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Dirac plasmons in graphene hybridize with phonons of transition metal dichalcogenides (TMDs)
when the materials are combined in so-called van der Waals heterostructures (vdWh), thus forming
surface plasmon-phonon polaritons (SPPPs). The extend to which these modes are coupled depends
on the TMD composition and structure, but also on the plasmons’ properties. By performing realistic
simulations that account for the contribution of each layer of the vdWh separately, we calculate how
the strength of plasmon-phonon coupling depends on the number and composition of TMD layers,
on the graphene Fermi energy and the specific phonon mode. From this, we present a semiclassical
theory that is capable of capturing all relevant characteristics of the SPPPs. We find that it is
possible to realize both strong and ultra-strong coupling regimes by tuning graphene’s Fermi energy
and changing TMD layer number.

I. INTRODUCTION

In the past few years, after the advent of graphene [1],
a two-dimensional (2D) monolayer of carbon atoms ar-
ranged in a honeycomb lattice, the interest of the scien-
tific community in isolating and studying new 2D mate-
rials has been significantly increasing due to the unique
features of these materials [2–4]. For example, 2D transi-
tion metal dichalcogenides (TMDs) [5, 6], which present
a MX2 form, with a metal (M) layer surrounded by two
layers of a chalcogen (X), such as MoS2, MoSe2, WS2
and WSe2, have attracted considerable attention due to
their remarkable opto-electronic properties [3, 4, 7–15]
that arises, for example, due to their electronic band
gaps [16, 17], the specific type of the electronic structure,
and the intrinsic mobility of the electrons [18]. These 2D
materials can be combined in so-called van der Waals
heterostructures (vdWh) [3, 19, 20] by stacking different
layers on top of each other [3, 5, 7, 11, 12, 15, 21], or even
next to each other forming so-called lateral heterostruc-
tures [5, 21–26], resulting in the creation of many differ-
ent multi-layered artificial materials, each with specific
behaviour [20, 27]. Recently, significant advances have
been made to obtain and manufacture such heterostruc-
tures [3, 5–7, 12, 20–27].

Graphene plasmons, collective excitations of the 2D
electron liquid in graphene [28, 29], also known as Dirac
plasmons [30], are heavily studied due to their low
loss [31, 32], a frequency that is tunable by the Fermi
energy [13, 14, 33, 34] and their possible applications in
photonics [30, 35, 36]. Besides, graphene can support
plasmons at mid-infrared (mid-IR) [8, 37, 38] to tera-
hertz (THz) frequencies [8, 13, 39, 40] and show strong
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electromagnetic field confinement [30, 41]. On the other
hand, in TMDs (such as MoS2 or WS2, for example),
active modes reside in the mid-IR range [42] and, due
to their large electronic band gap [17, 43], these mate-
rials behave as dielectrics at low frequencies, thus not
supporting plasmons if not extrinsically doped [44].

As illustrated in Fig. 1(a), when a monolayer graphene
(MLG) is combined with layers of TMDs, forming
graphene-based vdWhs, a hybrid excitation arises that is
known as surface plasmon-phonon polaritons (SPPPs).
These quasiparticles are formed when phonons in the
TMDs are coupled to the electron oscillations in
graphene [41]. One can excite and measure them us-
ing scatter-type scanning near-field optical microscopy
(s-SNOM) [40, 45, 46]. This allows one to measure
the SPPPs wavelength, with a resolution of up to 20
nm [14, 33, 45–50], using interference fringes formed by
the scattering of SPPPs modes at the edge of the het-
erostructure or at lateral defects in the system. Although
monolayer 2H-TMDs, where 2H refers to the hexagonal
symmetry [7], have four non-degenerate optical phonon
modes in the infrared (IR) spectrum, only two of them,
namely, the in-plane E′ , which is IR and Raman (R)
active, and out-of-plane A′′

2 (IR), illustrated in Fig. 1(b),
can couple to Dirac plasmons [42, 51, 52]. In the case of
an even number of stacked TMD layers, the E′ and A′′

2

modes of 1L-MX2 and other systems with odd number
of layers, split into Eu (IR) and E1

g (R), and A2u (IR)

and A1
1g (R) modes, respectively. [42]. For completeness,

Appendix A provides a description of N-layer 2H-TMDs
phonon modes at Γ-point, while an illustration of all vi-
brational phonon modes in this type of heterostructure
can be found in Refs [42] and [52].

In analogy to two coupled harmonic oscillators [53],
Fig. 1(c), when graphene plasmons and TMDs phonons
are coupled, the eigenfrequencies of the system are mod-
ified, presenting a characteristic anti-crossing [54, 55], as
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FIG. 1. (Color online) (a) Schematic illustration of the Dirac
plasmon wave and the phonon-polariton vibration in van der
Waals heterostructures (vdWh) composed by a monolayer
graphene (G) on 3-MX2 (M=W, Mo and X=S, Se). The
graphene surface plasmon-phonon polariton wavelength is λ.
Note that the monolayer graphene covers the entire sam-
ple. The hybridization of the phonon-polariton vibration in a
vdWh with the Dirac plasmon originates from the hybridized
surface plasmons (SP3). (b) (Top) Representation of the in-
plane E′ (IR and R), and out-of-plane A′′

2 (IR), optical phonon
vibrations for a monolayer of TMDs (1L-MX2). (Bottom) For
an even number of layers, these E′ and A′′

2 modes split into
Eu (IR) and E1

g (R), and A2u (IR) and A1
1g (R), respectively.

(c) Plasmon and phonon coupling pictorially depicted as two
coupled classical mechanical oscillators. The strength of the
coupling is determined by κ and gives rise to a splitting in

the two eigenfrequencies ωph and ωpl. (d) Qualitative
representation of the eigenfrequencies ωph (horizontal green

dashed line) and ωpl (solid red line) of the uncoupled
(κ = 0) plasmon-phonon system. The modes of the coupled
system are represented by the upper (ω+) and lower (ω−)

eigenfrequencies (orange dotted lines), its difference is called
minimal energy splitting (see inset). Ω quantifies the

strength of the plasmon-phonon coupling.

shown in Fig. 1(d). By investigating the specific way
in which the anti-crossing is manifested, one can infer
the way in which hybridization occurs, quantified by the
coupling strength, Ω, between Dirac plasmons and envi-
ronmental phonons.

Whether hybridization is significant or not depends on
the strength of the plasmon-phonon coupling when com-
pared to other relevant energy scales, for example, the
phonon energy and linewidth [55]. The latter is schemat-
ically presented in Fig. 1(d) as an orange shade along the
hybrid modes. In this context, the splitting becomes only

significant when the coupling Ω exceeds the linewidths of
the two coupled systems, which also enables the exper-
imental observation of these two modes. Thus, if Ω is
very small compared to other important energy scales,
for example, the phonon energy, the coupling is negli-
gible and is not strong enough to change the original
(uncoupled) frequencies. This defines different coupling
regimes: the first one, where Ω can be neglected, is clas-
sified as “weak coupling” (WC) [55, 56]. On the other
hand, if the strength of the plasmon-phonon coupling
is large enough to modify the uncoupled energy spec-
trum, thus creating hybrid plasmon-phonon modes, the
coupling regime is classified as “strong” (SC) or “ul-
trastrong” coupling (USC) [55–57]. The latter enables
more efficient plasmon-phonon interactions, resulting in
electro-optical devices with high efficiency when com-
pared to those based on SC [58]. For the purposes of
this article, we define the WC, SC and USC regimes in a
pragmatic way: after obtaining Ω, we normalize the cou-
pling strength in relation to the phonon frequency that
originates the hybridization as η = Ω/ℏωph; then, we
classify the system as WC, SC and USC when η < 0.01,
0.01 ≤ η < 0.1 and η ≥ 0.1, respectively [58].

In this paper, an investigation on the coupling be-
tween Dirac plasmon and IR-active TMDs phonons is
presented. Through realistic simulations at the level
of density functional theory (DFT), many-body per-
turbation theory and the random phase approximation
(RPA) [59, 60], in combination with the quantum elec-
trostatic heterostructure model (QEH) [61], we are able
to investigate the way in which the coupling between
graphene plasmons and some of the IR-active phonon
modes of few layer MX2 depends on the number of het-
erostructure layers, define the coupling regime and, more
significantly, identify how the Fermi energy contributes
to maximize the coupling strength. Furthermore, the
use of QEH also allows us to analyse how the proper-
ties of the environment are affected even when a single
monolayer is added to the vdWhs. We show that a semi-
classical theory within the RPA is capable of capturing
all relevant characteristics of the SPPPs coupling taking
into account the TMDs thickness up to several layers.
Therefore, we provide a realistic evaluation of the way in
which the investigated phonon modes of the TMDs layers
couple to the electromagnetic field of the plasmon modes
and describe the dependence of the coupling strength up
to the bulk limit. Finally, we show how controlling the
graphene Fermi energy can maximize the coupling, to-
wards SC and USC regimes in TMDs-based vdWhs. Al-
though the study presented here considers only hexago-
nal MoS2 and WS2, it can easily be extended to all other
TMDs.

The paper is structured as follows: In Sec. II we in-
troduce the theoretical treatment of Dirac plasmons in
vdWhs, by presenting an effective dynamical non-local
background dielectric function that takes into account
the TMDs thickness, the semi-classical RPA-based the-
ory and the way in which the QEH calculates the role of
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each layer separately. In Sec. III, we present the results
of the plasmon-phonon dispersion in the (q, ω)-plane em-
phasizing which phonon modes are significantly coupled
to the graphene plasmons and compare the QEH results
to those from the semi-classical model. Then, we show
the dependence of the SPPPs coupling on the number of
TMDs layers for the IR-active in-plane (E′) and out-of-
plane (A′′

2) phonon modes, highlighting which of them are
in WC, SC, or USC regimes, through the normalization
of the coupling η. By the end of Sec. III, we discuss how
the Fermi energy affects the plasmon-phonon coupling
and, finally, in Sec. IV, we present our conclusions.

II. PLASMON-PHONON-POLARITONS AND

HYBRID MODES

Dirac plasmons, density oscillations of Dirac fermions
in graphene, can be obtained from the total system’s di-
electric function ϵ(q, ω) within the random phase approx-
imation (RPA) [28, 62]. To do so, we find the solution of
the plasmon equation which corresponds to the zeroes of
ϵ(q, ω) taking [28, 29, 62–65]

ϵ(q, ω) = 1− v(q, ω)χ̃nn(q, ω) = 0 , (1)

where v (q, ω) is the Fourier transform of the Coulomb in-
teraction between the Dirac electrons and χ̃nn(q, ω) is the
proper density-density response function [28]. In general,
both functions depend on the properties of the system as
a whole. Nevertheless, within the RPA, we can approxi-
mate χ̃nn(q, ω) by the non-interacting density-density re-
sponse function of a 2D massless Dirac fermion χ0(q, ω),
which depends only on the properties of graphene [63–
65]. On the other hand, v (q, ω) describes the electro-
magnetic field lines that mainly propagate through the
surrounding of the graphene sheet, and are, therefore,
strongly affected by them. In general, the 2D Fourier
transform of the electron-electron Coulomb interaction
is defined as

v(q, ω) =
2πe2

qϵenv(q, d)
. (2)

As one can see from Eq. (2), it is the screening of the
Coulomb interaction introduced by the effective dynam-
ical background dielectric function ϵenv(q) that encodes
the presence of the environment. To include the contri-
bution of the TMDs thickness d (see Fig. 1(a)) to the
screening, we define the background dielectric function
as [66]

ϵenv(q, d) =

(

2

ϵa + ϵb

√

ϵx(d)ϵz(d) + ϵb ξ(d)
√

ϵx(d)ϵz(d) + ϵ̃ ξ(d)

)−1

. (3)

In Eq. (3), we have ξ(d) = tanh(qd
√

ϵx(d)/ϵz(d) and
ε̃ = (ϵx(d)ϵz(d) + ϵaϵb)/ (ϵa+ϵb). ϵa,b = 1 is the dielectric
constant of the vacuum above and below the 2D materials
slab. ϵx(d) and ϵz(d) are, respectively, the static in-plane

and out-of-plane dielectric constants of the TMDs, where
we have modified the notation to explicitly indicate its
dependence on the TMDs thickness [67, 68]. In order
to facilitate the understanding of how plasmons couple
with phonons, giving rise to hybrid modes, we assume
that the plasmon dispersion attains its long-wavelength
form, [41, 63, 64]

ℏωpl =

√

αeeNFℏvF
2

EF q

ϵenv(q, d)
. (4)

In Eq. (4), αee = 2.2, NF = 4 and vF = 106 m/s are
parameters related to the graphene sheet corresponding
to the graphene fine structure constant, the number of
Fermion flavours and the Fermi velocity, respectively [18].
EF is the Fermi level of graphene.

A. Coupling Dirac plasmon to phonons polaritons

To introduce the concept of plasmon-phonon coupling,
the simple classical analogy with two coupled harmonic
oscillators, pictorially represented in Fig. 1(c) with “plas-
mon” and “phonon” representing the masses a and b, re-
spectively, is commonly used [54, 55]. When κ ̸= 0 the
two oscillators interact with each other, forming a unique
system, with hybridized eigenfrequencies [53]. Due to
this hybridization, an anticrossing of dispersion curves is
formed, resulting in a coupling strength [53]:

2Ω =
κ√

maωambωb

. (5)

In the context of SPPPs, the coupling is similar to this
classical point of view: when Dirac plasmons couple to
the TMDs IR-active phonons, a hybridization occurs at
ωpl = ωph, giving rise to an anticrossing in the SPPPs
dispersion for frequencies close to the phonon frequency,
as presented in Fig. 1(d). For frequencies further away
from the phonon frequency, the original energy remains
practically unchanged from the uncoupled case. In other
words, the uncoupled phonon (ωph) and graphene plas-
mon (ωpl) frequencies, represented in Fig. 1(d) as a hor-
izontal green dashed and a solid red (∝ √

q) lines, re-
spectively, presents hybrid modes (ω+ and ω−) close the
phonon frequency when coupled.
To quantify the SPPPs coupling (Ω), we start from its

Hamiltonian, defined as [69]

H = Hpl +Hph +Hpl−ph . (6)

Here, Hpl is the Hamiltonian for the plasmons in the ab-
sence of the coupling to the phonons Hph, while Hpl−ph

describes the coupling between them. In second quanti-
zation notation, this yields [69]

H = ℏ[ωplâ
†
q
âq+ωphb̂

†
q
b̂q+Ωq(â

†
q
+â−q)(b̂

†
−q

+b̂q)] , (7)

where â†
q
and âq are creation and annihilation operators,

respectively, for a Dirac plasmon (SP2) with frequency
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TABLE I. Optical phonon frequencies for the free-standing
monolayer of MoS2 and WS2 considered from the QEH cal-
culations. Their vibrational optical phonon modes of a single
monolayer

are represented by E′′ (R), E′ (IR and R), A′
1 (R) and A′′

2

(IR), where IR (R) means that the mode is active for
infrared (Raman) excitations [42, 70–74].

Phonon frequencies (meV)
1 (E′′) 2 (E′) 3 (A′

1) 4 (A′′
2 )

MoS2 34.19 46.35 47.59 56.16
WS2 35.56 42.85 50.12 51.00

ℏωpl given by Eq. (4), and wave vector q. b̂†
q
and b̂q are

those for the collective vibration modes with energy ℏωph

(taken as a constant, as presented in Tab. I). In Eq. (7),
Ωq plays the role of the coupling energy associated with
the interaction between phonons and the Dirac plasmon.
Consequently, the eigenfrequencies are obtained taking
det[H] = 0, resulting in [69]

ω2
±=

1

2

[

ω2
ph + ω2

pl ±
√

(ω2
ph − ω2

pl)
2 + 4Ω2ωphωpl

]

. (8)

Equation (8) is similar to those obtained from a classical
system formed by two coupled oscillators [53, 54], where
the coupling Ω arises due to the hybridization between
two (quasi)-particles, as shown in Fig. 1(d).

The goal of the current study is to identify the cou-
pling strength Ω from realistic calculations of the anti-
crossing between plasmon and phonon branches. From
Eq. (8), one finds that Ω can be calculated in two ways:
on the one hand, one can find the minimum of the en-
ergy difference between the two branches, i.e. Ωmin =
minq(ω+(q)−ω−(q)) (see Fig. 1(d)). On the other hand,
it can also be calculated at the crossing point of the
phonon frequency with the unperturbed plasmon. Here,
the coupling strength corresponds to the energy differ-
ence between the two branches evaluated at the wave
vector qpl(ωph), i.e. Ωcp = ω+(qpl)− ω−(qpl). Note that
in the case of a system consisting of a single plasmon and
phonon, both methods are equivalent, because in that
case Eq. (7) corresponds to the full system. However,
once multiple phonons start to interfere with the plas-
mon, the model is only approximately correct and both
methods will not yield the same result. In order to quan-
tify the plasmon-phonon interaction also in the presence
of multiple phonons, we always evaluate Ω using both
methods. If the difference between both methods is large
with respect to the nominal value of the coupling, i.e. if
∆Ω = |Ωcp−Ωmin| ∼ Ωi, a hierarchy is necessary. For ex-
ample, in the case where there are two relevant phonon
modes, as discussed in the succeeding examples of this
work, we find that it is necessary to calculate Ωmin for
the smallest value, while Ωcp is needed for the strongest
coupling. This is because, in that case, the plasmon-
phonon coupling becomes of the order of the frequency
difference between the two involved phonon modes.

B. Quantum electrostatic heterostructure

In order to obtain realistic results for the plasmon-
phonon coupling, we used the quantum-electrostatic het-
erostructure (QEH) model [61], a computational DFT-
based method which includes screening from electronic
transitions at the level of the random phase approxima-
tion (RPA).

More recently, the QEH model received an implemen-
tation to take into account contributions to the dielectric
function of active phonons in the 2D layers, screening
from homogeneous bulk substrates, and doping contri-
butions of graphene and of a vast number of different
TMDs [60, 75]. The model is especially suited for the cur-
rent investigation because it calculates the total dielec-
tric properties of the vdWhs in which the contribution
of each layer is treated separately and has been demon-
strated to be a very useful tool for the study of plasmons
in different heterostructures [60, 75–78]. For example,
in Ref. [76], the authors employ the QEH method to
investigate the possibility of probing the structure and
composition of different vdWhs made by a monolayer
graphene on top of different TMDs, by means of the sen-
sitivity of the graphene plasmons to the dielectric envi-
ronment. Also, in Ref. [76], QEH results were compared
to (i) experimental results for heterostructures composed
by graphene and hexagonal boron nitride (hBN), as well
as to (ii) random phase approximation (RPA) calcula-
tions for graphene on top of silicon dioxide (SiO2), where
great agreement is verified in both cases.

One of the major advantages of the use of the QEH
model is the availability of a vast database containing the
dielectric building blocks (DBBs) of 2D materials [79].
This gives us the possibility to reuse previously obtained
DFT results, allowing a careful analysis of the plasmon-
phonon coupling in different vdWh systems on a layer-
by-layer basis, without the need to treat the dielectric
environment as slabs of bulk material.

For completeness, we summarize, as a following, the
main idea behind QEH calculations. For a step-by-step
explanation, see Refs. [61] and [60] and their respective
Supplemental Materials.

Loss function and plasmon dispersion

In a few words, the QEH numerically couples the
density-density response function of each i-th layer
χi

(

z, z′,q∥, ω
)

, present in the DBBs that were previ-
ously obtained through ab-initio calculations. The total
response function of the entire vdWhs is built by cou-
pling each single layer together, i.e. the DDBs, using
the long-range Coulomb interaction by solving a Dyson-
like equation. Thereby, the Dyson equation of the total
density-density response function of the complete vdWh
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reads [61]

χiα,jβ = χiαδiα,jβ + χiα

∑

k ̸=i,γ

Viα,kγχkγ,jβ , (9)

where, for simplicity, the q∥ and ω variables were omit-
ted. In Eq. (9), α = 0, 1 represents the monopole and
dipole components, respectively, and the Coulomb ma-
trices are defined as

Viα,kγ

(

q∥

)

=

∫

ρiα
(

z,q∥

)

Φkγ

(

z,q∥

)

dz , (10)

where Φkγ

(

z,q∥

)

is the potential created by the density

profile, ρkγ
(

z,q∥

)

.
Through this formalism, one obtains the inverse dielec-

tric function of the vdWh as

ϵ−1
iα,jβ

(

q∥, ω
)

= δiα,jβ +
∑

kγ

Viα,jβ

(

q∥

)

χkγ,jβ

(

q∥, ω
)

.

(11)
Notice that in contrast to the dielectric function pre-
sented in Eq. (1), here we obtain a tensorial form. Con-
sequently, the loss function can be found through

L
(

q∥, ω
)

= −Im
[

Tr
(

ϵ−1
(

q∥, ω
))]

. (12)

Finally, collective modes, such as the plasmon dispersion,
can now be found as the maxima of the loss function,
Eq. (12).

Lattice polarizability and phonon contribution

The phonon contribution of the isolated 2D material,
that originates nontrivial effects in the (q, ω)-dispersion
when coupled to surface plasmon-polaritons, giving rise
to SPPPs, is obtained through the Born effective charges
and Γ -point phonon modes of the individually layers [60].
The Born effective charges are defined as tensors that
give the proportionality between the variation of the 2D
polarization density Pi, due to an atomic displacement,
and it is defined as [60]

Zi,aj =
Acell

e

∂Pi

∂uaj

∣

∣

∣

∣

E=0

, (13)

where Acell is the in-plane area of the 2D layer, a denotes
an atom, and ij are cartesian coordinates.
Subsequently, the lattice polarizability of a 2D material

in the optical limit (q = 0) can be obtained through [60]:

αlat
ij (ω)=

e2

Acell

∑

ak,bl

Zi,ak[(C−M(ω2 − iγω))−1]ak,blZj,bl ,

(14)
where C is the force constant matrix in the optical limit,
M is a diagonal matrix containing the atomic masses,
and γ is a relaxation rate (see appendix of Ref .[60] for a
derivation of Eq. 14).

Thus, considering the contributions of electrons and
phonons, the total monopole and dipole component of
the DBB of layer i are defined as

χtotal
i0

(

q∥, ω
)

= χel
i0

(

q∥, ω
)

− q2
∥α

lat
∥ (ω) (15a)

χtotal
i1

(

q∥, ω
)

= χel
i1

(

q∥, ω
)

− αlat
zz (ω) , (15b)

where αlat
∥ denotes the 2 × 2 in-plane submatrix of αlat.

The total response functions are then used in Eq. (9),
from which the consecutive loss function is obtained.

III. STRENGTH OF PLASMON-PHONON

COUPLING IN VAN DER WAALS

HETEROSTRUCTURES

TMDs are slightly polar materials, i.e their crystalline
structure contains atoms with different electronegativi-
ties, consequently, certain IR-active phonon modes at the
Γ -point give rise to a macroscopic electric field [71, 80].
Optical phonon modes can be labelled in terms of their
irreducible representations. At the Γ -point, the phonon
modes of MoS2 and WS2 with an odd number of layers
are E′′ (R), E′ (IR and R), A′

1 (R) and A′′
2 (IR), while

A1g (R), A2u (IR), Eg (R) and Eu (IR) are the modes for
even number of TMDs layers [42]. Appendix A provides
a description of the optical activity of phonon modes at
Γ -point of 2H-TMDs.
In Fig. 2(a), we present the plasmon dispersion of SP2

modes, i.e Dirac plasmons with the surrounding polariza-
tion cloud [41, 80], but disregarding the TMDs phonon
vibrations, at the Fermi energy given by EF = 100 meV,
for a G/N-MoS2 vdWhs, with N = 1, 10 and 20 TMD
layers. In this case, to turn off the phonon contribution,
the QEH calculation is performed taking into account
only the in-plane high-frequency dielectric constant of in-
dividual layers at the optical limit ϵ∞∥ . The loss functions

obtained by the QEH calculation, shown as a color map
for N = 10, are in accordance with Eq. (4), whose results
are represented by white dashed curves in Fig. 2(a). As
the number of layers increases, q increases for a fixed fre-
quency in the plasmon dispersion, since the total dielec-
tric function of the environment ϵenv(q, d) also increases,
since the screening is proportional to the number of lay-
ers. This is verified by the solid and dashed-dotted lines
in Fig. 2(a), which represent the maxima of the loss func-
tion forN = 1 and 20, respectively. When phonon contri-
butions are taken into account, as shown in Fig. 2(b), an-
ticrossings in the SP2 dispersion arise close to the regions
where ωpl = ωph. Although monolayer MoS2 has four
non-degenerate optical phonon modes, only two of them
are IR-active, as mentioned earlier, giving rise to signif-
icant hybrid modes. As the number of layer increases,
each of these phonon modes splits into more modes, due
to inter-layer interactions. However, the QEH method
employed here resort to electrostatic coupling between
the layers, which requires the investigated phonon modes
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FIG. 2. (Color online) (a) Plasmon dispersion of the SP2

for G/N-MoS2 with N=1 (solid), 10 (white dashed) and 20
(dashed-dotted) at EF = 100 meV obtained from the QEH
without plasmon-phonon coupling (Ω = 0). The loss function
is shown as a color map for N = 10. (b) SPPPs dispersion for
G/10-MoS2 with EF = 100 meV. The regions with IR-active
phonons modes, namely E′ and A′′

2 , that hybridize with the
Dirac plasmons giving rise to anti-crossings in the eigenfre-
quencies when ωpl = ωph, are highlighted by the rectangles I
and II. The magnification emphasizes the lack of coupling
between Dirac plasmons and the E′′ phonon mode, which
is Raman-active, as well as the absence of the split phonon
modes expected for such multilayer TMD. This prevents us
from properly studying plasmon-phonon couplings with this
specific phonon mode, or with phonon modes originating from
its splitting in a multilayer system

. Horizontal green dashed lines represents the phonon
frequencies of a single MoS2 layer. (see Tab. I). (c) and (d)
are magnifications of regions I and II of panel (b), around
the anticrossings and close to the IR-active E′ and A′′

2

phonon modes, with frequencies ℏωE′ and ℏωA′′

2
,

respectively. Ω1(2) represents the coupling strength between
Dirac plasmon and IR-active in-plane (out-of-plane)

vibrational phonon mode. Symbols are the eigenfrequencies
obtained from the semi-classical model, Eq. (8).

Dashed-doted gray lines are the maxima in the loss function,
while the dashed white line is the SP2 dispersion for

reference.

to be IR-active in order to have their splitting detected
by our calculations. As a consequence, even though we
know the monolayer modes E′′ and A′

1 should also un-
dergo a splitting in multi-layer systems, from which even

IR-active modes may result, our calculations cannot de-
tect this splitting and, therefore, the coupling between
Dirac plasmons and these specific phonon modes can-
not be properly investigated here. For similar reasons,
the proposed method cannot detect the low-frequency
(≈ 5 meV) shear/breathing phonon modes of multilayer
TMDs.[81–83] We therefore rather focus all our attention
on the study of plasmon-phonon couplings and their hy-
brid SPPPs states with the E′, Eu, A

′′
2 , and A2u phonon

modes, whose splitting in TMDs multilayers is properly
detected by the method employed here.
These SPPPs modes are presented in Figs. 2(c)-(d)

as a magnification of the two square boxes highlighted
in Fig. 2(b). The coupling strength between the Dirac
plasmons and the in-plane E′ or Eu (out-of-plane A′′

2 or
A2u) phonon mode is defined as Ω1 (Ω2). In panels (c)
and (d), the symbols refer to the hybrid eigenfrequencies
obtained from Eq. (8).

A. The influence of the number of TMDs layers

Using the QEH, we show in Fig. 3(a)-(d) the evolution
of the SPPPs coupling strength (Ω1(2)) as a function of
the number of layers for a vdWhs composed by MLG
on top of N -MoS2 (blue symbols and lines) and N -WS2
(orange symbols and lines). As the number of layers in-
crease, the SPPPs coupling (Ω1(2)) also increases, since
more oscillators are involved, i.e more phonons are avail-
able to couple with the Dirac plasmons [84, 85]. For a few
TMD layers (N < 10), there are two important and pecu-

liar aspects to be considered in here: (i) the
√
N behavior

of Ω1, that is the coupling between plasmon and in-plane
phonon modes, Fig. 3(b), and (ii) the linear dependence
of the out-of-plane phonon coupling Ω2, Fig. 3(d). To
explain this behaviour, we analyse the effective dielectric
function [84, 86]

ϵeffi ≈ ϵenv

(

1−
ω2
pl

ω2
− Miδ

2
i

ω2 − ω2
ph,i + δ2i

)

. (16)

For simplicity, but without loss of generality, in Eq. (16),
i = 1 (i = 2) describes an effective coupling of Dirac
plasmon and the E′ (odd number of layers) or Eu (even
number of layers) (A′′

2 (odd number of layers) or A2u

(even number of layers)) TMD phonon mode. Notice
that E′ /Eu and A′′

2 A2u phonons exhibit different geo-
metric properties. The former two are in-plane modes,
for which M1 increase linearly with the number of layers
N . Conversely, the latter two are out-of-plane modes,
with M2 scaling with N2 instead. In Eq. (16), δi is the
coupling between the phonon mode E′ (A′′

2) in a single
TMD layer and the Dirac plasmon, i.e. it is the smallest
plasmon-phonon coupling strength possible for the sys-
tem. Notice that this approximation only holds as long as
the penetration depth of the plasmon mode is larger than
the TMD thickness. In this case, the zeroes of Eq. (16)
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FIG. 3. (Color online) SPPPs coupling strength (Ω1(2)) as
a function of the number of TMDs layers for graphene at
EF = 100 meV on top of N-MoS2 (blue lines and circles)
and N-WS2 (orange lines and circles). (a) Coupling energy
between Dirac plasmon and the IR-active in-plane E′ (solid
symbols) and Eu (open symbols) phonon modes, for odd and
even number of layers, respectively. (b) Magnification of the
results in (a) from 1 to 10 layers (yellow region), emphasiz-

ing that Ω1 ∝
√
N . (c) The same as in (a), but now for

the coupling strength Ω2, i.e considering the IR-active out-
of-plane A′′

2 (solid symbols) and A2u (open symbols) phonon
modes, for odd and even number of layers, respectively. (d)
Magnification in panel (c) from 1 to 10 layers (yellow region),
emphasizing that Ω2 ∝ N . (e) SPPPs coupling strength nor-
malized in relation to their respective monolayer phonon fre-
quencies defined as η = Ω1(2)/ℏωE′(A′′

2
). Three different re-

gions, blue, green and pink, represent the WC (η < 0.01), SC
(0.01 ≤ η < 0.1) and USC (η ≥ 0.1), respectively [58]. The
hatched area represents the bulk limit of the SPPPs coupling,
reached for approximately 100 TMDs layers.

yield the relation between the hybrid modes as [84]

ω±
i ≈ ωph,i ±

1

2

√

Miδi . (17)

Therefore, Eq. (17) reveals that, within this model, the
SPPPs coupling Ω1(2), given as Ωi = ω+

i − ω−
i , is indeed

expected to depend on the number of layers N as Ω1 =√
M1δ1 =

√
Nδ1 and Ω2 =

√
M2δ2 = Nδ2.

B. SPPPs interaction: weak, strong and

ultra-strong coupling regime

Based on the fact that the transverse (TO) and longi-
tudinal (LO) optical splitting in MX2 is very small, due
to the plasmon-phonon coupling, [87, 88], we define the
normalized parameter η = Ω1(2)/ℏωE′(A′′

2
), where, in this

case, ωE′(A′′

2
) are phonon frequencies of a single TMD

layer, as a way to quantify the coupling strength [58].
It is important to mention that, in other systems, such
as nanocavities, the normalized coupling is rather taken
with respect to the mid-gap between the TO and LO
phonon modes, due their considerable splitting [89]. Fig-
ure 3(e) shows the normalized SPPPs coupling η as a
function of the number of N -MoS2 and N -WS2 layers.
Three different regions, blue, green and pink, represent
the WC (η < 0.01), SC (0.01 ≤ η < 0.1) and USC
(η ≥ 0.1) regimes, respectively [58]. A remarkable re-
sult is obtained for the coupling between Dirac plasmons
and the IR-active out-of-plane WS2 phonon mode, where
we observe that they reach the USC regime, as illus-
trated in Fig. 3(e) by orange triangles. Furthermore, for
N > 100 all results remain unchanged, showing that the
bulk behavior was reached for 100 TMD layers or more
(see hatched area in Fig. 3(e)).
To illustrate the WC, SC and USC regime in a TMDs-

based vdWhs, we shown in Fig. 4 an overview of SPPPs
dispersion in the (q,ω)-plane through the color maps of
the loss function, defined by Eq. (12), and the loss spec-
tra for a fixed q at the point were the SPPPs coupling
Ω1(2) were calculated. As expected, for a MLG on top of
1-MoS2 or 1-WS2, Figs. 4(a) and 4(c), respectively, the
SPPPs coupling are in the WC regime. In this case, the
modes that compose the anticrossing, arising due their
hybridization, are practically indistinguishable, as com-
pared to the line width of the non-coupled modes. The
loss spectra below each panel emphasizes how weak this
couplings is, since the peaks, represented by blue (purple)
arrows for Ω1 (Ω2), are very close to each other, present-
ing a normalized coupling η less than 0.01. In Fig. 4(b),
both Ω1 and Ω2 are in the SC, presenting a well defined
anticrossing and a loss spectra with well separated peaks,
where η is given by 0.047 and 0.063, respectively. Finally,
although Ω1 in Fig. 4(d) presents a SC, with η = 0.18,
Ω2 is in the USC coupling regime with η = 0.12 in this
case.

C. Tuning the SPPPs coupling strength through

the Fermi energy

Figure 5 shows how the Fermi energy can be use to
tune the SPPPs coupling, as to maximize the plasmon-
phonon interaction. In Fig. 5(a), we present the SPPPs
dispersion for a vdWhs made by G/25-MoS2 for three dif-
ferent values of the Fermi energy (in units of the phonon
energy ℏωE′ in a single layer, see Tab. I): EA

F = 1ℏωE′ ,
EB

F = 2.3ℏωE′ and EC
F = 3.8ℏωE′ , represented by the
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FIG. 4. (Color online) Overview of SPPPs dispersion in
the (q,ω)-plane through the loss function for a MLG, at
EF = 100 meV, on top of (a) 1 and (b) 50 MoS2, and on top
of (c) 1 and (d) 50 WS2. Ω1 (Ω2) corresponds to the coupling
strength between Dirac plasmons and the IR-active in-plane
E′ (out-of-plane A′′

2 ) phonon mode. The horizontal green
curves correspond to the uncoupled phonon modes calculated
for a monolayer of each correspondent TMD (see Tab. I for the
corespondent phonon frequencies ℏωE′ and ℏωA′′

2
). The un-

coupled SP2 plasmons are represented by white dashed lines,
for reference. The results in each bottom panel are the loss
spectra for a fixed q at the point were the SPPPs coupling
strengths Ω1(2) were calculated. In the bottom panel (d), a
magnification of the loss spectra is shown as inset.

black dotted, red dashed and brown dash-dotted lines,
respectively. The horizontal green line is the phonon fre-
quency and the other solid lines are the SP2 dispersion

FIG. 5. (Color online) Tuning the plasmon-phonon coupling
strength Ω1(2) by changing the Fermi energy (in units of the
corresponding phonon frequency). (a) Plasmonic dispersion
of G/25-MoS2 for different values of the Fermi energy (in
units of ℏωE′) given by EA

F = 1ℏωE′ , EB
F = 2.3ℏωE′ and

EC
F = 3.8ℏωE′ . The uncoupled phonon state corresponds to

the horizontal solid green line and the SP2 plasmons are rep-
resented by the square root (∝ √

q) solid lines, for reference.
The SPPPs couplings (b)-(c) Ω1 and (d)-(e) Ω2 are shown as
a function of the Fermi energy for G/25-MoS2. The yellow
region in (b)-(e) represents the interband regime, where the
plasmon dispersion is damped. After that, Ω1(2) ∝ 1/

√
EF ,

i.e the Fermi energy is large enough to keep the plasmon-
phonon dispersion in the long-wavelength limit, keeping the
plasmonic dispersion below the interband region.

for reference. Fig. 5(a) shows that there is a Fermi energy
value that maximizes the SPPPs coupling strength. To
explain this, we show in Figs. 5(b)-(e) the SPPPs cou-
pling parameters Ω1 and Ω2 as a function of the Fermi
energy. In all situations, Ω1 and Ω2 increase until they
reach a maximum value, and then they decrease with EF ,
exhibiting ∝ 1/

√
EF dependence.

To explain this behaviour, we identify two different
coupling mechanisms that depend on the Fermi energy
EF. If the EF is large, due to Pauli blocking, single-
particle inter-band processes are suppressed. In that
case, the Dirac liquid effectively behaves as a liquid
of Fermions with a mass equal to the cyclotron mass
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mc = 2EF/v
2
F [18]. Equation (5) shows that in this case

the plasmon-phonon coupling Ω is expected to decrease
as 1/

√
EF . That is, because of the Dirac-like spectrum

of low energy electrons in graphene, the inertial mass,
corresponding to the cyclotron mass, is tunable via the
Fermi level. One verifies in Eq. (5) that when two oscil-
lators are coupled, their effective anti-crossing depends
on the mass and, consequently, the coupling in our sys-
tem is also expected to be tunable by the Fermi level.
However, when the Fermi energy is small, Pauli block-
ing is lifted and inter-band single-particle processes are
allowed [8, 41]. This strongly inhibits plasmon lifetime
and, therefore, suppresses plasmon-phonon coupling.
Note that, for the vdWhs considered in Figs. 5(b)-(e),

both SPPPs coupling Ω1 and Ω2 are in the SC regime.
However, controlling the Fermi energy and increasing the
number of layers it is possible to go from the SC to even
the USC regime. The latter can be reached for Ω2 in a
MLG on top of 50 (or more) WS2 layers, for example.

IV. CONCLUSIONS

We have demonstrated how graphene (Dirac) plas-
mons couple to IR-active in-plane E′ and Eu, and out-
of-plane A′′

2 and A2u phonon modes in transition metal
dichalcogenide-based van der Waals heterostructures,
from few layers until the bulk limit. In order to do
so, we have presented a semi-classical theory, obtained
from the random phase approximation, to calculate the
surface plasmon-phonon polaritons dispersion in the q-
ω plane. Comparing this semi-classical theory to the
results obtained through a DFT-based method, known
as the quantum-electrostatic heterostructure, we have
shown that the semi-classical approach provides an excel-
lent match for many TMDs layers, capturing all relevant
characteristics of the surface plasmon-phonon polaritons.
Furthermore, using the quantum-electrostatic het-

erostructure model, we have calculated the loss function
of vdWHs composed by monolayer graphene on top of
TMDs multi-layers. Our results prove that, although we
have weak and strong coupling regimes in this TMDs-
based vdWhs, it is also possible to achieve the ultra
strong coupling regime for the coupling between Dirac
plasmons and A′′

2or A2u for 40 or more WS2 layers. In
addition, we explain the nature of the graphene plas-
mons coupling to IR-active in-plane E′ and Eu, and out-
of-plane A′′

2 and A2u phonon modes, from a few TMDs
layers to the bulk behavior. Not less important, we have
demonstrated the possibility of tune the SPPPs coupling
strength through the graphene Fermi energy, explaining
its 1/

√
EF dependence. It is important to highlight that

plasmons in graphene can be experimentally observed us-
ing, for example, scattering-type scanning near-field opti-
cal microscope (s-SNOM) in photocurrent mode. There-
fore, using current experimental techniques, our results
suggest the possibility of creating/exciting SPPPs and
to study the coupling regimes discussed here for vdWhs

composed by graphene and MoS2 or WS2.
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Appendix A: A brief description of phonon modes

on 2H-TMDs at Γ -point

Based on Ref. [42], this Appendix presents, for the sake
of completeness, a brief description of 2H-TMDs phonon
modes at the Γ -point. All phonon modes discussed here
are well illustrated in Refs. [42] and [52].

The unit cell of a bulk 2H-MX2 consists of two X-M-X
layers per unit cell, presenting a total of six atoms and,
consequently, 18 phonon modes (3 acoustic and 15 optical
modes) [42]. Due to its D6h point group symmetry, the
irreducible bulk 2H-MX2 phonon modes at Γ -point are
represented by [42, 51, 52]: Γ = A1g+2A2u+2B2g+B1u+
E1g +2E1u +2E2g +E2u. Here, two of them are acoustic
modes (A2u and E1u), three are R-active (A1g, E1g and
E2g), two are IR-active (B2g and E1u), and finally, three
of them are optically inactive, i.e. silent (B2g, B1u and
E2u) [42, 52, 90]. E-modes are doubly degenerate in xy-
plane.

On the other hand, unlike bulk 2H-MX2, few layer
TMDs presents a lack of translational symmetry along
the z-axis perpendicular to the basal xy-plane [42, 91].
For example, for odd number of layers, MX2 has D3h

point group symmetry and, in particular, a monolayer
presents nine vibrational phonon modes at the Γ-point,
since the unit cell is composed of three atoms, which are
represented as: Γodd = 2A′′

2 + A′
1 + 2E′ + E′′. Here, one

A′′
2 and one E′ are acoustic modes, another A′′

2 is IR-
active, A′

1 and E′′ are R-active, and another E′ is both
R- and IR-active. In the case of even 2H-MX2 layers,
D3d is the point group symmetry, due to the inversion
symmetry. For the sake of simplicity, but without loss
of generality, let us consider the bilayer of 2H-MX2, for
example: it has a unit cell composed of six atoms with
18 normal vibrational modes at the Γ -point, defined as:
Γeven = 3A1g + 3A2u + 3Eg + 3Eu, where one A2u and
one Eu are acoustic modes, the other A2u and Eu are IR-
active, and A1g and Eg are R-active. As the number of
layers N increases, inter-layer interactions break the N -
fold degeneracy of the phonon modes and, consequently,
all modes split around the original frequencies. This ef-
fect, known as Davydov splitting, has been investigated
through Raman spectroscopy for R-active phonon modes
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FIG. A.1. (Color online) Comparison between the SPPPs
coupling strength, for few layers of TMD, obtained from the
minimal energy splitting thought Ωmin (symbols) and at the
crossing point Ωcp (lines). (a) Results of the comparison be-
tween plasmons and in-plane E′ or Eu

phonons in a vdWhs composed by G/N-MoS2 (G/N-WS2),
blue (orange) symbols and lines, with EF = 100 meV. (b)
The same as in (a), but now for the coupling between

plasmons and out-of-plane A′′
2 or A2u phonons. The bottom

panels in (a) and (b) present the relative difference between
both procedures, i.e Ωmin and Ωcp, defined as

∆dif = 100|Ωcp − Ωmin|/Ωcp.

of multi-layers of different TMDs, such as MoS2, MoTe2
and WSe2 [92, 93].

Finally, it is important to mention that one of the most
important properties of 2H-TMDs phonon modes at Γ -
point, resides in the fact that each of the nine previously

described vibrational modes in 1-MX2 layer, will split
into corresponding two modes in both 2-MX2 and bulk
MX2 [42]. For example, the E′ in 1-MX2 layer give rise
to the E1

g and Eu modes, which are R- and IR-active,
respectively. Regarding the bulk MX2, the E′ in 1-MX2

layer splits into E1
2g and E1u, also R- and IR-active, re-

spectively. Here, the notation 1 and 2 in the upper right
corner of the mode notation is used to represent modes
with the same symmetry, such as E1

2g and E2
2g.

Appendix B: Plasmon-phonon coupling strength at

the minimal energy splitting and at the crossing

point

Here, we provide a comparison for the SPPPs cou-
pling strength as obtained from the minimum of the en-
ergy difference between the two branches Ωmin and those
obtained at the crossing point Ωcp, as previously dis-
cussed in Sec. IIA. Results are depicted in Fig. A.1(a),
for the coupling between Dirac plasmons and IR-active
in-plane E′ phonon mode (Ω1), and in Fig. A.1(b) for
Dirac plasmons and IR-active out-of-plane A′′

2 phonon
mode (Ω2). Blue (orange) results in both panels are for
G/N-MoS2 (G/N-WS2), with N from 1 to 10 TMDs lay-
ers, while symbols (lines) represents the results obtained
from Ωmin (Ωcp). Both methods yield practically the
same results. To quantify the difference between them,
we show in the bottom panels the relative difference
∆dif between the results from both methods, defined as
∆dif = 100|Ωcp − Ωmin|/Ωcp. For Ω1, the bottom panel
in Fig. A.1(a) shows relative differences lower than 0.1 %,
while for Ω2, in the bottom panel of Fig. A.1(b), they are
less than 4 %.
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