This item is the archived peer-reviewed author-version of:

Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$

Reference:

Feng Hai L., Kang Chang-Jong, Manuel Pascal, Orlandi Fabio, Su Yu, Chen Jie, Tsujimoto Yoshihiro, Hadermann Joke, Kotliar Gabriel, Yamaura Kazunari, Antiferromagnetic order breaks inversion symmetry in a metallic double perovskite, $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$
Chemistry of materials / American Chemical Society - ISSN 0897-4756-33:11(2021), p. 4188-4195
Full text (Publisher's DOI): https://doi.org/10.1021/ACS.CHEMMATER.1C01032
To cite this reference: https://hdl.handle.net/10067/1796790151162165141

Antiferromagnetic order breaks inversion symmetry in metallic double perovskite, $\mathrm{Pb}_{2} \mathrm{NiOsO} 6$

Hai L. Feng, ${ }^{1,2 \#}$ Chang-Jong Kang, ${ }^{3,4 \#}$ Pascal Manuel, ${ }^{5}$ Fabio Orlandi, ${ }^{5}$ Yu Su, ${ }^{6,7}$ Jie Chen, ${ }^{6,7}$ Yoshihiro Tsujimoto, ${ }^{6,7}$ Joke Hadermann, ${ }^{8}$ Gabriel Kotliar, ${ }^{3}$ Kazunari Yamaura, ${ }^{6,7}$ Emma E. McCabe, ${ }^{9,10 *}$ Martha Greenblatt ${ }^{1 *}$
${ }^{1}$ Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
${ }^{2}$ Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
${ }^{3}$ Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA
${ }^{4}$ Department of Physics, Chungnam National University, Daejeon 34134, South Korea
${ }^{5}$ ISIS facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK
${ }^{6}$ International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
${ }^{7}$ Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 0600810, Japan
${ }^{8}$ EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
${ }^{9}$ School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH, UK
${ }^{10}$ Department of Physics, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK
\# Hai L. Feng and Chang-Jong Kang contributed equally.
*Martha Greenblatt
greenbla@chem.rutgers.edu

*Emma E. McCabe
emma.mccabe@durham.ac.uk

Abstract

A Polycrystalline sample of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ was synthesized by high-pressure (6 $\mathrm{GPa})$ and high-temperature $(1575 \mathrm{~K})$ conditions. $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group $P 2_{1} / n$ at room temperature. $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ is metallic down to 2 K and shows a single antiferromagnetic (AFM) transition at $T_{\mathrm{N}}=58 \mathrm{~K} . \mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ is a new example of a metallic and antiferromagnetic oxide with three-dimensional connectivity. Neutron powder diffraction and first-principle calculation studies indicate that both Ni and Os moments are ordered below T_{N} and the antiferromagnetic magnetic order breaks inversion symmetry. This loss of inversion symmetry driven by antiferromagnetic order is unusual in metallic systems and the 3d-5d double-perovskite oxides represent a new class of noncentrosymmetric AFM metallic oxides.

Introduction

The transition metal oxides (TMOs) exhibit unique correlations between magnetism and electrical conductivity: ferromagnetism (FM) in TMOs usually coexists with metallic conductivity, whereas insulating TMOs usually exhibit antiferromagnetism (AFM) ${ }^{1}$. Exceptions from this behavior, such as FM insulating oxides and AFM metallic oxides, are less common. CaCrO_{3} and $\mathrm{Nb}_{12} \mathrm{O}_{29}$ are examples of AFM metallic oxide with three-dimensional crystal structures ${ }^{2-4}$. Other AFM metallic oxides such as $\mathrm{La}_{2-2 \times} \mathrm{Sr}_{1+2 \mathrm{x}} \mathrm{Mn}_{2} \mathrm{O}_{7}$ and $\mathrm{Ca}_{3} \mathrm{Ru}_{2} \mathrm{O}_{7}$ crystallize in layered crystal structures and FM couplings are dominant within the layer ${ }^{5,6}$. Recently, RuO_{2}, and LaNiO_{3}, which had been described as paramagnetic metals, were found to be AFM ordered and are new examples of AFM metallic oxides with three-dimensional crystal and electronic structures ${ }^{7-9}$.

5d TMOs are unique correlated systems because of the spatial extent of the 5d electrons, generally giving 5d TMOs wider bandwidths (W), stronger spin-orbit coupling (SOC), and smaller on-site Coulomb repulsion (U) compared with 3d TMOs ${ }^{10}$. For instance, metal-insulator transitions driven by AFM orders were proposed in 5 d oxides, $\mathrm{Pb}_{2} \mathrm{CaOsO}_{6}{ }^{11}, \mathrm{Cd}_{2} \mathrm{Os}_{2} \mathrm{O}_{7}{ }^{12,13}$, and $\mathrm{NaOsO}_{3}{ }^{14}$, and a ferroelectric-like structural transition breaking inversion symmetry has been observed in metallic $\mathrm{LiOsO}_{3}{ }^{15}$. Recent studies on a 5 d metallic oxide $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}$ demonstrated that the AFM order breaks inversion symmetry ${ }^{16,17}$. In this work we have built on this, synthesizing a new 5 d hybrid double perovskite oxide $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ which is a new example of AFM metallic oxide. Characterization using neutron powder diffraction (NPD) and property measurements suggest that magnetic order breaks inversion symmetry (similar to reports on $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}{ }^{16}$). First-principle calculations confirm that both Ni and Os moments are ordered, allowing us to confirm the nature of the ground state (which has not been fully explored previously). The 3d-5d double-perovskite oxides establish a new class of noncentrosymmetric AFM metallic oxides, and our symmetry analysis of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ explores how this understanding can be applied more widely to design new magnetoelectrics.

2. EXPERIMENTAL

Polycrystalline $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ was synthesized via a solid-state reaction from powders of PbO_{2} (99%, Alfa), Os (99.95%, Heraeus Materials), NiO (99.997\%, Alfa), and $\mathrm{KClO}_{4}(99.99 \%$, Alfa). The powders were thoroughly mixed in a stoichiometric ratio in an Ar-filled glove box, followed by sealing in a Pt capsule. The Pt capsule was statically and isotropically compressed in a belt-type high-pressure apparatus (Kobe Steel, Ltd., Japan ${ }^{18}$), and a pressure of 6 GPa was applied while the capsule was heated at $1400{ }^{\circ} \mathrm{C}$ for 1 h , followed by quenching to room temperature in less than a minute. The pressure was then gradually released over several hours.

A dense and black polycrystalline pellet was obtained, and several pieces were cut out from it. A selected piece was finely ground for a synchrotron X-ray diffraction (SXRD) study, which was conducted in a large Debye-Scherrer camera in the BL15XU beamline, SPring-8, Japan ${ }^{19,20}$. The SXRD pattern was collected at room temperature and the wavelength was confirmed to be $0.65298 \AA$ by measurement of a standard material, CeO_{2}. The absorption coefficient was measured in the same line. The SXRD data were analyzed by the Rietveld method with the RIETAN-VENUS software ${ }^{21}$. The crystal structure was depicted by VESTA ${ }^{22}$.

The electrical resistivity (ρ) of a polycrystalline pellet of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ was measured by a four-point method at a gauge current of 0.1 mA in a physical properties measurement system (PPMS, Quantum Design, Inc.). Electrical contacts were made with Pt wires and Ag paste in the longitudinal direction. The temperature dependence of the specific heat capacity $\left(C_{\mathrm{p}}\right)$ was measured in the same PPMS by a thermal relaxation method at temperatures between 2 and 300 K with Apiezon N grease thermally connecting the material to the holder stage.

The magnetic susceptibility (χ) of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ powder was measured in a magnetic properties measurement system (MPMS, Quantum Design, Inc.). The measurement was conducted in field cooled (FC) and zero-field cooled (ZFC) conditions in the
temperature range between 2 and 390 K . The applied magnetic field was 10 kOe .

Time-of-flight neutron powder diffraction data were collected at the WISH diffractometer (target station 2) at the ISIS Neutron and Muon Source. ${ }^{23}$ For the neutron powder diffraction (NPD) data collection, 3.26 g of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ powder were placed in a 6 mm diameter cylindrical vanadium can under helium and sealed using indium wire. The sample was loaded into a helium cryostat and cooled to base temperature (1.5 K). A high-quality data set was collected at 1.5 K (~ 1 hour, $\sim 40 \mu \mathrm{Amp} \mathrm{hr}$) and shorter scans (~ 15 minutes, $\sim 10 \mu \mathrm{Amp}$ hour) were collected every 2.5 K on warming to 100 K. A final higher quality scan (~ 1 hour, $\sim 40 \mu \mathrm{Amp}$ hour) was collected at 98 K in the paramagnetic phase. Data were analyzed and Rietveld refinements carried out using TopasAcademic, ${ }^{24,}{ }^{25}$ and the web-based ISODISTORT software ${ }^{26}$ was used for symmetry analysis. Rietveld refinements for the antiferromagnetic system were carried out with a nuclear phase and a magnetic-only phase, with atomic displacement parameters for the magnetic sites constrained to be equal to those sites in the nuclear phase. A separate peak shape was refined for the magnetic-only phase.

The density functional theory (DFT) calculation was performed on $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ with the all-electron full-potential linearized augmented plane-wave (FLAPW) method implemented in the WIEN2k code ${ }^{27}$. Generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) ${ }^{28}$ was used for the exchange-correlation functional. The spin-orbit coupling was taken into account in the second variation method. To consider the correlation effect, GGA + U was adopted within fully localized limits ${ }^{29}$, ${ }^{30}$. The on-site Coulomb interaction parameters $\mathrm{U}=4$ and 2 eV for Ni and Os , respectively, and the Hund's coupling $\mathrm{J}_{\mathrm{H}}=0.8 \mathrm{eV}$, which was shown to describe the similar compound, $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}$ properly ${ }^{31}$.

Results

Crystal structure. Room-temperature SPXD data of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ were successfully refined in a monoclinic double perovskite structure with space group $P 2_{1} / n$ (see Supporting Information) similar to that reported for $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}{ }^{16}, \mathrm{~Pb}_{2} \mathrm{MnReO}_{6}{ }^{32}$, and
$\mathrm{Pb}_{2} \mathrm{CoTeO}_{6}{ }^{33}$. Due to the weak X-ray scattering power of O (especially in the presence of strong scatterers Os and Pb), complementary neutron powder diffraction (NPD) data were used to confirm this nuclear structure at 98 K . NPD data collected at 98 K (above T_{N}) are consistent with the SPXD results and can be well fitted with a model of $P 2_{1} / n$ symmetry (see Supporting Information). The Ni and Os ions occupy $2 a$ and $2 b$ sites, respectively. Allowing for anti-site disorder in the model during the refinement (with constraints to maintain stoichiometry) revealed complete B-site ordering (100(6) \%). Refinement of the occupancies of Pb and O sites (with a single global atomic displacement parameter) indicated that the material is very close to stoichiometric $\left(\mathrm{Pb}_{1.940(1)} \mathrm{NiOsO}_{5.90(1)}\right)$. This stoichiometry was assumed for further analysis. Trace amounts of PbO_{2} and NiO impurities were identified and included in the refinement (no Os impurity was detected). Final refined atomic parameters and selected bond lengths and angles are summarized in the Supporting Information. The bond valence sum calculations ${ }^{34,35}$ support the nominal Ni^{2+} and Os^{6+} oxidation states (see Supporting Information). The refined crystal structure is shown in Figure 1a, where the cornerlinked NiO_{6} and OsO_{6} octahedra are ordered in the rock salt manner. The interoctahedral Ni-O-Os bond angles are $159.20(9)^{\circ}, 161.3(4)^{\circ}$, and $160.5(4)^{\circ}$, which significantly deviate from 180° and imply substantial rotations of $B \mathrm{O}_{6}$ octahedra.

Figure 1 Illustration of the nuclear (a) and magnetic structures (b) of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ at 1.5 K from Rietveld refinement using NPD data; $\mathrm{Pb}, \mathrm{Ni}, \mathrm{Os}$, and O sites are shown in purple, blue, green, and red, respectively; Ni and Os moments are shown by arrows. The nuclear unit cell is shown by solid black lines and the larger, monoclinic $P_{a} c$ magnetic unit cell by solid red lines.

Electrical and magnetic properties. The temperature dependence of resistivity (ρ) data decreases with cooling as shown in Figure 2a, and shows the metallic nature of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$. The temperature dependence of magnetic susceptibility (χ) data shows a typical AFM transition with a peak at 58 K (see Figure 2b), which indicates the Néel temperature $\left(T_{\mathrm{N}}\right)$. The long-range AFM transition was further confirmed by specific heat data which display a λ-type anomaly at T_{N} (see Figure 2c). The χ^{-1} vs. T data above the T_{N} shows the Curie-Weiss behavior. Fitting the CW law to the data between 100 to 380 K results in an effective moment ($\mu_{\text {eff }}$) of $3.66 \mu_{\mathrm{B}}$ per formula unit (f.u.) and a Weiss temperature $\left(\theta_{\mathrm{w}}\right)$ of -102 K . The obtained effective moment is comparable to that in other $\mathrm{Ni}^{2+}-\mathrm{Os}^{6+}$ double perovskites, $3.44 \mu_{\mathrm{B}} / \mathrm{f}$.u. for $\mathrm{Sr}_{2} \mathrm{NiOsO}_{6}{ }^{36}$, and $3.46 \mu_{\mathrm{B}} / \mathrm{f}$.u. for $\mathrm{Ba}_{2} \mathrm{NiOsO}_{6}{ }^{37}$. These values are smaller than the spin-only moments of $4.0 \mu_{\mathrm{B}}$ per formula unit for the $\mathrm{Ni}^{2+}\left(3 \mathrm{~d}^{8}: S=1\right)$ and $\mathrm{Os}^{6+}\left(5 \mathrm{~d}^{2}: S=1\right)$, which may be due to the SOC of Os^{6+}. The negative θ_{w} corroborates that AFM interactions are dominant in $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$, which is consistent with the AFM order. The low-temperature part of specific heat data is plotted in the $\mathrm{C}_{\mathrm{P}} / T$ vs. T^{2}, and the lowest temperature part can be characterized by an approximated Debye model $\left(\mathrm{C}_{\mathrm{p}} / T=\gamma+\beta_{0} T^{2}\right)$. The fitting gives a Sommerfeld coefficient (γ) of $63.5 \mathrm{~mJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-2}$. The large γ value is consistent with the metallic nature of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$. The deviation from linearity above $30 \mathrm{~K}^{2}$ could be due to the lattice contribution.

Figure 2 (a) temperature-dependent resistivity, (b) temperature-dependent magnetic susceptibility, and (c) temperature-dependent specific heat of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$.

Magnetic structure. To study the magnetic structure of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$, NPD data were collected from 1.5 K to 98 K . On cooling below 57 K , additional reflections were observed in NPD patterns which increased smoothly in intensity on cooling (see Supporting Information). These were consistent with magnetic ordering described by magnetic propagation vector $k=(1 / 201 / 2)$. As described for the double perovskites $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}{ }^{16}$ and for the k_{1} propagation vector for $\mathrm{Sc}_{2} \mathrm{NiMnO}_{6},{ }^{38}$ there are four irreps associated with the magnetic propagation vector $k=(1 / 201 / 2): \mathrm{mY}_{1}{ }^{ \pm}$and $\mathrm{mY}^{ \pm}$. The $\mathrm{mY}_{n}^{+}\left(\mathrm{mY}_{n}^{-}\right)$irreps describe magnetic order on the Ni (Os) sites only. Magnetic susceptibility and heat capacity measurements for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ (Figures 2 b and 2c) and the evolution of magnetic Bragg intensity in NPD data collected on cooling (see Supporting Information) suggest a single magnetic ordering transition which could
result from one of three possible scenarios: (1) only Ni^{2+} moments order at T_{N}; (2) only Os^{6+} moments order at T_{N} or (3), both Ni^{2+} and Os^{6+} moments order simultaneously at T_{N}. As described for related double perovskites, ${ }^{36,38-40}$ the magnetic moments on the two B sites are strongly correlated in refinements and NPD cannot unambiguously distinguish between these three scenarios. However, given the strong coupling between nearest Ni^{2+} and Os^{6+} ions in $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}$, it seems most likely that both Ni and Os sublattices order magnetically below $T_{\mathrm{N}} \cdot{ }^{31}$ Experiments on $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}$ including muon spin rotation experiments support magnetic ordering of both Co^{2+} and Os^{6+} moments ${ }^{16}$, consistent with our analysis for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$. Mode inclusion analysis ${ }^{41,42}$ using 1.5 K data suggested that the greatest improvement in fit was obtained with moments on the Os sites described by $\mathrm{mY}_{2}-\left(\mathrm{R}_{\mathrm{wp}}\right.$ decreased from 7.71% for a non-magnetic model to 6.42% for the $\mathrm{mY}_{2}{ }^{-}$model) with Os moments close to [001] direction of the $P 2_{1} / n$ nuclear unit cell. Magnetic ordering described by the $\mathrm{mY}_{2}{ }^{-}$irrep on the Os sites and the $\mathrm{mY}_{1}{ }^{+}\left(\mathrm{mY}_{2}{ }^{+}\right)$irrep on the Ni sites breaks inversion symmetry and the ferroelectric mode $\Gamma_{2}{ }^{-}\left(\Gamma_{1}-\right)$ is coupled to both magnetic order parameters, allowing polar displacements in the ac plane ([010] direction) of the $P 2_{1} / n$ nuclear unit cell. These two possible structures are very similar, and our NPD data do not allow us to confirm which is more appropriate to describe the low temperature nuclear and magnetic structure of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$. Attempts to investigate the polar distortions using both NPD analysis and electron diffraction were not successful, suggesting that these distortions are very subtle. Consistent with DFT calculations (see below), the $\mathrm{mY}_{2}{ }^{-} \mathrm{mY}_{1}{ }^{+} \Gamma_{2}{ }^{-}$model was assumed for all further analysis. This magnetic structure is described by the monoclinic unit cell of symmetry $P_{a} c$ which is related to the $P 2_{1} / n$ nuclear unit cell by the basis vectors (-$200)(0-10)(101)$ with an origin shift of $(01 / 40)$ (see Figure 1b). Given the complexity of the system, the moments on Ni and Os sites were constrained to be collinear (as observed in related systems ${ }^{16,31,34,38-40,43}$) and the moments on Os sites were constrained to be eight times smaller than those on Ni sites, as might be expected for $\mathrm{Ni}^{2+}\left(\mathrm{d}^{8}\right)$ and $\mathrm{Os}^{6+}\left(\mathrm{d}^{2}\right)$ with significantly covalent bonding. ${ }^{16,31,36,39}$ Allowing the moment direction to refine freely gave moments close to [001] of the $P 2_{1} / n$ nuclear unit
cell and constraining the moments to lie exactly along this direction gave a similar fit (R_{wp} was the same to three decimal places) and was used in subsequent analysis. Allowing atomic displacement parameters (ADPs) to refine anisotropically did not give a significant improvement in fit and ADPs were found to be fairly isotropic. The final refinement profiles and parameters are given in the supporting information.

Sequential Rietveld refinements were carried out using NPD data collected on warming to study the evolution of nuclear and magnetic structures. The 1.5 K model described above was used and this sequential analysis suggested a fairly smooth expansion of the structure on warming (see Supporting Information).

First-principles calculations. Density functional theory (DFT) calculations were carried out to explore whether both Ni and Os moments are ordered in the magnetic phase of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$, and to differentiate between the possible magnetically ordered structures. Firstly, the total energies were calculated for magnetic models with either AFM order on both Ni and Os sublattices, or AFM order on only the Ni sublattice (see Supporting Information). These calculations indicate that the model with AFM order on both Ni and Os sublattices is 0.102 eV per formula unit more stable than that with only Ni ordered moments. These calculations support the non-centrosymmetric AFM models in which both sublattices are ordered.

As discussed above, group theory calculations assuming the propagation vector ($1 / 201 / 2$) and magnetic order on both Ni and Os sublattices (from magnetic irreps $\mathrm{mY}_{1}{ }^{+}$and $\mathrm{mY}_{2}{ }^{+}$on Ni sites, $\mathrm{mY}_{1}{ }^{-}$and $\mathrm{mY}_{2}{ }^{-}$on Os sites) give four possible isotropy subgroups (Figure 3). These models give comparable fits to the NPD data and we are not able to unambiguously determine the magnetic ground state from our experimental work. Although the relative orientation of magnetic spins is similar in these four structures (they all have the $\uparrow \uparrow \downarrow \downarrow \uparrow \uparrow$ sequence of moments on the $\mathrm{Ni}-$ Os chains along the [001] direction of the nuclear unit cell), the superposition of the magnetic order on the nuclear structure (with monoclinic symmetry arising from rotations of NiO_{6} and OsO_{6} octahedra) results in different final symmetries and, as a consequence, in different distortions (e.g. polar degrees of freedom, bond distances and angles) and hence
different macroscopic properties. ${ }^{44-46}$ Since the four models derive from different combination of irreducible representations these are distinct structures and not translational domains.

DFT calculations were carried out to differentiate between these similar magnetic structures and to determine the ground state. Calculations were carried out using the $\mathrm{GGA}(\mathrm{PBE})+\mathrm{SOC}+\mathrm{U}$ scheme to determine the energy of the four magnetic structures shown in Figure 3 and the relative energies are given in Table 1. Model 2 (described above from analysis of NPD data, Figure 1b) is found to be the lowest in energy for calculations including spin-orbit coupling (Table 1). These results suggest that the ground state of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ is best described by $P_{a} c$ magnetic symmetry, with $\Gamma_{2}{ }^{-}$polar degrees of freedom, consistent with the ground state reported for $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}{ }^{16}$. Notice that the same ground state was found for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ from calculations without accounting for spin-orbit coupling. Mode decomposition of the relaxed structures from these DFT calculations was carried out using ISODISTORT ${ }^{26}$ but the amplitudes of polar displacements were very small (≤ 0.00035); this is consistent with NPD and electron diffraction analysis both unable to confirm these displacements. The subtlety of these polar distortions (and that they are secondary rather than primary order parmeters) is born out by the fact that the two lowest energy structures (models 1 and 2) allow different polar distortions, suggesting that these distortions play a minor role in giving the non-centrosymmetric ground state structure.

Model 1

$\mathrm{Ni}: \mathrm{mY}_{2}{ }^{+}$
Os: $\mathrm{mY}_{2}{ }^{\text {- }}$
Polar distortion: Γ_{1}
Magnetic symmetry: $\boldsymbol{P}_{\mathrm{g}} \mathbf{2}_{1}$

Model 3

$\mathrm{Ni}: \mathrm{mY}_{{ }^{+}}{ }^{+}$
Os: $\mathrm{mY}_{1}{ }^{\text {. }}$
Polar distortion: Γ_{1}
Magnetic symmetry: $\boldsymbol{P}_{\mathrm{a}} \mathbf{2}$

Model 4

Figure 3 Four magnetic structures that result from the $k=(1 / 201 / 2)$ magnetic propagation vector for $P 2_{1} / n$ nuclear structure for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ with magnetic order on both Ni (blue) and Os (green) sites. To help visualize the difference between the four magnetic structures, the magnetic order around a PbO_{12} site (purple) viewed down the $\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]$ direction of the nuclear unit cell is highlighted for each model. (Note that for model 2, the magnetic order around the PbO_{12} site is viewed along [0-1 0] of the magnetic unit cell to show the magnetic moments about the same point in the nuclear structure.)

Table 1 The total energy and magnetic moment calculated for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ for models shown in Figure 3. The unit of the energy is meV per atom and is calculated by dividing the DFT total energy by the number of atoms in the unit cell (40 for the magnetic unit cells shown in Figure 3). Model 1 is chosen as the reference energy. Details about magnetic moments are discussed in the main text.
\(\left.$$
\begin{array}{|l|l|l|l|l|}\hline & \text { Energy (meV/atom) } & \begin{array}{l}\text { Total moment } \\
\left(\mu_{\mathrm{B}}\right)\end{array} & \begin{array}{l}\text { spin moment } \\
\left(\mu_{\mathrm{B}}\right)\end{array} & \begin{array}{l}\text { orbital } \\
\text { moment }\left(\mu_{\mathrm{B}}\right)\end{array}
$$

\hline Model 1 \& 0 \& \begin{array}{l}Ni: 1.85

Os: 0.78\end{array} \& Ni: 1.70 \& Os: 0.99\end{array}\right]\)| Ni: 0.15 |
| :--- |
| Os: -0.21 |
| Model 2 |
| $\mathbf{- 0 . 3 6}$ |

		Os: 0.78	Os: $\mathbf{0 . 9 9}$	Os: $\mathbf{- 0 . 2 1}$
Model 3	+0.18	Ni: 1.85	Ni: 1.70	Ni: 0.15
		Os: 0.77	Os: 0.99	Os: -0.22
Model 4	+0.42	Ni: 1.85	Ni: 1.70	Ni: 0.15
		Os: 0.76	Os: 0.99	Os: -0.23

The electronic structure of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ for model 2 (total and partial) is shown in Figure 4. Since Ni and Os atoms have local magnetic moments (Table 1), they show local spin polarization as shown in Figures 4 (b) and (c). These local spin polarizations are summed to be zero, that is, the net total magnetic moment is zero, reflecting that $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ is antiferromagnetic, as demonstrated in Figure 4 (a).

The major contributions to the total DOS around the E_{F} are attributed to the Os-5d orbitals in both spin channels, which hybridize strongly with the $\mathrm{O}-2 \mathrm{p}$ orbitals. Occupation numbers for Ni 3 d and Os 5 d are 7.81 and 3.80, respectively. The huge hybridization indicated between Os 5 d and O 2 p orbitals suggests Ni^{2+} and Os^{6+} formal oxidation states in $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$, consistent with the magnetic susceptibility experiment. Spin and orbital moments for Ni are 1.70 and $0.16 \mu_{\mathrm{B}}$, respectively, thereby giving a total magnetic moment of $1.86 \mu_{\mathrm{B}}$ per Ni . For Os, spin and orbital moments are 0.99 and $-0.21 \mu_{\mathrm{B}}$ respectively, where the minus sign indicates that the orbital moment is opposite the spin direction, thus the total moment is $0.78 \mu_{\mathrm{B}}$ per Os. These calculated moments are comparable with those obtained from NPD analysis (see above). The calculated γ is $7.1 \mathrm{~mJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-2}$. This is much smaller than the one obtained from the fitting of low-temperature specific heat data $\left(63.5 \mathrm{~mJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-2}\right)$, which may be due to the fact that DFT underestimates the electronic correlations in the correlated systems, resulting in a relatively small gamma value.

Figure 4 Total and partial density of states (DOS) of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ for model 2 from GGA + SOC + U calculation. (a) The black solid line corresponds to the total DOS. Red solid, blue solid, and green dash-dotted lines represent total Ni 3 d , total Os 5d, and O 2p partial DOS, respectively. (b) Partial DOS for each Ni 3d: Ni1 (Ni2) is presented for the spin majority as spin up (down). (c) Partial DOS for each Os 5d: Os1 (Os2) is presented for the spin majority as spin up (down). The positive and negative values in DOS correspond to spin up and down, respectively.

Discussion

The $A_{2} \mathrm{NiOsO}_{6}\left(A=\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}\right.$ and now $\left.\mathrm{Pb}^{2+}\right)$ oxides adopt B-site ordered double perovskite structures and span a range of properties, from insulating $\left(A=\mathrm{Ca}^{31}\right)$ to metallic $(A=\mathrm{Pb})$, and from ferromagnetic $\left(A=\mathrm{Ba}\right.$ at low temperatures $\left.{ }^{37}\right)$ to antiferromagnetic $\left(A=\mathrm{Sr}^{36}\right)$. While all these analogs adopt the rock-salt ordering of NiO_{6} and OsO_{6} octahedra, the degree of tilting of these octahedra increases with decreasing A cation radius: $\mathrm{Ba}_{2} \mathrm{NiOsO}_{6}$ is cubic with $180^{\circ} \mathrm{Ni}-\mathrm{O}-$ Os bond angles; in tetragonal $\mathrm{Sr}_{2} \mathrm{NiOsO}_{6}$, octahedra are tilted about the long axis giving $180^{\circ} / 166^{\circ} \mathrm{Ni}-\mathrm{O}$ - Os angles ${ }^{36}$, while $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}$ adopts the monoclinic $P 2_{1} / n$ structure (with $a^{-} a^{-} c^{+}$tilts) with $\mathrm{Ni}-\mathrm{O}-\mathrm{Os}$ angles of $\sim 151^{\circ} .{ }^{36} \mathrm{~Pb}_{2} \mathrm{NiOsO}_{6}$ also adopts this $P 2{ }_{1} / n$ structure despite the ionic radius of $\mathrm{Pb}^{2+}(1.49 \AA)$ being comparable to that of $\mathrm{Sr}^{2+}(1.44 \AA)^{47}$; this might in part be due to the inert pair Pb^{2+} ion favoring the lower symmetry coordination environment ${ }^{48}$ possible in the $P 2_{1} / n$ structure: Pb occupies the $4 e$ site of 1 symmetry in $P 2_{1} / n$ compared with the higher symmetry $4 d$ site of -4 .. symmetry in the $I 4 / m$ structure of $\mathrm{Sr}_{2} \mathrm{NiOsO}_{6}$.

The magnetic structure described here for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ is of the same symmetry as that reported for $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}{ }^{16}$, although with a slightly different orientation of
moments, likely resulting from the different magnetic anisotropies of Co^{2+} and Ni^{2+} ions in octahedral coordination environments. In both $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ and $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}$, the magnetic order on the $\mathrm{Ni} / \mathrm{Co}$ and Os sublattices breaks inversion symmetry and follows an $\uparrow \uparrow \downarrow \downarrow$ sequence along [001] of the nuclear unit cell. Magnetic ordering has been shown to break inversion symmetry in other perovskites, including $\mathrm{Sr}_{2} \mathrm{NiMnO}_{6}$, but with weak coupling between Ni and Mn sublattices, ${ }^{38}$ in contrast to $\mathrm{Pb}_{2} B \mathrm{OsO}_{6}(B=\mathrm{Co}$, Ni) which seem to have collinear moments on both B and Os sublattices and a single magnetic ordering transition. These observations are consistent with strong couplings between $\mathrm{Co} / \mathrm{Ni}$ and Os sublattices. This $\uparrow \uparrow \downarrow \downarrow$ magnetic structure observed in $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ is significantly different to those reported for other $A_{2} \mathrm{NiOsO}_{6}$ double perovskites. Previous work has highlighted the importance of both nearest-neighbor (likely FM) and next-nearest-neighbor (likely AFM) interactions in these systems. ${ }^{31,49}$ The balance between these (competing) interactions gives some magnetic frustration in $\mathrm{Sr}_{2} \mathrm{NiOsO}_{6}$ and makes the magnetic structure of $A_{2} \mathrm{NiOsO}_{6}$ phases very sensitive to bond angles. ${ }^{31}$

The symmetry requirements for magnetic order to break inversion symmetry have been explored by Perez-Mato et al^{50} and provide a recipe for designing new magnetoelectrics. If the magnetic k vector is not compatible with the screw axes or glide planes of the nuclear (paramagnetic) unit cell (when time reversal symmetry is considered), then full magnetic order on a lattice of magnetic atoms on special sites (of -1 symmetry) will break inversion symmetry, resulting in non-centrosymmetric structures. ${ }^{50}$

The double perovskites considered here have rocksalt ordering of B and B^{\prime} cations on sites related by an origin shift (and typically with symmetries including inversion centers). If a single magnetic propagation vector k describes the magnetically ordered phase, and full magnetic order is expected on both B and B ' sublattices, then depending on k, the irreps to describe the magnetic order on each sublattice may be of opposite parity with respect to an inversion centre at the origin. These irreps couple to a noncentrosymmetric distortion $\left(\Gamma_{\mathrm{x}}^{-}\right)$, breaking inversion symmetry. This is the case
described here for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ for $k=(1 / 201 / 2)$ and also for $k=(-11 / 21 / 2)$. Likewise for a cubic double perovskite $A_{2} B B^{\prime} \mathrm{O}_{6}$ of $F m-3 m$ nuclear symmetry (with magnetic B and B^{\prime} ions on $4 a$ and $4 b$ sites, respectively), a magnetic $k=(1 / 21 / 21 / 2)$ would have a similar effect. This is also observed in the hexagonal $\mathrm{Ca}_{3} \mathrm{CoMnO}_{6}$ ($R-3 c$ nuclear symmetry, Mn^{3+} and Co^{3+} ions on $6 a(001 / 4)$ and $6 b(000)$ sites respectively) with magnetic $k=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$ giving the well-known $\uparrow \uparrow \downarrow \downarrow$ polar magnetic structure. ${ }^{51}$

If suitable cation ordered structures with strong magnetic coupling between the two sublattices (to favor them ordering with the same magnetic k vector) can be identified, then new magnetoelectrics might be designed if the magnetic exchange interactions can be balanced to give the desired k vector. We note that the improper ferroelectricity described here does not require additional ordering of A-site cations (e.g. the $A A{ }^{\prime} \mathrm{NiOsO}_{6}$ phases explored recently). ${ }^{52}$

It is striking that both $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ and $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}{ }^{16}$ are metallic, in contrast to the SOC Mott-insulating nature of $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}$ and $\mathrm{Ca}_{2} \mathrm{CoOsO}_{6},{ }^{31}$ despite the structural similarities between these Pb and Ca analogs. Firstly, we note that although $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ is metallic, its resistivity is several orders of magnitude higher than that of $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}$ (300 K resistivity is $\sim 0.07 \Omega \mathrm{~cm}$ (Figure 2a) and $\sim 3.5 \times 10^{-4} \Omega \mathrm{~cm}$ for Ni and Co^{16} analogs, respectively). This is similarly observed for $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}$ and $\mathrm{Ca}_{2} \mathrm{CoOsO}_{6}$ and is ascribed to the full occupancy of the $\mathrm{Ni}^{2+} \mathrm{t}_{2 \mathrm{~g}}$ band reducing delocalization of $\mathrm{Os}^{6+} \mathrm{t}_{2 \mathrm{~g}}$ electrons. ${ }^{31}$

The half-metallic nature proposed for $\mathrm{Sr}_{2} \mathrm{NiOsO}_{6}$ results from the partiallyoccupied $\mathrm{Os}_{2 \mathrm{~g}}$ states crossing the Fermi level, with spin-orbit coupling broadening the Os 5d bands. ${ }^{53}$ This scenario can be applied to $A_{2} \mathrm{NiOsO}_{6}(A=\mathrm{Ca}, \mathrm{Pb})$ and our PDOS calculations (Figure 4) are qualitatively similar to those reported for $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}{ }^{31}$ (with $\mathrm{Ni} \mathrm{t}_{2 \mathrm{~g}}$ states below $\sim-2 \mathrm{eV}$ and a narrow band of $\mathrm{Ni} \mathrm{e}_{\mathrm{g}}$ states at $\sim 2 \mathrm{eV}$, with Os 5 d and O 2 p bands crossing E_{F}). However, the bandwidth in these double perovskites is also influenced by $\mathrm{Ni}-\mathrm{O}-\mathrm{Os}$ bond angles: in $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}$ with small Ca^{2+} ions, the $\mathrm{Ni}-\mathrm{O}$ - Os angles ($\sim 149.3-150.6^{\circ}$ at 4 K$)^{36}$ show much larger deviations from the ideal 180° bond angles than in $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}\left(158.8-161.0^{\circ}\right.$ at 1.5 K$)$. The more distorted structure
reported for the Ca analogs is likely to decrease the orbital overlap and bandwidth, giving wider band gaps than the less distorted Pb analogs. This is consistent with the insulating and more localized nature of $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}$ and its higher magnetic ordering temperature (158 K , compared with $T_{\mathrm{N}}=58 \mathrm{~K}$ for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$).

Conclusion

A new 5d oxide $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ was synthesized under high-pressure. $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ crystallizes in a monoclinic double perovskite structure with a centrosymmetric space group $P 2_{1} / n$ at room temperature. $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ is metallic down to 2 K and displays an AFM transition with $T_{\mathrm{N}}=58 \mathrm{~K} . \mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ is a new example of AFM metallic oxide with three-dimensional crystal and electronic structures. NPD and DFT calculations indicate that both the Ni and Os moments are ordered below T_{N}, breaking inversion symmetry, which is similar to recently-reported $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}{ }^{16,}{ }^{17}$. The magnetically driven loss of center of symmetry is similar to the type-II multiferroics. The discovery of 5 d oxides $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ together with $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}$ establishes a new class of noncentrosymmetric AFM metallic oxides.

Acknowledgment

C.-J.K. and G.K. were supported by the National Science Foundation Grant No. DMR1733071. MG was supported by the Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant No. DE-FOA-0001276. This study was supported in part by JSPS KAKENHI Grants No. JP20H05276, a research grant from Nippon Sheet Glass Foundation for Materials Science and Engineering (Grant No. 40-37), and Innovative Science and Technology Initiative for Security (Grant No. JPJ004596) from Acquisition, Technology \& Logistics Agency (ATLA), Japan. We're grateful to the ISIS Neutron and Muon Source (S.T.F.C., U.K.) for the provision of neutron diffraction beamtime. ${ }^{54}$

ASSOCIATED CONTENT

Supporting Information
Supplemental data: Refined room-temperature SXRD pattern and the corresponding crystal structure information. Refined PND data at 98 and 1.5 K and the corresponding crystal structure information. Evolution of nuclear and magnetic structures with temperature for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ from sequential refinements using NPD data. DFT
calculations of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ with the different magnetic states.

References

1. Goodenough, J. B. Magnetism and the Chemical Bond (Interscience publisher, New York-London, 1963).
2. Komarek, A. C.; Streltsov, S. V.; Isobe, M.; Moller, T.; Hoelzel, M.; Senyshyn, A.; Trots, D.; Fernandez-Diaz, M. T.; Hansen, T.; Gotou, H.; Yagi, T.; Ueda, Y.; Anisimov, V. I.; Grueninger, M.; Khomskii, D. I.; Braden, M. CaCrO_{3} : An Anomalous Antiferromagnetic Metallic Oxide. Phys. Rev. Lett. 2008, 101, 167204.
3. Cava, R. J.; Batlogg, B.; Krajewski, J. J.; Gammel, P.; Poulsen, H. F. Antiferromagnetism and Metallic Conductivity in $\mathrm{Nb}_{12} \mathrm{O}_{29}$. Nature 1991, 350, 598-600.
4. Cheng, J.-G.; Zhou, J.-S.; Goodenough, J. B.; Zhou, H. D.; Wiebe, C. R.; Takami, T.; Fuji, T. Spin Fluctuations in the Antiferromagnetic metal $\mathrm{Nb}_{12} \mathrm{O}_{29}$. Phys. Rev. B 2009, 80, 134428.
5. Argyriou, D. N.; Mitchell, J. F.; Radaelli, P. G.; Bordallo, H. N.; Cox, D. E.; Medarde, M.; Jorgensen, J. D. Lattice Effects and Magnetic Structure in the Layered Colossal Magnetoresistance Manganite $\mathrm{La}_{2-2 x} \mathrm{Sr}_{1+2 \mathrm{x}} \mathrm{Mn}_{2} \mathrm{O}_{7}, \mathrm{x}=0.3$. Phys. Rev. $B \mathbf{1 9 9 9}, 59,8695-8702$.
6. Yoshida, Y.; Ikeda, S. I.; Matsuhata, H.; Shirakawa, N.; Lee, C. H.; Katano, S. Crystal and Magnetic Structure of $\mathrm{Ca}_{3} \mathrm{Ru}_{2} \mathrm{O}_{7}$. Phys. Rev. B 2005, 72, 054412.
7. Berlijn, T.; Snijders, P. C.; Delaire, O.; Zhou, H. D.; Maier, T. A.; Cao, H. B.; Chi, S. X.; Matsuda, M.; Wang, Y.; Koehler, M. R.; Kent, P. R. C.; Weitering, H. H. Itinerant Antiferromagnetism in RuO_{2}. Phys. Rev. Lett. 2017, 118, 077201.
8. Zhu, Z. H.; Strempfer, J.; Rao, R. R.; Occhialini, C. A.; Pelliciari, J.; Choi, Y.; Kawaguchi, T.; You, H.; Mitchell, J. F.; Shao-Horn, Y.; Comin, R. Anomalous Antiferromagnetism in Metallic RuO_{2} Determined by Resonant X-Ray Scattering. Phys. Rev. Lett. 2019, 122, 017202.
9. Guo, H.; Li, Z. W.; Zhao, L.; Hu, Z.; Chang, C. F.; Kuo, C. Y.; Schmidt, W.; Piovano, A.; Pi, T. W.; Sobolev, O.; Khomskii, D. I.; Tjeng, L. H.; Komarek, A. C. Antiferromagnetic Correlations in the Metallic Strongly Correlated Transition Metal Oxide LaNiO_{3}. Nat Commun 2018, 9 , 43.
10. Witczak-Krempa, W.; Chen, G.; Kim, Y. B.; Balents, L. Correlated Quantum Phenomena in the Strong Spin-Orbit Regime. Annu. Rev. Conden. Matter Phys. 2014, 5, 57-82.
11. Jackbsen, H.; Feng, H. L.; Princep, A. J.; Rahn, M. C.; Guo, Y.; Chen, J.; Matsushita, Y.; Tsujimoto, Y.; Nagao, M.; Khalyavin, D.; Manuel, P.; Murray, C. A.; Donnerer, C.; Vale, J. G.; Sala, M. M.; Yamaura, K.; Boothroyd, A. T. Magnetically Induced Metal-Insulator Transition in $\mathrm{Pb}_{2} \mathrm{CaOsO}_{6}$. Phys. Rev. B 2020, 102, 214409.
12. Mandrus, D.; Thompson, J. R.; Gaal, R.; Forro, L.; Brayan, J. C.; Chakoumakos, B. C.; Woods, L. M.; Sales, B. C.; Fishman, R. S.; Keppns, V. Continuous Metal-Insulator Transition in the Pyrochlore $\mathrm{Cd}_{2} \mathrm{Os}_{2} \mathrm{O}_{7}$. Phys. Rev. B 2001, 63, 195104.
13. Padilla, W. J.; Mandrus, D.; Basov, D. N. Searching for the Slater Transition in the Pyrochlore $\mathrm{Cd}_{2} \mathrm{Os}_{2} \mathrm{O}_{7}$ with Infrared Spectroscopy. Phys. Rev. B 2005, 66, 035120.
14. Calder, S.; Garlea, V. O.; McMorrow, D. F.; Lumsden, M. D.; Stone, M. B.; Lang, J. C.; Kim, J.-W.; Schueter, J. A.; Shi, Y. G.; Yamaura, K.; Sun, Y. S.; Tsujimoto, Y.; Christianson, A. D. Magnetically Driven Metal-Insulator Transition in NaOsO_{3}. Phys. Rev. Lett. 2012, 108, 257209.
15. Shi, Y. G.; Guo, Y.; Wang, X.; Princep, A. J.; Khalyavin, D.; Manuel, P.; Michiue, Y.;

Sato, A.; Tsuda, K.; Yu, S.; Arai, M.; Shirako, Y.; Akaogi, M.; Wang, N.; Yamaura, K.; Boothroyd, A. T. A Ferroelectric-like Structural Transition in a Metal. Nat. Mater. 2013, 12, 1024-1027.
16. Princep, A. J.; Feng, H. L.; Guo, Y. F.; Lang, F.; Weng, H. M.; Manuel, P.; Khalyavin, D.; Senyshyn, A.; Rahn, M. C.; Yuan, Y. H.; Matsushita, Y.; Blundell, S. J.; Yamaura, K.; Boothroyd, A. T. Magnetically Driven Loss of Centrosymmetry in Metallic $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}$. Phys. Rev. B 2020, 102, 104410.
17. Jiao, Y.; Fang, Y.-W.; Sun, J.; Shan, P.; Yu, Z.; Feng, H. L.; Wang, B.; Ma, H.; Uwatoko, Y.; Yamaura, K.; Guo, Y.; Chen, H.; Cheng, J. Coupled Magnetic and Structural Phase Transitions in the Antiferromagnetic Polar Metal $\mathrm{Pb}_{2} \mathrm{CoOsO}_{6}$ Under Pressure. Phys. Rev. B 2020, 102, 144418.
18. Yamaura, K. Short Review of High-Pressure Crystal Growth and Magnetic and Electrical Properties of Solid-State Osmium Oxides. J. Solid State Chem. 2016, 236, 45-54.
19. Tanaka, M.; Katsuya, Y.; Matsushita, Y.; Sakata, O. Development of a Synchrotron Powder Diffractometer with a One-Dimensional X-Ray Detector for Analysis of Advanced Materials. J. Ceram. Soc. Jpn 2013, 121, 287-290.
20. Tanaka, M.; Katsuya, Y.; Yamamoto, A. A New Large Radius Imaging Plate Camera for HighResolution and High-Throughput Synchrotron X-Ray Powder Diffraction by Multiexposure Method. Rev. Sci. Instru. 2008, 79, 075106.
21. Izumi, F.; Ikeda, T. A Rietveld-Analysis Programm RIETAN-98 and its Applications to Zeolite. Mater. Sci. Forum 2000, 321-324, 198-205.
22. Momma, K.; Izumi, F. VESTA 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology data. J. Appl. Crystallogr. 2011, 44, 1272-1276.
23. Chapon, L. C.; Manuel, P.; Radaelli, P. G.; Benson, C.; Perrott, L.; Ansell, S.; Rhodes, N. J.; Raspino, D.; Duxbury, D.; Spill, E.; Norris, J. Wish: The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station. Neutron News 2011, 22, 22-25.
24. Coelho, A. A. Indexing of Powder Diffraction Patterns by Iterative Use of Singular Value Decomposition. J. Appl. Cryst. 2003, 36, 86-95.
25. Coelho, A. A. Topas Academic: General Profile and Structure Analysis Software for Powder Diffraction Data. Bruker AXS: Karlsruhe, Germany, 2012.
26. Campbell, B. J.; Stokes, H. T.; Tanner, D. E.; Hatch, D. M. ISODISTORT. J. Appl. Cryst. 2006, 39, 607-614.
27. Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J. WIEN2K, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Technische Universitët Wien: Wien, Austria, 2001.
28. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865-3868.
29. Anisimov, V. I.; Solovyev, I. V.; Korotin, M. A.; Czyzyk, M. T.; Sawatzky, G. A. DensityFunctional Theory and Nio Photoemission Spectra. Phys. Rev. B 1993, 48, 16929-16934.
30. Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I. First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: The LDA+U Method. J. Phys.: Condens. Matter 1997, 9, 767-808.
31. Morrow, R.; Samanta, K.; Dasgupta, T. S.; Xiong, J.; Freeland, J. W.; Haskel, D.; Woodward, P. M. Magnetism in $\mathrm{Ca}_{2} \mathrm{CoOsO}_{6}$ and $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}$: Unraveling the Mystery of Superexchange Interactions between 3d and 5d Ions. Chem. Mater. 2016, 28, 3666-3675.
32. Ramesha, K.; Sebastian, L.; Eichhorn, B.; Gopalakrishnan, J. Perovskite and Pyrochlore

Modifications of $\mathrm{Pb}_{2} \mathrm{MnReO}_{6}$: Synthesis, Structure, and Electronic Properties. Chem. Mater. 2003, 15, 668-674.
33. Ivanov, S. A.; Nordblad, P.; Mathieu, R.; Tellgren, R.; Ritter, C., Structural and Magnetic Properties of the Ordered Perovskite $\mathrm{Pb}_{2} \mathrm{CoTeO}_{6}$. Dalton T 2010, 39, 11136-11148.
34. Brown, I. D.; Altermatt, D. Bond-Valence Parameters Obtained From a Systematic Analysis of the Inorganic Crystal-Structure Database. Acta Crystallographica Section B-Structural Science 1985, 41, 244-247.
35. Brese, N. E.; Okeeffe, M. Bond-Valence Parameters for Solids. Acta Crystallographica Section BStructural Science 1991, 47, 192-197.
36. Macquart, R.; Kim, S. J.; Gemmill, W. R.; Stalick, J. K.; Lee, Y.; Vogt, T.; zur Loye, H. C. Synthesis, Structure, and Magnetic Properties of $\mathrm{Sr}_{2} \mathrm{NiOsO}_{6}$ and $\mathrm{Ca}_{2} \mathrm{NiOsO}_{6}$: Two New OsmiumContaining Double Perovskites. Inorg. Chem. 2005, 44, 9676-9683.
37. Feng, H. L.; Calder, S.; Ghimire, M. P.; Yuan, Y. H.; Shirako, Y.; Tsujimoto, Y.; Matsushita, Y.; Hu, Z. W.; Kuo, C. Y.; Tjeng, L. H.; Pi, T. W.; Soo, Y. L.; He, J. F.; Tanaka, M.; Katsuya, Y.; Richter, M.; Yamaura, K. $\mathrm{Ba}_{2} \mathrm{NiOsO}_{6}$: A Dirac-Mott Insulator with Ferromagnetism Near 100 K. Phys. Rev. B 2016, 94, 235158.
38. Yi, W.; Princep, A. J.; Guo, Y.; Johnson, R. D.; Khalyavin, D.; Manuel, P.; Senshyn, A.; Presniakov, I. A.; Sobolev, A. V.; Matsushita, Y.; Tanaka, M.; Belik, A. A.; Boothroyd, A. T. $\mathrm{Sc}_{2} \mathrm{NiMnO}_{6}$: a Double Perovskite with Magnetoelectric Response Driven by Multiple Magentic Orders. Inorg. Chem. 2015, 54, 8012-8021.
39. Morrow, R.; Yan, J.; McGuire, M. A.; Freeland, J. W.; Haskel, D.; Woodward, P. M. Effects of Chemical Pressure on the Magnetic Ground States of the Osmate Double Perovskites $\mathrm{SrCaCoOsO}_{6}$ and $\mathrm{Ca}_{2} \mathrm{CoOsO}_{6}$. Phys. Rev. B 2015, 92, 094435.
40. Morrow, R.; Freeland, J. W.; Woodward, P. M. Probing the Links between Structure and Magnetism in $\mathrm{Sr}_{2-\mathrm{x}} \mathrm{Ca}_{\mathrm{x}} \mathrm{FeOsO}_{6}$ Double Perovskites. Inorg. Chem. 2014, 53, 7983-7992.
41. Tuxworth, A. J.; McCabe, E. E.; Free, D. G.; Clark, S. J.; Evans, J. S. O. Structural Characterization and Physical Properties of the New Transition Metal Oxyselenide $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{ZnSe}_{2}$. Inorg. Chem. 2013, 52, 2078-2085.
42. McCabe, E. E.; Stock, C.; Rodrigues, E. E.; Wills, A. S.; Taylor, J. W.; Evans, J. S. O. Weak Spin Interactions in Mott Insulating $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{Fe}_{2} \mathrm{OSe}_{2}$. Phys. Rev. B 2014, 89, 100402(R).
43. Taylor, A. E.; Morrow, R.; Lumsden, M. D.; Calder, S.; Upton, M. H.; Kolesnikov, A. I.; Stone, M. B.; Fishman, R. S.; Paramekanti, A.; Woodward, P. M.; Christianson, A. D. Origin of Magnetic Excitation Gap in Double Perovskite $\mathrm{Sr}_{2} \mathrm{FeOsO}_{6}$. Phys. Rev. B 2018, 98, 214422.
44. Khalyavin, D. D.; Salak, A. N.; Olekhnovich, N. M.; Pushkarev, A. V.; Radyush, Y. V.; Manuel, P.; Raevski, I. P.; Zheludkevich, M. L.; Ferreira, M. G. S. Polar and Antipolar Polymorphs of Metastable Perovskite $\mathrm{BiFe}_{0.5} \mathrm{Sc}_{0.5} \mathrm{O}_{3}$. Phys. Rev. B 2014, 89, 174414.
45. Prosandeev, S. A.; Khalyavin, D. D.; Raevski, I. P.; Salak, A. N.; Olekhnovich, N. M.; Pushkarev, A. V.; Radyush, Y. V. Complex Antipolar $2 \times 4 \times 22$ Structure with Pnma Symmetry in BiFeO_{3} and $\mathrm{BiFe}_{1 / 2} \mathrm{Sc}_{1 / 2} \mathrm{O}_{3}$: First-Principles Calculations. Phys. Rev. B 2014, 90, 054110.
46. Schoop, L. M.; Topp, A.; Lippmann, J.; Orlandi, F.; Müchler, L.; Vergniory, M. G.; Sun, Y.; Rost, A. W.; Duppel, V.; Krivenkov, M.; Sheoran, S.; Manuel, P.; Varykhalov, A.; Yan,
B.; Kremer, R. K.; Ast, C. R.; Lotsch, B. V. Tunable Weyl and Dirac States in the Nonsymmorphic Compound CeSbTe. Science Advances 2018, 4, eaar2317.
47. Shannon, R. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in

Halides and Chalcogenides. Acta Crystallographica Section A 1976, 32, 751-767.
48. Walsh, A.; Payne, D. J.; Egdell, R. G.; Watson, G. W. Stereochemistry of Post-Transition Metal Oxides: Revision of the Classical Lone Pair Model. Chem. Soc. Rev. 2011, 40, 4455-4463.
49. Tian, C.; Wibowo, A. C.; zur Loye, H.-C.; Whangbo, M.-H. On the Magnetic Insulating States, Spin Frustration, and Dominant Spin Exchange of the Ordered Double-Perovskites $\mathrm{Sr}_{2} \mathrm{CuOsO}_{6}$ and $\mathrm{Sr}_{2} \mathrm{NiOsO}_{6}$: Density Functional Analysis. Inorg Chem 2011, 50 (9), 4142-4148.
50. Perez-Mato, J. M.; Gallego, S. V.; Elcoro, L.; Tasci, E.; Aroyo, M. I. Symmetry Conditions for Type II Multiferroicity in Commensurate Magnetic Structures. J. Phys.:Condens. Matter 2016, 28, 286001.
51. Choi, Y. J.; Yi, H. T.; Lee, S.; Huang, Q.; Kiryukhin, V.; Cheong, S.-W. Ferroelectricity in an Ising Chain Magnet. Phys. Rev. Lett. 2008, 100, 047601.
52. Shaikh, M.; Fathima, A.; Swamynadhan, M. J.; Das, H.; Ghosh, S. Investigation into CationOrdered Magnetic Polar Double Perovskite Oxides. Chem. Mater. 2021, 33, 1594-1606.
53. Ghimire, M. P.; Hu, X., Compensated Half Metallicity in Osmium Double Perovskite Driven by Doping Effects. Mater. Res. Express 2016, 3, 106107.
54. Gong, S.; Guo, S.-D.; Chen, P.; Liu, B.-G. Oxygen-Octahedral Distortion and Electronic Correlation Induced Semiconductor Gaps in Ferrimagnetic Double Perovskite $\mathrm{Ca}_{2} \mathrm{MReO}_{6}(\mathrm{M}=\mathrm{Cr}, \mathrm{Fe})$. RSC Adv. 2015, 5, 63165-63174.

TOC graphic

Supplementary material

Antiferromagnetic order breaks inversion symmetry in metallic double perovskite, $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$

Hai L. Feng, ${ }^{1,2}$ Chang-Jong Kang, ${ }^{3,4}$ Pascal Manuel, ${ }^{5}$ Fabio Orlandi, ${ }^{5}$ Yu Su, ${ }^{6,7}$ Jie Chen, ${ }^{6,7}$ Yoshihiro Tsujimoto, ${ }^{6,7}$ Joke Hadermann, ${ }^{8}$ Gabriel Kotliar, ${ }^{3}$ Kazunari Yamaura, ${ }^{6,7}$ Emma E. McCabe, ${ }^{9,10^{*}}$ Martha Greenblatt ${ }^{1 *}$
${ }^{1}$ Department of Chemistry and Chemical Biology, Rutgers, the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
${ }^{2}$ Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
${ }^{3}$ Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854, USA
${ }^{4}$ Department of Physics, Chungnam National University, Daejeon 34134, South Korea
${ }^{5}$ ISIS facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK.
${ }^{6}$ International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
${ }^{7}$ Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
${ }^{8}$ EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
${ }^{9}$ School of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH, UK
${ }^{10}$ Department of Physics, Durham University, Lower Mountjoy, South Road, Durham, DH1 3LE, UK

*Martha Greenblatt
greenbla@chem.rutgers.edu
*Emma E. McCabe
emma.mccabe@durham.ac.uk

Figure $\mathrm{S} 1 \quad$ Rietveld refined room temperature SPXD pattern of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$. Black dots and red solid lines show the observed and calculated patterns, respectively. The difference between the observed and calculated patterns is shown as blue lines at the bottom. The vertical bars indicate positions of expected Bragg reflections for the titled compound.

Table S1 Atomic positions and isotropic displacement factors obtained from the SPXD data of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}{ }^{*}$

Atom	Site	x	y	z	$B_{\text {iso }}\left(\AA^{2}\right)$
Pb	$4 e$	$0.5022(8)$	$0.5062(4)$	$0.2503(1)$	$1.20(1)$
Ni	$2 c$	0.0	0.5	0.0	$0.26(1)$
Os	$2 b$	0.5	0.0	0.0	$0.26(1)$
O 1	$4 e$	$0.254(10)$	$0.248(7)$	$1.00(3)$	1.0 (fixed)
O 2	$4 e$	$0.260(10)$	$0.740(7)$	$1.00(3)$	1.0 (fixed)
O 3	$4 e$	$0.428(3)$	$0.927(2)$	$0.221(2)$	1.0 (fixed)

*Space group $P 2_{1} / n$: $a=5.58724(3) A, b=5.62988(2) A, c=7.89791(3) A, \beta=90.001$ (6) ${ }^{\circ}$; $\mathrm{R}_{\mathrm{wp}}=2.16$, $\mathrm{R}_{\mathrm{p}}=1.16$.

Selected bond distances and bond angles for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ refined from SPXD and NPD data at different temperatures.

Temperature	298 K	98 K	1.5 K
Diffraction source	Synchrotron	Neutron	Neutron
$\mathrm{Pb}-\mathrm{O}(1)$	$1 \times 2.82(17) \AA$	1×2.470 (2) \AA	$1 \times 2.464(2)$
$\mathrm{Pb}-\mathrm{O}(1)$	$1 \times 2.79(18) \AA$	$1 \times 2.945(3) \AA$	$1 \times 2.960(2)$
$\mathrm{Pb}-\mathrm{O}(1)$	$1 \times 2.81(17) \AA$	$1 \times 2.679(3) \AA$	$1 \times 2.666(2)$
$\mathrm{Pb}-\mathrm{O}(1)$	$1 \times 2.77(18) \AA$	$1 \times 3.153(2) \AA$	$1 \times 3.155(2)$
$\mathrm{Pb}-\mathrm{O}(2)$	$1 \times 2.88(17) \AA$	$1 \times 2.499(7) \AA$	$1 \times 2.487(7)$
$\mathrm{Pb}-\mathrm{O}(2)$	$1 \times 2.73(18) \AA$	$1 \times 2.820(8) \AA$	$1 \times 2.803(8)$
$\mathrm{Pb}-\mathrm{O}(2)$	$1 \times 2.76(18) \AA$	$1 \times 2.724(7) \AA$	$1 \times 2.725(7)$
$\mathrm{Pb}-\mathrm{O}(2)$	$1 \times 2.83(17) \AA$	$1 \times 3.163(7) \AA$	$1 \times 3.183(7)$
$\mathrm{Pb}-\mathrm{O}(3)$	$1 \times 2.455(18) \AA$	$1 \times 2.491(7) \AA$	$1 \times 2.495(7)$
$\mathrm{Pb}-\mathrm{O}(3)$	$1 \times 3.296(11) \AA$	$1 \times 2.812(8) \AA$	$1 \times 2.819(8)$
$\mathrm{Pb}-\mathrm{O}(3)$	$1 \times 2.415(11) \AA$	$1 \times 2.732(7) \AA$	$1 \times 2.715(7)$
$\mathrm{Pb}-\mathrm{O}(3)$	$1 \times 3.223(18) \AA$	$1 \times 3.176(7) \AA$	$1 \times 3.179(7)$
$\mathrm{Ni}-\mathrm{O}(1)$	2×2.01 (5) \AA	$2 \times 2.091(6) \AA$	2×2.090 (6)
$\mathrm{Ni}-\mathrm{O}(2)$	$2 \times 1.98(5) \AA$	$2 \times 2.079(5) \AA$	$2 \times 2.067(5)$
$\mathrm{Ni}-\mathrm{O}(3)$	$2 \times 2.275(13) \AA$	$2 \times 2.084(4) \AA$	$2 \times 2.074(5)$
Os - O(1)	$2 \times 1.95(5) \AA$	$2 \times 1.910(6) \AA$	$2 \times 1.914(5)$
Os - O(2)	$2 \times 1.99(5) \AA$	$2 \times 1.935(5) \AA$	2×1.941 (5)
Os - O(3)	$2 \times 1.841(13) \AA$	$2 \times 1.933(4) \AA$	2×1.940 (5)
$\mathrm{Os}-\mathrm{O}(1)-\mathrm{Ni}$	179.5(12) ${ }^{\circ}$	159.20(9) ${ }^{\circ}$	158.79(9)
$\mathrm{Os}-\mathrm{O}(2)-\mathrm{Ni}$	175.4(12) ${ }^{\circ}$	$161.3(4){ }^{\circ}$	161.0(4)
$\mathrm{Os}-\mathrm{O}(3)-\mathrm{Ni}$	147.1(4) ${ }^{\circ}$	$160.5(4){ }^{\circ}$	160.0(4)
$\mathrm{BVS}_{(\text {(Ni) }}$	+2.08	+1.98	+2.03
$\mathrm{BVS}_{(\mathrm{Os})}$	+5.98	+5.91	+5.82

Figure S2a Refinement profiles (time of flight) for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ using 98 K NPD data in space group P_{1} / n showing (a) higher resolution (153° bank) data, (b) 122° bank data, (c) 90° bank data and (d) 58° bank data. Observed, calculated and difference profiles are shown in blue, red and grey, respectively; upper (blue), middle (green) and lower (pink) ticks show reflection positions for the main phase $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ (98.86(4)\% by weight) and impurity phases NiO (0.61 (2) \% by weight) and PbO_{2} (0.53(3)\% by weight), respectively.

Figure S2b Refinement profiles (d-spacing) for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ using 98 K NPD data in space group $P 2_{1} / n$ showing (a) higher resolution (153° bank) data, (b) 122° bank data, (c) 90° bank data and (d) 58° bank data. Observed, calculated and difference profiles are shown in blue, red and grey, respectively; upper (blue), middle (green) and lower (pink) ticks show reflection positions for the main phase $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ (98.86(4)\% by weight) and impurity phases NiO (0.61 (2) \% by weight) and PbO_{2} (0.53(3)\% by weight), respectively.

Nuclear refinement details from Rietveld refinement of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ using 98 K (upper values) and 1.5 K (lower values) NPD data in space group $P 2_{1} / n$. At 98 K , cell parameters are $a=$ $5.6134(1) \AA, b=5.5717(1) \AA, c=7.8757(2) \AA, \beta=89.956(4)^{\circ} ; R_{w p}=6.07 \%, R_{p}=6.70 \%$. At 1.5 K, cell parameters are $a=5.60954(5) \AA, b=5.57031(4) \AA, c=7.87140(5) \AA, \beta=89.958(3)^{\circ}$; $R_{w p}=5.90 \%, R_{p}=6.34 \%$. The values obtained from 1.5 K NPD data are given on the second row for each atom

Atom	site	X	y	z	Factional occupancy	$\begin{aligned} & U_{\text {iso }} \quad \times \\ & 100\left(\AA^{2}\right) \end{aligned}$	Magnetic moment (μ_{B})
Pb	$4 e$	$\begin{aligned} & 0.0027(2) \\ & 0.0030(2) \end{aligned}$	$\begin{aligned} & 0.5142(2) \\ & 0.5161(2) \end{aligned}$	$\begin{aligned} & 0.2495(7) \\ & 0.2483(8) \end{aligned}$	$\begin{aligned} & 0.970(1) \dagger \\ & 0.970(1) \dagger \end{aligned}$	$\begin{aligned} & 0.90(2) \\ & 0.50(1) \end{aligned}$	
Ni	$2 a$	0	0	0	$\begin{aligned} & 1.00(6) \dagger \\ & 1.00(6) \dagger \end{aligned}$	$\begin{aligned} & 1.07(2)^{*} \\ & 0.74(1)^{*} \end{aligned}$	$1.90(1)$
Os	$2 b$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 1.00(6) \dagger \\ & 1.00(6) \dagger \end{aligned}$	$\begin{aligned} & 1.07(2)^{*} \\ & 0.74(1)^{*} \end{aligned}$	$0.378(2)$
$\mathrm{O}(1)$	$4 e$	$\begin{aligned} & -0.0635(2) \\ & -0.0647(2) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.0100(4) \\ & -0.0104(3) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2615(7) \\ & 0.2614(7) \end{aligned}$	$\begin{aligned} & 0.988(3) \dagger \\ & 0.988(3) \dagger \end{aligned}$	$\begin{aligned} & 0.91(7) \\ & 0.55(6) \end{aligned}$	
$\mathrm{O}(2)$	$4 e$	$\begin{aligned} & 0.2342(7) \\ & 0.2315(8) \end{aligned}$	$\begin{aligned} & 0.2854(8) \\ & 0.2850(8) \end{aligned}$	$\begin{aligned} & 0.0323(9) \\ & 0.0328(9) \end{aligned}$	$\begin{aligned} & 0.948(7) \dagger \\ & 0.948(7) \dagger \end{aligned}$	$\begin{aligned} & 0.8(1) \\ & 0.5(1) \end{aligned}$	
$\mathrm{O}(3)$	$4 e$	$\begin{aligned} & 0.2874(6) \\ & 0.2863(7) \end{aligned}$	$\begin{aligned} & 0.7680(8) \\ & 0.7694(8) \end{aligned}$	$\begin{aligned} & 0.0330(8) \\ & 0.0338(9) \end{aligned}$	$\begin{aligned} & 1.013(7) \dagger \\ & 1.013(7) \dagger \end{aligned}$	$\begin{aligned} & 1.5(1) \\ & 1.1(1) \end{aligned}$	

\dagger occupancies fixed at values from refinement with a single global $U_{\text {iso }}$ (see text)

* constrained to be identical

Figure S3 Raw NPD data for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ collected at 98 K (red) and 2 K (blue) with additional magnetic reflections indexed by a magnetic unit cell with dimensions $2 a_{n} \times b_{n} \times 2 c_{n}$ (subscript n refers to the nuclear unit cell) showing (a) higher resolution (153° bank) data and (b) 58° bank data

Figure S 4 Evolution of magnetic peak intensity with temperature for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ from sequential refinements using 58° bank NPD data: the nuclear phase was fitted with a Rietveld phase with unit cell parameters determined from refinement using high resolution (153° bank) data and the magnetic reflections were fitted with a Pawley phase with unit cell dimensions dimensions $2 a_{n}$ $\times b_{n} \times 2 c_{n}$ (subscript n refers to the nuclear unit cell) and intensities of key reflections output.

Comparison of possible magnetic models and magnetic refinement details:

In addition to the $\mathrm{Os} \mathrm{mY}_{2}{ }^{-}$magnetic order, allowing mY_{1}^{+}moments on Ni sites and $\Gamma_{2}{ }^{-}$displacements lowers $R_{\text {wp }}$ from 6.42% to 5.99%, while allowing $\mathrm{mY}_{2}{ }^{+}$moments on Ni sites and $\Gamma_{1}{ }^{-}$displacements lowers $R_{w p}$ to 5.97%. Attempts were made to follow the magnitude of the $\Gamma_{1}{ }^{-}$and $\Gamma_{2}{ }^{-}$displacements in sequential refinements to study their temperature dependence but any such displacements must be subtle and neither varied continuously with temperature.

Figure S5a Refinement profiles (in time of flight) for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ using 1.5 K NPD data in space group $\mathrm{P}_{2} 1 / n$ showing (a) higher resolution (153° bank) data, (b) 122° bank data, (c) 90° bank data and (d) 58° bank data. Observed, calculated and difference profiles are shown in blue, red and grey, respectively and magnetic scattering is highlighted in blue. Top (blue), upper-middle (green), middle (pink), lower (yellow) and bottom (blue) ticks show reflection positions for the magnetic phase, the main phase $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}(\sim 99 \%$ by weight), impurity phases $\mathrm{NiO}(\sim 0.6 \%$ by weight), and $\mathrm{PbO}_{2}(\sim 0.5 \%$ by weight) and a Pawley phase to fit the two magnetic peaks of antiferromagnetic NiO , respectively.

Figure S5b Refinement profiles (in d-spacing) for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ using 1.5 K NPD data in space group P_{1} / n showing (a) higher resolution (153° bank) data, (b) 122° bank data, (c) 90° bank data and (d) 58° bank data. Observed, calculated and difference profiles are shown in blue, red and grey, respectively and magnetic scattering is highlighted in blue. Top (blue), upper-middle (green), middle (pink), lower (yellow) and bottom (blue) ticks show reflection positions for the magnetic phase, the main phase $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ ($\sim 99 \%$ by weight), impurity phases $\mathrm{NiO}(\sim 0.6 \%$ by weight), and $\mathrm{PbO}_{2}(\sim 0.5 \%$ by weight) and a Pawley phase to fit the two magnetic peaks of antiferromagnetic NiO , respectively.

Figure S6 Evolution of nuclear and magnetic structures with temperature for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ from sequential refinements using NPD data from higher resolution (153°) bank, 122° bank, 90° bank data and 58° bank data. The nuclear phase was fitted with a Rietveld phase, as was the magnetic-only phase with unit cell parameters constrained to be related to the nuclear unit cell.

The unit cell volume contracts a little more rapidly on cooling below $\sim 40 \mathrm{~K}$ and this coincides with a change in the slope of some bond lengths and angles ($\mathrm{a} \mathrm{Pb}-\mathrm{O} 1$ and the $\mathrm{Os}-\mathrm{O} 1-\mathrm{Ni}$ bond angle) as the $O(1)$ site moves in the negative x direction. We note that the weakest magnetic reflection, 121, appears to increase in intensity only below $\sim 40 \mathrm{~K}$ and there may be a slight change in magnetic structure (and a concomitant change in the crystal structure) at this temperature. Possible changes in the magnetic structure include ordering of a second magnetic sublattice e.g. if Ni^{2+} moments ordered at T_{N} and Os^{6+} moments ordered below $\sim 40 \mathrm{~K}$, or if some reorientation of moments occurred below $\sim 40 \mathrm{~K}$. Mode inclusion analysis ${ }^{1,2}$ using 47.5 K data gave qualitatively similar results to that carried out at low temperature (indicating the same magnetic structure). Likewise, refinements using 47.5 K data allowing the magnetic moment direction to refine freely, and constraining the moments to lie along the $P 2_{1} / n$ [001] direction gave very similar fits $\left(\mathrm{R}_{\mathrm{w} P} \mathrm{~S}\right.$ of 5.938% and 5.936% for the constrained and free models, respectively) and the unconstrained model resulted in moments lying very close to the $P 2_{1} / n$ [001]. Due to the low intensity of the 121 reflection, it's hard to determine whether it is present for $40 \mathrm{~K} \leq T \leq T_{\mathrm{N}}$. Given the high correlation in the refinement between moments on the two cation sites, it may not be possible to resolve this question from powder diffraction data, and given the magnetic susceptibility and heat capacity data, we must assume a single magnetic ordering transition at T_{N}.

Further details regarding DFT calculations:

The magnetic ground state of $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ was studied by calculating the total energy for each of the different magnetic states, namely FM, AFM-1, and AFM-2 (see Figure S7). Both Ni and Os moments order in AFM-1, which leads to inversion symmetry break. On the other hand, only Ni moments order in AFM-2 and inversion symmetry is preserved. From the total energy calculations (see Table 2), AFM-1 is found to have the lowest energy, with an energy difference of $0.102 \mathrm{eV} / f 0 r m u l a ~ u n i t ~ f r o m ~$ that of AFM-2, thereby suggesting that DFT calculations favor the noncentrosymmetric AFM model with AFM order on both Ni and Os sublattices.

Figure $\mathrm{S7}$ Possible spin arrangement considered in the theoretical calculation for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$; ferromagnetic (FM), antiferromagnetic AFM-1 and AFM-2 configurations. Ni and Os atoms are only shown for clarity.

Table S4 The total energy calculated for $\mathrm{Pb}_{2} \mathrm{NiOsO}_{6}$ with different magnetic states

Magnetic phase	Total energy (eV/formula unit)
AFM-1	0
AFM-2	+0.102
FM	+1.880

DFT calculations were carried out on the four magnetic models (models $1-4$, see main text) to investigate their relative energies. Details of these models including basis vectors and origin shifts relative to the nuclear $P 2_{1} / n$ structure are given below. ${ }^{3}$

Model 1:

$\mathrm{Ni}: \mathrm{mY}_{2}{ }^{+}$
Os: $\mathrm{mY}_{2}{ }^{-}$
Polar distortion: $\Gamma_{1}{ }^{-}$
Magnetic symmetry: $P_{a} 2_{1}$
Basis vectors: (200) (010) (-101)
Origin shift: $(-1 / 401 / 4)$

Model 2:

$\mathrm{Ni}: \mathrm{mY}_{1}{ }^{+}$
Os: $\mathrm{mY}_{2}{ }^{-}$
Polar distortion: $\Gamma_{2}{ }^{-}$
Magnetic symmetry: $P_{a} c$
Basis vectors: (-200) (0-10) (101)
Origin shift: ($01 / 40$)

Model 3:

Ni: $m Y_{1}{ }^{+}$
Os: $\mathrm{mY}_{1}{ }^{-}$
Polar distortion: Γ_{1}
Magnetic symmetry: $P_{a} 2_{1}$
Basis vectors: (200) (010) (-101)
Origin shift: ($-1 / 40-1 / 4$)

Model 4:

Ni: $\mathrm{mY}_{2}{ }^{+}$
Os: $\mathrm{mY}_{1}{ }^{-}$
Polar distortion: Γ_{2}
Magnetic symmetry: $P_{a} c$
Basis vectors: (200) (010) (-101)
Origin shift: ($01 / 40$)

References

1. McCabe, E. E.; Stock, C.; Rodrigues, E. E.; Wills, A. S.; Taylor, J. W.; Evans, J. S. O., Weak spin interactions in Mott insulating $\mathrm{La}_{2} \mathrm{O}_{2} \mathrm{Fe}_{2} \mathrm{OSe}_{2}$. Phys. Rev. B 2014, 89, 100402(R).
2. Tuxworth, A. J.; McCabe, E. E.; Free, D. G.; Clark, S. J.; Evans, J. S. O., Structural Characterization and Physical Properties of the New Transition Metal Oxyselenide La $\mathrm{L}_{2} \mathrm{O}_{2} \mathrm{ZnSe}$. Inorg. Chem. 2013, 52, 2078-2085.
3. Campbell, B. J.; Stokes, H. T.; Tanner, D. E.; Hatch, D. M., ISODISTORT. J. Appl. Cryst. 2006, 39, 607614.
