of pure CZTS. The flat band potential increases from CZTS approximate to 0.43 V-RHE to CZTSiS/CdS/ZnO approximate to 1.31 V-RHE indicating the faster carrier separation process at the electrode-electrolyte interface in the latter sample. CdS/ZnO layers over CZTSiS significantly reduce the charge transfer resistance at the semiconductor-electrolyte interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000635804900001 Publication Date 2021-04-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 4.279  
  Call Number UA @ admin @ c:irua:177688 Serial 6780  
Permanent link to this record
 

 
Author Do, M.T.; Gauquelin, N.; Nguyen, M.D.; Blom, F.; Verbeeck, J.; Koster, G.; Houwman, E.P.; Rijnders, G. url  doi
openurl 
  Title Interface degradation and field screening mechanism behind bipolar-cycling fatigue in ferroelectric capacitors Type A1 Journal article
  Year 2021 Publication Apl Materials Abbreviated Journal Apl Mater  
  Volume 9 Issue 2 Pages 021113  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Polarization fatigue, i.e., the loss of polarization of ferroelectric capacitors upon field cycling, has been widely discussed as an interface related effect. However, mechanism(s) behind the development of fatigue have not been fully identified. Here, we study the fatigue mechanisms in Pt/PbZr0.52Ti0.48O3/SrRuO3 (Pt/PZT/SRO) capacitors in which all layers are fabricated by pulsed laser deposition without breaking the vacuum. With scanning transmission electron microscopy, we observed that in the fatigued capacitor, the Pt/PZT interface becomes structurally degraded, forming a 5 nm-10 nm thick non-ferroelectric layer of crystalline ZrO2 and diffused Pt grains. We then found that the fatigued capacitors can regain the full initial polarization switching if the externally applied field is increased to at least 10 times the switching field of the pristine capacitor. These findings suggest that polarization fatigue is driven by a two-step mechanism. First, the transient depolarization field that repeatedly appears during the domain switching under field cycling causes decomposition of the metal/ferroelectric interface, resulting in a non-ferroelectric degraded layer. Second, this interfacial non-ferroelectric layer screens the external applied field causing an increase in the coercive field beyond the usually applied maximum field and consequently suppresses the polarization switching in the cycled capacitor. Our work clearly confirms the key role of the electrode/ferroelectric interface in the endurance of ferroelectric-based devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000630052100006 Publication Date 2021-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 5 Open Access (down) OpenAccess  
  Notes This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek through Grant No. F62.3.15559. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. N.G. and J.V. acknowledge funding from the GOA project “Solarpaint” of the University of Antwerp. This work has also received funding from the European Union's Horizon 2020 research and innovation program under Grant No. 823717-ESTEEM3. We acknowledge D. Chezganov for his useful insights. Approved Most recent IF: 4.335  
  Call Number UA @ admin @ c:irua:177663 Serial 6783  
Permanent link to this record
 

 
Author Akamine, H.; Mitsuhara, M.; Nishida, M.; Samaee, V.; Schryvers, D.; Tsukamoto, G.; Kunieda, T.; Fujii, H. pdf  url
doi  openurl
  Title Precipitation behaviors in Ti-2.3 Wt Pct Cu alloy during isothermal and two-step aging Type A1 Journal article
  Year 2021 Publication Metallurgical And Materials Transactions A-Physical Metallurgy And Materials Science Abbreviated Journal Metall Mater Trans A  
  Volume 52 Issue Pages 2760-2772  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Time evolution of precipitates related to age-hardening in Ti-2.3 wt pct Cu alloys was investigated by electron microscopy. In isothermal aging at 723 K, the hardness increases continuously owing to precipitation strengthening, whereas in two-step aging where the aging temperature is switched from 673 K to 873 K after 100 hours, the hardness is found to drastically drop after the aging temperature switches. In isothermal aging, metastable and stable precipitates are independently nucleated, whereas characteristic V-shaped clusters of precipitates are observed during the two-step aging. It is revealed by atomic-scale observations that the V-shaped clusters are composed of metastable and stable precipitates and each type of precipitate has a different orientation relationship with the alpha phase: (10 (3) over bar)//(0001)(alpha) and [0 (1) over bar0]//respectively. The drop in hardness during two-step aging can be explained by a synergistic effect of decreased precipitation strengthening and solid solution strengthening. (C) The Minerals, Metals & Materials Society and ASM International 2021  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000644823000001 Publication Date 2021-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1073-5623 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.874 Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 1.874  
  Call Number UA @ admin @ c:irua:178222 Serial 6786  
Permanent link to this record
 

 
Author Arenas-Vivo, A.; Rojas, S.; Ocaña, I.; Torres, A.; Liras, M.; Salles, F.; Arenas-Esteban, D.; Bals, S.; Ávila, D.; Horcajada, P. url  doi
openurl 
  Title Ultrafast reproducible synthesis of a Ag-nanocluster@MOF composite and its superior visible-photocatalytic activity in batch and in continuous flow Type A1 Journal article
  Year 2021 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 9 Issue 28 Pages 15704-15713  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The (photo)catalytic properties of metal–organic frameworks (MOFs) can be enhanced by post-synthetic inclusion of metallic species in their porosity. Due to their extraordinarily high surface area and well defined porous structure, MOFs can be used for the stabilization of metal nanoparticles with adjustable size within their porosity. Originally, we present here an optimized ultrafast photoreduction protocol for the<italic>in situ</italic>synthesis of tiny and monodisperse silver nanoclusters (AgNCs) homogeneously supported on a photoactive porous titanium carboxylate MIL-125-NH<sub>2</sub>MOF. The strong metal–framework interaction between –NH<sub>2</sub>and Ag atoms influences the AgNC growth, leading to the surfactant-free efficient catalyst AgNC@MIL-125-NH<sub>2</sub>with improved visible light absorption. The potential use of AgNC@MIL-125-NH<sub>2</sub>was further tested in challenging applications: (i) the photodegradation of the emerging organic contaminants (EOCs) methylene blue (MB-dye) and sulfamethazine (SMT-antibiotic) in water treatment, and (ii) the catalytic hydrogenation of<italic>p</italic>-nitroaniline (4-NA) to<italic>p</italic>-phenylenediamine (PPD) with industrial interest. It is noteworthy that compared with the pristine MIL-125-NH<sub>2</sub>, the composite presents an improved catalytic activity and stability, being able to photodegrade 92% of MB in 60 min and 96% of SMT in 30 min, and transform 100% of 4-NA to PPD in 30 min. Aside from these very good results, this study describes for the first time the use of a MOF in a visible light continuous flow reactor for wastewater treatment. With only 10 mg of AgNC@MIL-125-NH<sub>2</sub>, high SMT removal efficiency over 70% is maintained after >2 h under water flow conditions found in real wastewater treatment plants, signaling a future real application of MOFs in water remediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000671839200001 Publication Date 2021-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 18 Open Access (down) OpenAccess  
  Notes Comunidad de Madrid, CAM PEJD-2016/IND-2828 Talento Modality 2, 2017-T2/IND-5149 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, Raphuel project (ENE2016-79608-C2-1-R) Retos Project MAT2017-84385-R ; Ministerio de Ciencia e Innovación, Juan de la Cierva Incorporación Fellowship (grant agreement no. IJC2019-038894-I) MOFSEIDON project (PID2019-104228RB-I00) Ramón y Cajal, Grant Agreements 2014-15039 and 2015-18677 ; Fundación BBVA, IN[17]CBBQUI_0197 ; H2020 European Research Council, ERC Consolidator Grant REALNANO 815128 Grant Agreement no. 731019 (EUSMI) ; sygmaSB; Approved Most recent IF: 8.867  
  Call Number EMAT @ emat @c:irua:179791 Serial 6802  
Permanent link to this record
 

 
Author Albrecht, W.; Arslan Irmak, E.; Altantzis, T.; Pedrazo‐Tardajos, A.; Skorikov, A.; Deng, T.‐S.; van der Hoeven, J.E.S.; van Blaaderen, A.; Van Aert, S.; Bals, S. pdf  url
doi  openurl
  Title 3D Atomic‐Scale Dynamics of Laser‐Light‐Induced Restructuring of Nanoparticles Unraveled by Electron Tomography Type A1 Journal article
  Year 2021 Publication Advanced Materials Abbreviated Journal Adv Mater  
  Volume Issue Pages 2100972  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract Understanding light–matter interactions in nanomaterials is crucial for

optoelectronic, photonic, and plasmonic applications. Specifically, metal

nanoparticles (NPs) strongly interact with light and can undergo shape

transformations, fragmentation and ablation upon (pulsed) laser excitation.

Despite being vital for technological applications, experimental insight into

the underlying atomistic processes is still lacking due to the complexity of

such measurements. Herein, atomic resolution electron tomography is performed

on the same mesoporous-silica-coated gold nanorod, before and after

femtosecond laser irradiation, to assess the missing information. Combined

with molecular dynamics (MD) simulations based on the experimentally

determined 3D atomic-scale morphology, the complex atomistic rearrangements,

causing shape deformations and defect generation, are unraveled.

These rearrangements are simultaneously driven by surface diffusion, facet

restructuring, and strain formation, and are influenced by subtleties in the

atomic distribution at the surface.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000671662000001 Publication Date 2021-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 8 Open Access (down) OpenAccess  
  Notes W.A. and E.A.I. contributed equally to this work. The authors acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation program (ERC Consolidator Grants No. 815128 – REALNANO and No. 770887 – PICOMETRICS), the European Union’s Seventh Framework Programme (ERC Advanced Grant No. 291667 – HierarSACol), and the European Commission (EUSMI). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in the Horizon2020 program (Grant 797153, SOPMEN). T.-S.D. acknowledges financial support from the National Science Foundation of China (NSFC, Grant No. 61905056). The authors also acknowledge financial support by the Research Foundation Flanders (FWO Grant G.0267.18N).; sygmaSB Approved Most recent IF: 19.791  
  Call Number EMAT @ emat @c:irua:179781 Serial 6805  
Permanent link to this record
 

 
Author Dingenen, F.; Blommaerts, N.; Van Hal, M.; Borah, R.; Arenas-Esteban, D.; Lenaerts, S.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO2: Towards Stable Solar Active Photocatalysts Type A1 Journal article
  Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 10 Pages 2624  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic ‘rainbow’ photocatalyst consists of TiO2 modified with gold–silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0–2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic ‘rainbow’ nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized ‘rainbow’ nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic ‘rainbow’ concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000712759800001 Publication Date 2021-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 7 Open Access (down) OpenAccess  
  Notes Research was funded by Research Foundation—Flanders (FWO), FN 700300001— Aspirant F. Dingenen. Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:183281 Serial 6812  
Permanent link to this record
 

 
Author Herzog, M.J.; Gauquelin, N.; Esken, D.; Verbeeck, J.; Janek, J. url  doi
openurl 
  Title Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal ACS Appl. Energy Mater.  
  Volume 4 Issue 9 Pages 8832-8848  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dry powder coating is an effective approach to protect the surfaces of layered cathode active materials (CAMs) in lithium-ion batteries. Previous investigations indicate an incorporation of lithium ions in fumed Al2O3, ZrO2, and TiO2 coatings on LiNi0.7Mn0.15Co0.15O2 during cycling, improving the cycling performance. Here, this coating approach is transferred for the first time to fumed ternary LiAlO2, Li4Zr3O8, and Li4Ti5O12 and directly compared with their lithium-free equivalents. All materials could be processed equally and their nanostructured small aggregates accumulate on the CAM surfaces to quite homogeneous coating layers with a certain porosity. The LiNixMnyCozO2 (NMC) coated with lithium-containing materials shows an enhanced improvement in overall capacity, capacity retention, rate performance, and polarization behavior during cycling, compared to their lithium-free analogues. The highest rate performance was achieved with the fumed ZrO2 coating, while the best long-term cycling stability with the highest absolute capacity was obtained for the fumed LiAlO2-coated NMC. The optimal coating agent for NMC to achieve a balanced system is fumed Li4Ti5O12, providing a good compromise between high rate capability and good capacity retention. The coating agents prevent CAM particle cracking and degradation in the order LiAlO2 ≈ Al2O3 > Li4Ti5O12 > Li4Zr3O8 > ZrO2 > TiO2. A schematic model for the protection and electrochemical performance enhancement of high-nickel NMC with fumed metal oxide coatings is sketched. It becomes apparent that physical and chemical characteristics of the coating significantly influence the performance of NMC. A high degree of coating-layer porosity is favorable for the rate capability, while a high coverage of the surface, especially in vulnerable grain boundaries, enhances the long-term cycling stability and improves the cracking behavior of NMCs. While zirconium-containing coatings possess the best chemical properties for high rate performances, aluminum-containing coatings feature a superior chemical nature to protect high-nickel NMCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703338600018 Publication Date 2021-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 15 Open Access (down) OpenAccess  
  Notes For his support in scanning electron microscopy analysis, the authors thank Erik Peldszus. N. G. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp and from the Flemish Research Fund (FWO) project G0F1320N. The Qu-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:183949 Serial 6823  
Permanent link to this record
 

 
Author Mustonen, K.; Hofer, C.; Kotrusz, P.; Markevich, A.; Hulman, M.; Mangler, C.; Susi, T.; Pennycook, T.J.; Hricovini, K.; Richter, C.M.; Meyer, J.C.; Kotakoski, J.; Skákalová, V. url  doi
openurl 
  Title Towards Exotic Layered Materials: 2D Cuprous Iodide Type A1 Journal article
  Year 2021 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume Issue Pages 2106922  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterostructures composed of two-dimensional (2D) materials are already opening many new possibilities in such fields of technology as electronics and magnonics, but far more could be achieved if the number and diversity of 2D materials is increased. So far, only a few dozen 2D crystals have been extracted from materials that exhibit a layered phase in ambient conditions, omitting entirely the large number of layered materials that may exist in other temperatures and pressures. Here, we demonstrate how these structures can be stabilized in 2D van der Waals stacks under room temperature via growing them directly in graphene encapsulation by using graphene oxide as the template material. Specifically, we produce an ambient stable 2D structure of copper and iodine, a material that normally only occurs in layered form at elevated temperatures between 645 and 675 K. Our results establish a simple route to the production of more exotic phases of materials that would otherwise be difficult or impossible to stabilize for experiments in ambient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000744012500001 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited Open Access (down) OpenAccess  
  Notes We acknowledge funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme Grant agreements No.~756277-ATMEN (A.M. and T.S.) and No.802123-HDEM (C.H. and T.J.P.). Computational resources from the Vienna Scientific Cluster (VSC) are gratefully acknowledged. V.S. was supported by the Austrian Science Fund (FWF) (project no. I2344-N36), the Slovak Research and Development Agency (APVV-16-0319), the project CEMEA of the Slovak Academy of Sciences, ITMS project code 313021T081 of the Research & Innovation Operational Programme and from the V4-Japan Joint Research Program (BGapEng). J.K. acknowledges the FWF funding within project P31605-N36 and M.H. the funding from Slovak Research and Development Agency via the APVV-15-0693 and APVV-19-0365 project grants. Danubia NanoTech s.r.o. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101008099 (CompSafeNano project) and also thanks Mr. Kamil Bernath for his support. Approved Most recent IF: 19.791  
  Call Number EMAT @ emat @c:irua:183956 Serial 6834  
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Vliem, J.F.; Maaskant, D.N.; Post, L.C.; Li, C.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title From CdSe nanoplatelets to quantum rings by thermochemical edge reconfiguration Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue 17 Pages 6853-6859  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The variation in the shape of colloidal semiconductor nanocrystals (NCs) remains intriguing. This interest goes beyond crystallography as the shape of the NC determines its energy levels and optoelectronic properties. While thermodynamic arguments point to a few or just a single shape(s), terminated by the most stable crystal facets, a remarkable variation in NC shape has been reported for many different compounds. For instance, for the well-studied case of CdSe, close-to-spherical quantum dots, rods, two-dimensional nanoplatelets, and quantum rings have been reported. Here, we report how two-dimensional CdSe nanoplatelets reshape into quantum rings. We monitor the reshaping in real time by combining atomically resolved structural characterization with optical absorption and photoluminescence spectroscopy. We observe that CdSe units leave the vertical sides of the edges and recrystallize on the top and bottom edges of the nanoplatelets, resulting in a thickening of the rims. The formation of a central hole, rendering the shape into a ring, only occurs at a more elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696553600024 Publication Date 2021-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access (down) OpenAccess  
  Notes Hans Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant no. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced grant 692691 “First Step”. D.V. and L.C.P. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant nr. 718.015.002. S.B acknowledges financial support from the European ERC Council, ERC Consolidator grant 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 731019 (EUSMI). Realnano; sygmaSB Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:181550 Serial 6839  
Permanent link to this record
 

 
Author Abakumov, A.M.; Li, C.; Boev, A.; Aksyonov, D.A.; Savina, A.A.; Abakumova, T.A.; Van Tendeloo, G.; Bals, S. pdf  doi
openurl 
  Title Grain boundaries as a diffusion-limiting factor in lithium-rich NMC cathodes for high-energy lithium-ion batteries Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 7 Pages 6777-6786  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High-energy lithium-rich layered transition metal oxides are capable of delivering record electrochemical capacity and energy density as positive electrodes for Li-ion batteries. Their electrochemical behavior is extremely complex due to sophisticated interplay between crystal structure, electronic structure, and defect structure. Here we unravel an extra level of this complexity by revealing that the most typical representative Li1.2Ni0.13Mn0.54Co0.13O2 material, prepared by a conventional coprecipitation technique with Na2CO3 as a precipitating agent, contains abundant coherent (001) grain boundaries with a Na-enriched P2-structured block due to segregation of the residual sodium traces. The trigonal prismatic oxygen coordination of Na triggers multiple nanoscale twinning, giving rise to incoherent (104) boundaries. The cationic layers at the (001) grain boundaries are filled with transition metal cations being Mn-depleted and Co-enriched; this makes them virtually not permeable for the Li+ cations, and therefore they negatively influence the Li diffusion in and out of the spherical agglomerates. These results demonstrate that besides the mechanisms intrinsic to the crystal and electronic structure of Li-rich cathodes, their rate capability might also be depreciated by peculiar microstructural aspects. Dedicated engineering of grain boundaries opens a way for improving inherently sluggish kinetics of these materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000678382900042 Publication Date 2021-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access (down) OpenAccess  
  Notes We thank Dr. M. V. Berekchiian (MSU) for assisting in ICPMS measurements. We acknowledge Russian Science Foundation (Grant 20-43-01012) and Research Foundation Flanders (FWO Vlaanderen, Project No. G0F1320N) for financial support. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180556 Serial 6841  
Permanent link to this record
 

 
Author Feng, H.L.; Kang, C.-J.; Manuel, P.; Orlandi, F.; Su, Y.; Chen, J.; Tsujimoto, Y.; Hadermann, J.; Kotliar, G.; Yamaura, K.; McCabe, E.E.; Greenblatt, M. pdf  url
doi  openurl
  Title Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, Pb₂NiOsO₆ Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue 11 Pages 4188-4195  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A polycrystalline sample of Pb2NiOsO6 was synthesized under high-pressure (6 GPa) and high-temperature (1575 K) conditions. Pb2NiOsO6 crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group P2(1)/n at room temperature. Pb2NiOsO6 is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at T-N = 58 K. Pb2NiOsO6 is a new example of a metallic and AFM oxide with three-dimensional connectivity. Neutron powder diffraction and first-principles calculation studies indicate that both Ni and Os moments are ordered below T-N and the AFM magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by AFM order is unusual in metallic systems, and the 3d-Sd double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000661521800032 Publication Date 2021-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 9.466  
  Call Number UA @ admin @ c:irua:179679 Serial 6854  
Permanent link to this record
 

 
Author Psilodimitrakopoulos, S.; Orekhov, A.; Mouchliadis, L.; Jannis, D.; Maragkakis, G.M.; Kourmoulakis, G.; Gauquelin, N.; Kioseoglou, G.; Verbeeck, J.; Stratakis, E. url  doi
openurl 
  Title Optical versus electron diffraction imaging of Twist-angle in 2D transition metal dichalcogenide bilayers Type A1 Journal article
  Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal  
  Volume 5 Issue 1 Pages 77  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Atomically thin two-dimensional (2D) materials can be vertically stacked with van der Waals bonds, which enable interlayer coupling. In the particular case of transition metal dichalcogenide (TMD) bilayers, the relative direction between the two monolayers, coined as twist-angle, modifies the crystal symmetry and creates a superlattice with exciting properties. Here, we demonstrate an all-optical method for pixel-by-pixel mapping of the twist-angle with a resolution of 0.55(degrees), via polarization-resolved second harmonic generation (P-SHG) microscopy and we compare it with four-dimensional scanning transmission electron microscopy (4D STEM). It is found that the twist-angle imaging of WS2 bilayers, using the P-SHG technique is in excellent agreement with that obtained using electron diffraction. The main advantages of the optical approach are that the characterization is performed on the same substrate that the device is created on and that it is three orders of magnitude faster than the 4D STEM. We envisage that the optical P-SHG imaging could become the gold standard for the quality examination of TMD superlattice-based devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694849200001 Publication Date 2021-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access (down) OpenAccess  
  Notes This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call European R & T Cooperation-Grant Act of Hellenic Institutions that have successfully participated in Joint Calls for Proposals of European Networks ERA NETS (National project code: GRAPH-EYE T8 Epsilon Rho Alpha 2-00009 and European code: 26632, FLAGERA). L.M., G.Ko. and G.Ki. acknowledge funding by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research equipment grant” (Project No: HFRI-FM17-3034). GKi, S.P. and G.M.M. acknowledge funding from a research co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014-2020” in the context of the project “Crystal quality control of two-dimensional materials and their heterostructures via imaging of their non-linear optical properties” (MIS 5050340)“. J.V acknowledges funding from FWO G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund, EU. J.V. and N.G. acknowledge funding from the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717-ESTEEM3. J.V. N.G. and A.O. acknowledge funding through a GOA project ”Solarpaint" of the University of Antwerp. Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181610 Serial 6877  
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Wit, J. de; Li, C.; Arenas-Esteban, D.; Bals, S.; Meijerink, A.; Vanmaekelbergh, D. url  doi
openurl 
  Title Two-Dimensional CdSe-PbSe Heterostructures and PbSe Nanoplatelets: Formation, Atomic Structure, and Optical Properties Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 126 Issue 3 Pages 1513-1522  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000744909200001 Publication Date 2022-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 12 Open Access (down) OpenAccess  
  Notes H. Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. T. Prins is kindly acknowledged for useful discussions. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO Grant No. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced Grant 692691 “First Step”. J.W. and A.M. acknowledge financial support from the project CHEMIE.PGT.2019.004 of TKI/ Topsector Chemie, which is partly financed by the Dutch NWO. S.B, C.L., and D.A.E. acknowledge financial support from the European ERC Council, ERC Consolidator Grant realnano No. 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant No. 731019 (EUSMI). sygmaSB Approved Most recent IF: 3.7  
  Call Number EMAT @ emat @c:irua:185454 Serial 6953  
Permanent link to this record
 

 
Author Heyvaert, W.; Pedrazo-Tardajos, A.; Kadu, A.; Claes, N.; González-Rubio, G.; Liz-Marzán, L.M.; Albrecht, W.; Bals, S. pdf  url
doi  openurl
  Title Quantification of the Helical Morphology of Chiral Gold Nanorods Type A1 Journal article
  Year 2022 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume 4 Issue Pages 642-649  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chirality in inorganic nanoparticles and nanostructures has gained increasing scientific interest, because of the possibility to tune their ability to interact differently with left- and right-handed circularly polarized light. In some cases, the optical activity is hypothesized to originate from a chiral morphology of the nanomaterial. However, quantifying the degree of chirality in objects with sizes of tens of nanometers is far from straightforward. Electron tomography offers the possibility to faithfully retrieve the three-dimensional morphology of nanomaterials, but only a qualitative interpretation of the morphology of chiral nanoparticles has been possible so far. We introduce herein a methodology that enables us to quantify the helicity of complex chiral nanomaterials, based on the geometrical properties of a helix. We demonstrate that an analysis at the single particle level can provide significant insights into the origin of chiroptical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000784490000013 Publication Date 2022-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access (down) OpenAccess  
  Notes S.B. and A.P.-T. gratefully acknowledge funding by the European Research Council (ERC Consolidator Grant #815128-REALNANO) the European Union’s Horizon 2020 research and innovation program under grant agreement #823717ESTEEM3. L.M.L.-M. acknowledges funding from MCIN/ AEI /10.13039/501100011033, grant # PID2020- 117779RB-I00 and the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). G.G.-R. thanks the Spanish Spanish Ministerio de Ciencia e Innovación for an FPI (BES-2014- 068972) fellowship.; SygmaSB; esteem3reported; esteem3jra Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:186959 Serial 6956  
Permanent link to this record
 

 
Author Missen, O.P.; Mills, S.J.; Canossa, S.; Hadermann, J.; Nenert, G.; Weil, M.; Libowitzky, E.; Housley, R.M.; Artner, W.; Kampf, A.R.; Rumsey, M.S.; Spratt, J.; Momma, K.; Dunstan, M.A. url  doi
openurl 
  Title Polytypism in mcalpineite : a study of natural and synthetic Cu₃TeO₆ Type A1 Journal article
  Year 2022 Publication Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials (Online) Abbreviated Journal Acta Crystallogr B  
  Volume 78 Issue 1 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Synthetic and naturally occurring forms of tricopper orthotellurate, (Cu3TeO6)-Te-II-O-IV (the mineral mcalpineite) have been investigated by 3D electron diffraction (3D ED), X-ray powder diffraction (XRPD), Raman and infrared (IR) spectroscopic measurements. As a result of the diffraction analyses, (Cu3TeO6)-Te-II-O-IV is shown to occur in two polytypes. The higher-symmetric (Cu3TeO6)-Te-II-O-IV-1C polytype is cubic, space group 1a (3) over bar, with a = 9.537 (1) angstrom and V = 867.4 (3) angstrom(3) as reported in previous studies. The 1C polytype is a well characterized structure consisting of alternating layers of (CuO6)-O-II octahedra and both (CuO6)-O-II and (TeO6)-O-VI octahedra in a patchwork arrangement. The structure of the lower-symmetric orthorhombic (Cu3TeO6)-Te-II-O-IV-2O polytype was determined for the first time in this study by 3D ED and verified by Rietveld refinement. The 2O polytype crystallizes in space group Pcca, with a = 9.745 (3) angstrom, b = 9.749 (2) angstrom, c = 9.771 (2) angstrom and V = 928.3 (4) angstrom(3) . High-precision XRPD data were also collected on (Cu3TeO6)-Te-II-O-IV-2O to verify the lower-symmetric structure by performing a Rietveld refinement. The resultant structure is identical to that determined by 3D ED, with unit-cell parameters a = 9.56157 (19) angstrom, b = 9.55853 (11) angstrom, c = 9.62891 (15) angstrom and V = 880.03 (2) angstrom(3) . The lower symmetry of the 2O polytype is a consequence of a different cation ordering arrangement, which involves the movement of every second (CuO6)-O-II and (TeO6)-O-VI octahedral layer by (1/4, 1/4, 0), leading to an offset of (TeO6)-O-VI and (CuO6)-O-II octahedra in every second layer giving an ABAB* stacking arrangement. Syntheses of (Cu3TeO6)-Te-II-O-IV showed that low-temperature (473 K) hydrothermal conditions generally produce the 2O polytype. XRPD measurements in combination with Raman spectroscopic analysis showed that most natural mcalpineite is the orthorhombic 2O polytype. Both XRPD and Raman spectroscopy measurements may be used to differentiate between the two polytypes of (Cu3TeO6)-Te-II-O-IV. In Raman spectroscopy, (Cu3TeO6)-Te-II-O-IV-1C has a single strong band around 730 cm(-1), whereas (Cu3TeO6)-Te-II-O-IV-2O shows a broad double maximum with bands centred around 692 and 742 cm(-1).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000752899700003 Publication Date 2022-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.9 Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 1.9  
  Call Number UA @ admin @ c:irua:186529 Serial 6962  
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Ab-initio study of magnetically intercalated platinum diselenide : the impact of platinum vacancies Type A1 Journal article
  Year 2021 Publication Materials Abbreviated Journal Materials  
  Volume 14 Issue 15 Pages 4167  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000682047700001 Publication Date 2021-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 2.654  
  Call Number UA @ admin @ c:irua:180540 Serial 6966  
Permanent link to this record
 

 
Author Conti, S.; Saberi-Pouya, S.; Perali, A.; Virgilio, M.; Peeters, F.M.; Hamilton, A.R.; Scappucci, G.; Neilson, D. url  doi
openurl 
  Title Electron-hole superfluidity in strained Si/Ge type II heterojunctions Type A1 Journal article
  Year 2021 Publication npj Quantum Materials Abbreviated Journal  
  Volume 6 Issue 1 Pages 41  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Excitons are promising candidates for generating superfluidity and Bose-Einstein condensation (BEC) in solid-state devices, but an enabling material platform with in-built band structure advantages and scaling compatibility with industrial semiconductor technology is lacking. Here we predict that spatially indirect excitons in a lattice-matched strained Si/Ge bilayer embedded into a germanium-rich SiGe crystal would lead to observable mass-imbalanced electron-hole superfluidity and BEC. Holes would be confined in a compressively strained Ge quantum well and electrons in a lattice-matched tensile strained Si quantum well. We envision a device architecture that does not require an insulating barrier at the Si/Ge interface, since this interface offers a type II band alignment. Thus the electrons and holes can be kept very close but strictly separate, strengthening the electron-hole pairing attraction while preventing fast electron-hole recombination. The band alignment also allows a one-step procedure for making independent contacts to the electron and hole layers, overcoming a significant obstacle to device fabrication. We predict superfluidity at experimentally accessible temperatures of a few Kelvin and carrier densities up to similar to 6 x 10(10) cm(-2), while the large imbalance of the electron and hole effective masses can lead to exotic superfluid phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000642904200001 Publication Date 2021-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 9 Open Access (down) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178226 Serial 6984  
Permanent link to this record
 

 
Author Pinto, N.; McNaughton, B.; Minicucci, M.; Milošević, M.V.; Perali, A. url  doi
openurl 
  Title Electronic transport mechanisms correlated to structural properties of a reduced graphene oxide sponge Type A1 Journal article
  Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 10 Pages 2503  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report morpho-structural properties and charge conduction mechanisms of a foamy “graphene sponge ”, having a density as low as & AP;0.07 kg/m3 and a carbon to oxygen ratio C:O & SIME; 13:1. The spongy texture analysed by scanning electron microscopy is made of irregularly-shaped millimetres-sized small flakes, containing small crystallites with a typical size of & SIME;16.3 nm. A defect density as high as & SIME;2.6 x 1011 cm-2 has been estimated by the Raman intensity of D and G peaks, dominating the spectrum from room temperature down to & SIME;153 K. Despite the high C:O ratio, the graphene sponge exhibits an insulating electrical behavior, with a raise of the resistance value at & SIME;6 K up to 5 orders of magnitude with respect to the room temperature value. A variable range hopping (VRH) conduction, with a strong 2D character, dominates the charge carriers transport, from 300 K down to 20 K. At T < 20 K, graphene sponge resistance tends to saturate, suggesting a temperature-independent quantum tunnelling. The 2D-VRH conduction originates from structural disorder and is consistent with hopping of charge carriers between sp2 defects in the plane, where sp3 clusters related to oxygen functional groups act as potential barriers.</p>  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000713174500001 Publication Date 2021-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.553 Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 3.553  
  Call Number UA @ admin @ c:irua:184050 Serial 6988  
Permanent link to this record
 

 
Author Zou, Y.-C.; Mogg, L.; Clark, N.; Bacaksiz, C.; Milanovic, S.; Sreepal, V.; Hao, G.-P.; Wang, Y.-C.; Hopkinson, D.G.; Gorbachev, R.; Shaw, S.; Novoselov, K.S.; Raveendran-Nair, R.; Peeters, F.M.; Lozada-Hidalgo, M.; Haigh, S.J. url  doi
openurl 
  Title Ion exchange in atomically thin clays and micas Type A1 Journal article
  Year 2021 Publication Nature Materials Abbreviated Journal Nat Mater  
  Volume 20 Issue 12 Pages 1677-1682  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The physical properties of clays and micas can be controlled by exchanging ions in the crystal lattice. Atomically thin materials can have superior properties in a range of membrane applications, yet the ion-exchange process itself remains largely unexplored in few-layer crystals. Here we use atomic-resolution scanning transmission electron microscopy to study the dynamics of ion exchange and reveal individual ion binding sites in atomically thin and artificially restacked clays and micas. We find that the ion diffusion coefficient for the interlayer space of atomically thin samples is up to 10(4) times larger than in bulk crystals and approaches its value in free water. Samples where no bulk exchange is expected display fast exchange at restacked interfaces, where the exchanged ions arrange in islands with dimensions controlled by the moire superlattice dimensions. We attribute the fast ion diffusion to enhanced interlayer expandability resulting from weaker interlayer binding forces in both atomically thin and restacked materials. This work provides atomic scale insights into ion diffusion in highly confined spaces and suggests strategies to design exfoliated clay membranes with enhanced performance. Layered clays are of interest for membranes and many other applications but their ion-exchange dynamics remain unexplored in atomically thin materials. Here, using electron microscopy, it is found that the ion diffusion for few-layer two-dimensional clays approaches that of free water and that superlattice cation islands can form in twisted and restacked materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000689664000001 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122; 1476-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 2 Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 39.737  
  Call Number UA @ admin @ c:irua:181691 Serial 6999  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Magnetic order and critical temperature of substitutionally doped transition metal dichalcogenide monolayers Type A1 Journal article
  Year 2021 Publication npj 2D Materials and Applications Abbreviated Journal  
  Volume 5 Issue 1 Pages 54  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we investigate the magnetic order in two-dimensional (2D) transition-metal-dichalcogenide (TMD) monolayers: MoS2, MoSe2, MoTe2, WSe2, and WS2 substitutionally doped with period four transition-metals (Ti, V, Cr, Mn, Fe, Co, Ni). We uncover five distinct magnetically ordered states among the 35 distinct TMD-dopant pairs: the non-magnetic (NM), the ferromagnetic with out-of-plane spin polarization (Z FM), the out-of-plane polarized clustered FMs (clustered Z FM), the in-plane polarized FMs (X-Y FM), and the anti-ferromagnetic (AFM) state. Ni and Ti dopants result in an NM state for all considered TMDs, while Cr dopants result in an anti-ferromagnetically ordered state for all the TMDs. Most remarkably, we find that Fe, Mn, Co, and V result in an FM ordered state for all the TMDs, except for MoTe2. Finally, we show that V-doped MoSe2 and WSe2, and Mn-doped MoS2, are the most suitable candidates for realizing a room-temperature FM at a 16-18% atomic substitution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000650635200004 Publication Date 2021-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179063 Serial 7001  
Permanent link to this record
 

 
Author Juneja, R.; Thebaud, S.; Pandey, T.; Polanco, C.A.; Moseley, D.H.; Manley, M.E.; Cheng, Y.Q.; Winn, B.; Abernathy, D.L.; Hermann, R.P.; Lindsay, L. url  doi
openurl 
  Title Quasiparticle twist dynamics in non-symmorphic materials Type A1 Journal article
  Year 2021 Publication Materials Today Physics Abbreviated Journal  
  Volume 21 Issue Pages 100548  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quasiparticle physics underlies our understanding of the microscopic dynamical behaviors of materials that govern a vast array of properties, including structural stability, excited states and interactions, dynamical structure factors, and electron and phonon conductivities. Thus, understanding band structures and quasiparticle interactions is foundational to the study of condensed matter. Here we advance a 'twist' dynamical description of quasiparticles (including phonons and Bloch electrons) in nonsymmorphic chiral and achiral materials. Such materials often have structural complexity, strong thermal resistance, and efficient thermoelectric performance for waste heat capture and clean refrigeration technologies. The twist dynamics presented here provides a novel perspective of quasiparticle behaviors in such complex materials, in particular highlighting how non-symmorphic symmetries determine band crossings and anti-crossings, topological behaviors, quasiparticle interactions that govern transport, and observables in scattering experiments. We provide specific context via neutron scattering measurements and first-principles calculations of phonons and electrons in chiral tellurium dioxide. Building twist symmetries into the quasiparticle dynamics of non-symmorphic materials offers intuition into quasi particle behaviors, materials properties, and guides improved experimental designs to probe them. More specifically, insights into the phonon and electron quasiparticle physics presented here will enable materials design strategies to control interactions and transport for enhanced thermoelectric and thermal management applications. (C) 2021 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000708226400009 Publication Date 2021-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (down) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184040 Serial 7016  
Permanent link to this record
 

 
Author Petrov, M.; Bekaert, J.; Milošević, M.V. pdf  url
doi  openurl
  Title Superconductivity in gallenene Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 8 Issue 3 Pages 035056  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Among the large variety of two-dimensional (2D) materials discovered to date, elemental monolayers that host superconductivity are very rare. Using ab initio calculations we show that recently synthesized gallium monolayers, coined gallenene, are intrinsically superconducting through electron-phonon coupling. We reveal that Ga-100 gallenene, a planar monolayer isostructural with graphene, is the structurally simplest 2D superconductor to date, furthermore hosting topological edge states due to its honeycomb structure. Our anisotropic Eliashberg calculations show distinctly three-gap superconductivity in Ga-100, in contrast to the alternative buckled Ga-010 gallenene which presents a single anisotropic superconducting gap. Strikingly, the critical temperature (T ( c )) of gallenene is in the range of 7-10 K, exceeding the T ( c ) of bulk gallium from which it is exfoliated. Finally we explore chemical functionalization of gallenene with hydrogen, and report induced multigap superconductivity with an enhanced T ( c ) in the resulting gallenane compound.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000667458500001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 8 Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:179623 Serial 7025  
Permanent link to this record
 

 
Author Lavor, I.R.; Chaves, A.; Peeters, F.M.; Van Duppen, B. pdf  url
doi  openurl
  Title Tunable coupling of terahertz Dirac plasmons and phonons in transition metal dichalcogenide-based van der Waals heterostructures Type A1 Journal article
  Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume Issue Pages 015018  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dirac plasmons in graphene hybridize with phonons of transition metal dichalcogenides (TMDs) when the materials are combined in so-called van der Waals heterostructures (vdWh), thus forming surface plasmon-phonon polaritons (SPPPs). The extend to which these modes are coupled depends on the TMD composition and structure, but also on the plasmons' properties. By performing realistic simulations that account for the contribution of each layer of the vdWh separately, we calculate how the strength of plasmon-phonon coupling depends on the number and composition of TMD layers, on the graphene Fermi energy and the specific phonon mode. From this, we present a semiclassical theory that is capable of capturing all relevant characteristics of the SPPPs. We find that it is possible to realize both strong and ultra-strong coupling regimes by tuning graphene's Fermi energy and changing TMD layer number.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000722020100001 Publication Date 2021-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.937 Times cited 1 Open Access (down) OpenAccess  
  Notes Approved Most recent IF: 6.937  
  Call Number UA @ admin @ c:irua:183053 Serial 7036  
Permanent link to this record
 

 
Author Chaves, A.; Covaci, L.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Topologically protected moiré exciton at a twist-boundary in a van der Waals heterostructure Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 2 Pages 025012  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A twin boundary in one of the layers of a twisted van der Waals heterostructure separates regions with near opposite inter-layer twist angles. In a MoS<sub>2</sub>/WSe<sub>2</sub>bilayer, the regions with<inline-formula><tex-math><?CDATA $Rh^h$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>h</mi></msubsup></math><inline-graphic href=“tdmac529dieqn1.gif” type=“simple” /></inline-formula>and<inline-formula><tex-math><?CDATA $Rh^X$?></tex-math><math overflow=“scroll”><msubsup><mi>R</mi><mi>h</mi><mi>X</mi></msubsup></math><inline-graphic href=“tdmac529dieqn2.gif” type=“simple” /></inline-formula>stacking registry that defined the sub-lattices of the moiré honeycomb pattern would be mirror-reflected across such a twist boundary. In that case, we demonstrate that topologically protected chiral moiré exciton states are confined at the twist boundary. These are one-dimensional and uni-directional excitons with opposite velocities for excitons composed by electronic states with opposite valley/spin character, enabling intrinsic, guided, and far reaching valley-polarized exciton currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000760518100001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 3 Open Access (down) OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek; Conselho Nacional de Desenvolvimento Científico e Tecnológico, PQ ; Approved Most recent IF: 5.5  
  Call Number CMT @ cmt @c:irua:187124 Serial 7046  
Permanent link to this record
 

 
Author Menezes, R.M.; Šabani, D.; Bacaksiz, C.; de Souza Silva, C.C.; Milošević, M.V. url  doi
openurl 
  Title Tailoring high-frequency magnonics in monolayer chromium trihalides Type A1 Journal article
  Year 2022 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 9 Issue 2 Pages 025021  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Monolayer chromium-trihalides, the archetypal two-dimensional (2D) magnetic materials, are readily suggested as a promising platform for high-frequency magnonics. Here we detail the spin-wave properties of monolayer CrBr<sub>3</sub>and CrI<sub>3</sub>, using spin-dynamics simulations parametrized from the first principles. We reveal that spin-wave dispersion can be tuned in a broad range of frequencies by strain, paving the way towards flexo-magnonic applications. We further show that ever-present halide vacancies in these monolayers host sufficiently strong Dzyaloshinskii-Moriya interaction to scatter spin-waves, which promotes design of spin-wave guides by defect engineering. Finally we discuss the spectra of spin-waves propagating across a moiré-periodic modulation of magnetic parameters in a van der Waals heterobilayer, and show that the nanoscale moiré periodicities in such samples are ideal for realization of a magnonic crystal in the terahertz frequency range. Recalling the additional tunability of magnetic 2D materials by electronic gating, our results situate these systems among the front-runners for prospective high-frequency magnonic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000771735500001 Publication Date 2022-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access (down) OpenAccess  
  Notes Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco; Special Research Funds of the University of Antwerp; Conselho Nacional de Desenvolvimento Científico e Tecnológico; Fonds Wetenschappelijk Onderzoek; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; Approved Most recent IF: 5.5  
  Call Number CMT @ cmt @c:irua:187125 Serial 7048  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: