toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Zhang, Q.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H. openurl 
  Title Startup strategies of deammonification reactors treating reject water from thermally hydrolyzed solids Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 5 p. T2 - WEFTEC.17, 30 September 4 October 2017,  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151113 Serial 8579  
Permanent link to this record
 

 
Author (down) Zhang, Q.; Higgins, M.J.; Vlaeminck, S.E.; DeBarbadillo, C.; Suzuki, R.; Kharkar, S.M.; Al-Omari, A.; Wett, B.; Chandran, K.; Murthy, S.; De Clippeleir, H. openurl 
  Title Minimizing recalcitrant organics and maximizing nitrogen removal linked to advanced biosolids processing at Blue Plains WWTP Type P3 Proceeding
  Year 2017 Publication Abbreviated Journal  
  Volume Issue Pages 12 p. T2 - IWA 2017 Conference on Sustainable Wast  
  Keywords P3 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151107 Serial 8252  
Permanent link to this record
 

 
Author (down) Zhang, M.-L.; March, N.H.; Peeters, A.; van Alsenoy, C.; Howard, I.; Lamoen, D.; Leys, F. doi  openurl
  Title Loss rate of a plasticizer in a nylon matrix calculated using macroscopic reaction-diffusion kinetics Type A1 Journal article
  Year 2003 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys  
  Volume 93 Issue Pages 1525-1532  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000180630200031 Publication Date 2003-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 2.068 Times cited Open Access  
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171  
  Call Number UA @ lucian @ c:irua:41405 Serial 1844  
Permanent link to this record
 

 
Author (down) Zhang, L.; Zhang, Y.-Y.; Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P. url  doi
openurl 
  Title Skyrmionic chains and lattices in s plus id superconductors Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 6 Pages 064501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report characteristic vortex configurations in s + id superconductors with time-reversal symmetry breaking, exposed to magnetic field. A vortex in the s + id state tends to have an opposite phase winding between s- and d-wave condensates. We find that this peculiar feature together with the competition between s- and d-wave symmetry results in three distinct classes of vortical configurations. When either s or d condensate absolutely dominates, vortices form a conventional lattice. However, when one condensate is relatively dominant, vortices organize in chains that exhibit skyrmionic character, separating the chiral components of the s +/- id order parameter into domains within and outside the chain. Such skyrmionic chains are found stable even at high magnetic field. When s and d condensates have comparable strength, vortices split cores in two chiral components to form full-fledged skyrmions, i.e., coreless topological structures with an integer topological charge, organized in a lattice. We provide characteristic magnetic field distributions of all states, enabling their identification in, e.g., scanning Hall probe and scanning SQUID experiments. These unique vortex states are relevant for high-T-c cuprate and iron-based superconductors, where the relative strength of competing pairing symmetries is expected to be tuned by temperature and/or doping level, and can help distinguish s + is and s + id superconducting phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510745600005 Publication Date 2020-02-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 7 Open Access  
  Notes ; The authors acknowledge useful discussions with Yong-Ping Zhang. This research was supported by the National Natural Science Foundation of China under Grants No. 61571277 and No. 61771298. L.-F.Z. and M.V.M. acknowledge support from Research Foundation-Flanders (FWO-Vlaanderen). ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:166507 Serial 6605  
Permanent link to this record
 

 
Author (down) Zhang, L.; Quinn, B.K.; Hui, C.; Lian, M.; Gielis, J.; Gao, J.; Shi, P. url  doi
openurl 
  Title New indices to balance α-diversity against tree size inequality Type A1 Journal article
  Year 2024 Publication Journal of forestry research Abbreviated Journal  
  Volume 35 Issue 1 Pages 31-39  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The number and composition of species in a community can be quantified with alpha-diversity indices, including species richness (R), Simpson's index (D), and the Shannon-Wiener index (HGREEK TONOS). In forest communities, there are large variations in tree size among species and individuals of the same species, which result in differences in ecological processes and ecosystem functions. However, tree size inequality (TSI) has been largely neglected in studies using the available diversity indices. The TSI in the diameter at breast height (DBH) data for each of 999 20 m x 20 m forest census quadrats was quantified using the Gini index (GI), a measure of the inequality of size distribution. The generalized performance equation was used to describe the rotated and right-shifted Lorenz curve of the cumulative proportion of DBH and the cumulative proportion of number of trees per quadrat. We also examined the relationships of alpha-diversity indices with the GI using correlation tests. The generalized performance equation effectively described the rotated and right-shifted Lorenz curve of DBH distributions, with most root-mean-square errors (990 out of 999 quadrats) being < 0.0030. There were significant positive correlations between each of three alpha-diversity indices (i.e., R, D, and H') and the GI. Nevertheless, the total abundance of trees in each quadrat did not significantly influence the GI. This means that the TSI increased with increasing species diversity. Thus, two new indices are proposed that can balance alpha-diversity against the extent of TSI in the community: (1 – GI) x D, and (1 – GI) x H'. These new indices were significantly correlated with the original D and HGREEK TONOS, and did not increase the extent of variation within each group of indices. This study presents a useful tool for quantifying both species diversity and the variation in tree sizes in forest communities, especially in the face of cumulative species loss under global climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001131698000001 Publication Date 2023-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1007-662x; 1993-0607 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3; 2024 IF: 0.774  
  Call Number UA @ admin @ c:irua:201972 Serial 9061  
Permanent link to this record
 

 
Author (down) Zhang, L.; Lin, B.-C.; Wu, Y.-F.; Wu, H.; Huang, T.-W.; Chang, C.-R.; Ke, X.; Kurttepeli, M.; Tendeloo, G.V.; Xu, J.; Yu, D.; Liao, Z.-M. url  doi
openurl 
  Title Electronic Coupling between Graphene and Topological Insulator Induced Anomalous Magnetotransport Properties Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 11 Pages 6277-6285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It has been theoretically proposed that the spin textures of surface states in a topological insulator can be directly transferred to graphene by means of the proximity effect, which is very important for realizing the two-dimensional topological insulator based on graphene. Here we report the anomalous magnetotransport properties of graphene-topological insulator Bi2Se3 heterojunctions, which are sensitive to the electronic coupling between graphene and the topological surface state. The coupling between the p_z orbitals of graphene and the p orbitals of the surface states on the Bi2Se3 bottom surface can be enhanced by applying a perpendicular negative magnetic field, resulting in a giant negative magnetoresistance at the Dirac point up to about -91%. Obvious resistances dip in the transfer curve at the Dirac point is also observed in the hybrid devices, which is consistent with theoretical predictions of the distorted Dirac bands with nontrivial spin textures inherited from the Bi2Se3 surface states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000404808000110 Publication Date 2017-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 12 Open Access OpenAccess  
  Notes ; This work was supported by National Key Research and Development Program of China (Nos. 2016YFA0300802, 2013CB934600) and NSFC (No. 11234001). ; Approved Most recent IF: 13.942  
  Call Number EMAT @ emat @ c:irua:143192 Serial 4569  
Permanent link to this record
 

 
Author (down) Zhang, L.; Heijkers, S.; Wang, W.; Martini, L.M.; Tosi, P.; Yang, D.; Fang, Z.; Bogaerts, A. pdf  url
doi  openurl
  Title Dry reforming of methane in a nanosecond repetitively pulsed discharge: chemical kinetics modeling Type A1 Journal article
  Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 31 Issue 5 Pages 055014  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanosecond pulsed discharge plasma shows a high degree of non-equilibrium, and exhibits relatively high conversions in the dry reforming of methane. To further improve the application, a good insight of the underlying mechanisms is desired. We developed a chemical kinetics model to explore the underlying plasma chemistry in nanosecond pulsed discharge. We compared the calculated conversions and product selectivities with experimental results, and found reasonable agreement in a wide range of specific energy input. Hence, the chemical kinetics model is able to provide insight in the underlying plasma chemistry. The modeling results predict that the most important dissociation reaction of CO<sub>2</sub>and CH<sub>4</sub>is electron impact dissociation. C<sub>2</sub>H<sub>2</sub>is the most abundant hydrocarbon product, and it is mainly formed upon reaction of two CH<sub>2</sub>radicals. Furthermore, the vibrational excitation levels of CO<sub>2</sub>contribute for 85% to the total dissociation of CO<sub>2</sub>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000797660000001 Publication Date 2022-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes China Scholarship Council; National Natural Science Foundation of China, 11965018 ; This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077026, 11965018), L Zhang was also supported by the China Scholarship Council (CSC). Data availability statement The data that support the findings of this study are available upon reasonable request from the authors. Approved Most recent IF: 3.8  
  Call Number PLASMANT @ plasmant @c:irua:188537 Serial 7069  
Permanent link to this record
 

 
Author (down) Zhang, L.; Fernández Becerra, V.; Covaci, L.; Milošević, M.V. url  doi
openurl 
  Title Electronic properties of emergent topological defects in chiral p-wave superconductivity Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 024520  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Chiral p-wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the relative OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented nonsuperconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000381479500002 Publication Date 2016-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:135742 Serial 4303  
Permanent link to this record
 

 
Author (down) Zhang, L.; Batuk, D.; Chen, G.; Tarascon, J.-M. pdf  url
doi  openurl
  Title Electrochemically activated MnO as a cathode material for sodium-ion batteries Type A1 Journal article
  Year 2017 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun  
  Volume 77 Issue Pages 81-84  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Besides classical electrode materials pertaining to Li-ion batteries, recent interest has been devoted to pairs of active redox composites having a redox center and an intercalant source. Taking advantage of the NaPFG salt decomposition above 4.2 V. we extrapolate this concept to the electrochemical in situ preparation of F-based MnO composite electrodes for Na-ion batteries. Such electrodes exhibit a reversible discharge capacity of 145 mAh g(-1) at room temperature. The amorphization of pristine MnO electrode after activation is attributed to the electrochemical grinding effect caused by substantial atomic migration and lattice strain build-up upon cycling. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000399510400019 Publication Date 2017-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.396 Times cited 8 Open Access OpenAccess  
  Notes ; This work was partially supported by the Hong Kong Research Grants Council under the General Research Fund Project #611213. L.Z. thanks the HKUST for his Postgraduate Studentship. ; Approved Most recent IF: 4.396  
  Call Number UA @ lucian @ c:irua:143648 Serial 4650  
Permanent link to this record
 

 
Author (down) Zhang, L.-F.; Flammia, L.; Covaci, L.; Perali, A.; Milošević, M.V. url  doi
openurl 
  Title Multifaceted impact of a surface step on superconductivity in atomically thin films Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 10 Pages 104509  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent experiments show that an atomic step on the surface of atomically thin metallic films can strongly affect electronic transport. Here we reveal multiple and versatile effects that such a surface step can have on superconductivity in ultrathin films. By solving the Bogoliubov-de Gennes equations self-consistently in this regime, where quantum confinement dominates the emergent physics, we show that the electronic structure is profoundly modified on the two sides of the step, as is the spatial distribution of the superconducting order parameter and its dependence on temperature and electronic gating. Furthermore, the surface step changes nontrivially the transport properties both in the proximity-induced superconducting pair correlations and the Josephson effect, depending on the step height. These results offer a new route to tailor superconducting circuits and design atomically thin heterojunctions made of one same material.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000411076000012 Publication Date 2017-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF project) and the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:146750 Serial 4790  
Permanent link to this record
 

 
Author (down) Zhang, L.-F.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Tomasch effect in nanoscale superconductors Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 024508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Tomasch effect (TE) is due to quasiparticle interference (QPI) as induced by a nonuniform superconducting order parameter, which results in oscillations in the density of states (DOS) at energies above the superconducting gap. Quantum confinement in nanoscale superconductors leads to an inhomogenerous distribution of the Cooperpair condensate, which, as we found, triggers the manifestation of a new TE. We investigate the electronic structure of nanoscale superconductors by solving the Bogoliubov-de Gennes (BdG) equations self-consistently and describe the TE determined by two types of processes, involving two-or three-subband QPIs. Both types of QPIs result in additional BCS-like Bogoliubov-quasiparticles and BCS-like energy gaps leading to oscillations in the DOS and modulated wave patterns in the local density of states. These effects are strongly related to the symmetries of the system. A reduced 4 x 4 inter-subband BdG Hamiltonian is established in order to describe analytically the TE of two-subband QPIs. Our study is relevant to nanoscale superconductors, either nanowires or thin films, Bose-Einsten condensates, and confined systems such as two-dimensional electron gas interface superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000348473700003 Publication Date 2015-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number c:irua:123864 Serial 3670  
Permanent link to this record
 

 
Author (down) Zhang, L.-F.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Position-dependent effect of non-magnetic impurities on superconducting properties of nanowires Type A1 Journal article
  Year 2015 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 109 Issue 109 Pages 17010  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Anderson's theorem states that non-magnetic impurities do not change the bulk properties of conventional superconductors. However, as the dimensionality is reduced, the effect of impurities becomes more significant. Here we investigate superconducting nanowires with diameter comparable to the Fermi wavelength $\lambda_F$ (which is less than the superconducting coherence length) by using a microscopic description based on the Bogoliubov-de Gennes method. We find that: 1) impurities strongly affect the superconducting properties, 2) the effect is impurity position dependent, and 3) it exhibits opposite behavior for resonant and off-resonant wire widths. We show that this is due to the interplay between the shape resonances of the order parameter and the subband energy spectrum induced by the lateral quantum confinement. These effects can be used to manipulate the Josephson current, filter electrons by subband and investigate the symmetries of the superconducting subband gaps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000348592100029 Publication Date 2015-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 7 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 1.957; 2015 IF: 2.095  
  Call Number UA @ lucian @ c:irua:128424 Serial 4227  
Permanent link to this record
 

 
Author (down) Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 10 Pages 107001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308295700014 Publication Date 2012-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:101850 Serial 3801  
Permanent link to this record
 

 
Author (down) Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 14 Pages 144501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000325498300004 Publication Date 2013-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:111145 Serial 3891  
Permanent link to this record
 

 
Author (down) Zhang, L.-F.; Covaci, L.; Milošević, M.V. url  doi
openurl 
  Title Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 96 Issue 22 Pages 224512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000418653500012 Publication Date 2017-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:148504 Serial 4901  
Permanent link to this record
 

 
Author (down) Zhang, H.Y.; Xiao, Y.M.; N. Li, Q.; Ding, L.; Van Duppen, B.; Xu, W.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic and tunable optical conductivity of a two-dimensional semi-Dirac system in the presence of elliptically polarized radiation Type A1 Journal article
  Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 105 Issue 11 Pages 115423-115429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effect of ellipticity ratio of the polarized radiation field on optoelectronic properties of a two-dimensional (2D) semi-Dirac (SD) system. The optical conductivity is calculated within the energy balance equation approach derived from the semiclassical Boltzmann equation. We find that there exists the anisotropic optical absorption induced via both the intra-and interband electronic transition channels in the perpendicular xx and yy directions. Furthermore, we examine the effects of the ellipticity ratio, the temperature, the carrier density, and the band-gap parameter on the optical conductivity of the 2D SD system placed in transverse and vertical directions, respectively. It is shown that the ellipticity ratio, temperature, carrier density, and band-gap parameter can play the important roles in tuning the strength, peak position, and shape of the optical conductivity spectrum. The results obtained from this study indicate that the 2D SD system can be a promising anisotropic and tunable optical and optoelectronic material for applications in innovative 2D optical and optoelectronic devices, which are active in the infrared and terahertz bandwidths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000802810700002 Publication Date 2022-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 3 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:188660 Serial 7125  
Permanent link to this record
 

 
Author (down) Zhang, H.; Yang, J.-H.; Shpanchenko, R.V.; Abakumov, A.M.; Hadermann, J.; Clérac, R.; Dikarev, E.V. doi  openurl
  Title New class of single-source precursors for the synthesis of main group-transition metal oxides: heterobimetallic Pb-Mn \beta-diketonates Type A1 Journal article
  Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 48 Issue 17 Pages 8480-8488  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Heterometallic lead−manganese â-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn2(hfac)6 (1) and PbMn(hfac)4 (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)3] units, while 2 consists of infinite chains of alternating [Pb(hfac)2] and [Mn(hfac)2] fragments. The heterometallic structures are held together by strong Lewis acid−base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb−Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500−800 °C. The phase that has been previously reported as Pb0.43MnO2.18 was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead−manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000269313500056 Publication Date 2009-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 28 Open Access  
  Notes Approved Most recent IF: 4.857; 2009 IF: 4.657  
  Call Number UA @ lucian @ c:irua:78486 Serial 2308  
Permanent link to this record
 

 
Author (down) Zhang, H.; Wang, W.; Li, X.; Han, L.; Yan, M.; Zhong, Y.; Tu, X. pdf  url
doi  openurl
  Title Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma : a chemical kinetics study Type A1 Journal article
  Year 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 345 Issue 345 Pages 67-78  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a chemical kinetics study on methane activation for hydrogen production in a warm plasma, i.e., N-2 rotating gliding arc (RGA), was performed for the first time to get new insights into the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was developed, which showed a good agreement with the experimental results in terms of the conversion of CH4 and product selectivities, allowing us to get a better understanding of the relative significance of various important species and their related reactions to the formation and loss of CH4, H-2, and C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma chemistry. The results reveal that the electrons and excited nitrogen species (mainly N-2(A)) play a dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4+ H -> CH3+ H-2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the major contributor to both the conversion of CH4 and H-2 production, with its relative contributions of > 90% and > 85%, respectively, when only considering the forward reactions. The coexistence and interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm plasma significantly enhance the process performance. The formation of C-2 hydrocarbons follows a nearly one-way path of C2H6 -> C2H4 -> C2H2, explaining why the selectivities of C-2 products decreased in the order of C2H2 > C2H4 > C2H6.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Sequoia Place of Publication Lausanne Editor  
  Language Wos 000430696500008 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 25 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ lucian @ c:irua:151450 Serial 5036  
Permanent link to this record
 

 
Author (down) Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Naert, I.; Vleugels, J. doi  openurl
  Title 3Y-TZP ceramics with improved hydrothermal degradation resistance and fracture toughness Type A1 Journal article
  Year 2014 Publication Journal of the European Ceramic Society Abbreviated Journal J Eur Ceram Soc  
  Volume 34 Issue 10 Pages 2453-2463  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Different factors such as the way of incorporating the Y2O3 stabilizer, alumina addition and sintering temperature were assessed with the goal to improve the low temperature degradation (LTD) resistance of 3Y-TZP without compromising on the mechanical properties. The degradation of hydrothermally treated specimens was studied by X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy. Decreasing the sintering temperature decreased the LTD susceptibility of 3Y-TZPs but did not allow to obtain a LTD resistant 3Y-TZP with optimized mechanical properties. Alumina addition along with the use of Y2O3 stabilizer coated starting powder allowed to combine both an excellent toughness and LTD resistance, as compared to alumina-free and stabilizer co-precipitated powder based equivalents. Transmission electron microscopy revealed that the improved LTD resistance could be attributed to the segregation of Al3+ at the grain boundary and the heterogeneously distributed Y3+ stabilizer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barking Editor  
  Language Wos 000336352500033 Publication Date 2014-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0955-2219; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 48 Open Access  
  Notes Fwo G.0431.10n Approved Most recent IF: 3.411; 2014 IF: 2.947  
  Call Number UA @ lucian @ c:irua:117065 c:irua:117065 Serial 11  
Permanent link to this record
 

 
Author (down) Zhang, F.; Vanmeensel, K.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Naert, I.; Vleugels, J. pdf  doi
openurl 
  Title Critical influence of alumina content on the low temperature degradation of 2-3 mol% yttria-stabilized TZP for dental restorations Type A1 Journal article
  Year 2015 Publication Journal of the European Ceramic Society Abbreviated Journal J Eur Ceram Soc  
  Volume 35 Issue 35 Pages 741-750  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The influence of 0.25, 2 and 5 wt.% alumina addition on the mechanical properties and low temperature degradation (LTD) of 3, 2.5 and 2 mol% yttria-stabilized TZP ceramics was investigated. The amount of alumina addition was observed to have a crucial impact on the degradation of Y-TZP ceramics. Independent on the yttria stabilizer content, 0.25 wt.% alumina had a higher degradation retarding effect to Y-TZP ceramics than 2 and 5 wt.% of alumina addition, which had a comparable effect. The apparent activation energy for the degradation process was increased by adding alumina, but it was the same for 0.255 wt.% alumina doped 3Y-TZP ceramics. For Y-TZPs containing a small amount of alumina addition, only the segregated Al3+ at the grain boundaries of the zirconia grains was effective to retard the degradation of Y-TZPs. The secondary phase Al2O3 grains increased the degradation kinetics, which might be attributed to the residual stresses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Barking Editor  
  Language Wos 000345201700032 Publication Date 2014-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0955-2219; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 37 Open Access  
  Notes Fwo G043110n Approved Most recent IF: 3.411; 2015 IF: 2.947  
  Call Number c:irua:121328 Serial 544  
Permanent link to this record
 

 
Author (down) Zhang, F.; Vanmeensel, K.; Batuk, M.; Hadermann, J.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J. pdf  url
doi  openurl
  Title Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation Type A1 Journal article
  Year 2015 Publication Acta biomaterialia Abbreviated Journal Acta Biomater  
  Volume 16 Issue 16 Pages 215-222  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Latest trends in dental restorative ceramics involve the development of full-contour 3Y-TZP ceramics which can avoid chipping of veneering porcelains. Among the challenges are the low translucency and the hydrothermal stability of 3Y-TZP ceramics. In this work, different trivalent oxides (Al2O3, Sc2O3, Nd2O3 and La2O3) were selected to dope 3Y-TZP ceramics. Results show that dopant segregation was a key factor to design hydrothermally stable and high-translucent 3Y-TZP ceramics and the cation dopant radius could be used as a controlling parameter. A large trivalent dopant, oversized as compared to Zr4+, exhibiting strong segregation at the ZrO2 grain boundary was preferred. The introduction of 0.2 mol% La2O3 in conventional 0.10.25 wt.% Al2O3-doped 3Y-TZP resulted in an excellent combination of high translucency and superior hydrothermal stability, while retaining excellent mechanical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000351978600021 Publication Date 2015-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-7061; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 54 Open Access  
  Notes Fwo G043110n Approved Most recent IF: 6.319; 2015 IF: 6.025  
  Call Number c:irua:124421 Serial 1473  
Permanent link to this record
 

 
Author (down) Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental Materials Abbreviated Journal Dent Mater  
  Volume 32 Issue 32 Pages e327-e337  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract OBJECTIVE: The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. METHODS: Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n=6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n=10), single edge V-notched beam (SEVNB) fracture toughness (n=8) and Vickers hardness (n=10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n=3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha=0.05). RESULTS: Lowering the alumina content below 0.25wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. SIGNIFICANCE: Three different approaches were compared to improve the translucency of 3Y-TZP ceramics.  
  Address KU Leuven, Department of Materials Engineering, Kasteelpark Arenberg 44, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000389516400003 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.07 Times cited Open Access  
  Notes The authors acknowledge the Research Fund of KU Leu- ven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post- doctoral fellowship (PDM/15/153). We thank M. Peumans for the translucency measurements. Approved Most recent IF: 4.07  
  Call Number EMAT @ emat @ c:irua:136821 Serial 4313  
Permanent link to this record
 

 
Author (down) Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental materials Abbreviated Journal Dent Mater  
  Volume 32 Issue 12 Pages E327-E337  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Copenhagen Editor  
  Language Wos 000389516400003 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.07 Times cited 47 Open Access  
  Notes Approved Most recent IF: 4.07  
  Call Number UA @ lucian @ c:irua:140246 Serial 4447  
Permanent link to this record
 

 
Author (down) Zhang, F.; Chevalier, J.; Olagnon, C.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Grain-boundary engineering for aging and slow-crack-growth resistant zirconia Type A1 Journal article
  Year 2017 Publication Journal of dental research Abbreviated Journal J Dent Res  
  Volume 96 Issue 7 Pages 774-779  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La2O3) and aluminum oxide (Al2O3) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La2O3 and Al2O3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication St. Louis, Mo. Editor  
  Language Wos 000403934500010 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.755 Times cited 3 Open Access Not_Open_Access  
  Notes ; This research was supported by the Research Fund of KU Leuven under project 0T/ 10/052 and the Research Foundation-Flanders (FWO-Vlaanderen) under grant G.0431.10N. We thank J.W. Seo for TEM and sample preparations. F. Zhang thanks the Research Fund of KU Leuven for her postdoctoral fellowship (PDM/15/153) and the JECS-Trust for the travel grant (No. 201599) to perform double-torsion testing in the MATEIS lab of INSA, Lyon, France. Jerome Chevalier would like to dedicate this paper to Maria Cattani Lorente, who recently passed away under tragic conditions. She was deeply involved in the study of dental zirconia and we will miss her. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. ; Approved Most recent IF: 4.755  
  Call Number UA @ lucian @ c:irua:144161 Serial 4660  
Permanent link to this record
 

 
Author (down) Zhang, F.; Batuk, M.; Hadermann, J.; Manfredi, G.; Mariën, A.; Vanmeensel, K.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J. pdf  doi
openurl 
  Title Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilation Type A1 Journal article
  Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 106 Issue 106 Pages 48-58  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The hydrothermal aging stability of 3Y-TZP-xM2O3 (M = La, Nd, Sc) was investigated as a function of 0.02–5 mol% M2O3 dopant content and correlated to the overall phase content, t-ZrO2 lattice parameters, grain size distribution, grain boundary chemistry and ionic conductivity.

The increased aging stability with increasing Sc2O3 content and the optimum content of 0.4–0.6 mol% Nd2O3 or 0.2–0.4 mol% La2O3, resulting in the highest aging resistance, could be directly related to the constituent phases and the lattice parameters of the remaining tetragonal zirconia.

At low M2O3 dopant contents ≤0.4 mol%, the different aging behavior of tetragonal zirconia was attributed to the defect structure of the zirconia grain boundary which was influenced by the dopant cation radius. It was observed that the grain boundary ionic resistivity and the aging resistance followed the same trend: La3+ > Nd3+ > Al3+ > Sc3+, proving that hydrothermal aging is driven by the diffusion of water-derived mobile species through the oxygen vacancies. Accordingly, we elucidated the underlying mechanism by which a larger trivalent cation segregating at the zirconia grain boundary resulted in a higher aging resistance.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371650300006 Publication Date 2016-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 37 Open Access  
  Notes The authors acknowledge the Research Fund of KU Leuven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post-doctoral fellowship (PDM/15/153). Approved Most recent IF: 5.301  
  Call Number c:irua:132435 Serial 4076  
Permanent link to this record
 

 
Author (down) Zhang, C.; Ren, K.; Wang, S.; Luo, Y.; Tang, W.; Sun, M. pdf  doi
openurl 
  Title Recent progress on two-dimensional van der Waals heterostructures for photocatalytic water splitting : a selective review Type A1 Journal article
  Year 2023 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 56 Issue 48 Pages 483001-483024  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hydrogen production through photocatalytic water splitting is being developed swiftly to address the ongoing energy crisis. Over the past decade, with the rise of graphene and other two-dimensional (2D) materials, an increasing number of computational and experimental studies have focused on relevant van der Waals (vdW) semiconductor heterostructures for photocatalytic water splitting. In this review, the fundamental mechanism and distinctive performance of type-II and Z-scheme vdW heterostructure photocatalysts are presented. Accordingly, we have conducted a systematic review of recent studies focusing on candidates for photocatalysts, specifically vdW heterostructures involving 2D transition metal disulfides (TMDs), 2D Janus TMDs, and phosphorenes. The photocatalytic performance of these heterostructures and their suitability in theoretical scenarios are discussed based on their electronic and optoelectronic properties, particularly in terms of band structures, photoexcited carrier dynamics, and light absorption. In addition, various approaches for tuning the performance of these potential photocatalysts are illustrated. This strategic framework for constructing and modulating 2D heterostructure photocatalysts is expected to provide inspiration for addressing possible challenges in future studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001076327300001 Publication Date 2023-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2023 IF: 2.588  
  Call Number UA @ admin @ c:irua:200353 Serial 9081  
Permanent link to this record
 

 
Author (down) Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A.M.; Tarascon, J.-M. url  doi
openurl 
  Title Insertion compounds and composites made by ball milling for advanced sodium-ion batteries Type A1 Journal article
  Year 2016 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 7 Issue 7 Pages 10308  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Sodium-ion batteries have been considered as potential candidates for stationary energy storage because of the low cost and wide availability of Na sources. However, their future commercialization depends critically on control over the solid electrolyte interface formation, as well as the degree of sodiation at the positive electrode. Here we report an easily scalable ball milling approach, which relies on the use of metallic sodium, to prepare a variety of sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium in excess such as the Na4V2(PO4)(2)F-3 phase. The practical benefits of preparing sodium-enriched positive electrodes as reservoirs to compensate for sodium loss during solid electrolyte interphase formation are demonstrated by assembling full C/P'2-Na-1[Fe0.5Mn0.5]O-2 and C/'Na3+xV2(PO4)(2)F-3' sodium-ion cells that show substantial increases (>10%) in energy storage density. Our findings may offer electrode design principles for accelerating the development of the sodium-ion technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000369021400002 Publication Date 2016-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 104 Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:131599 Serial 4197  
Permanent link to this record
 

 
Author (down) Zhang, B.; Deschamps, M.; Ammar, M.-R.; Raymundo-Pinero, E.; Hennet, L.; Batuk, D.; Tarascon, J.-M. pdf  doi
openurl 
  Title Laser synthesis of hard carbon for anodes in Na-ion battery Type A1 Journal article
  Year 2017 Publication Advanced Materials Technologies Abbreviated Journal  
  Volume 2 Issue 3 Pages 1600227  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000398999900003 Publication Date 2016-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2365-709x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access Not_Open_Access  
  Notes ; The RS2E (Reseau sur le StockageElectrochimique de l'Energie) network is acknowledged for the financial support of this work through the ANR project Storex (ANR-10-LABX-76-01). J.-M.T acknowledges funding from the European Research Council (ERC) (FP/2014-2020)/ERC GrantProject 670116-ARPEMA. ; Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:142452 Serial 4666  
Permanent link to this record
 

 
Author (down) Zha, G.-Q.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Vortex-antivortex dynamics in mesoscopic symmetric and asymmetric superconducting loops with an applied ac current Type A1 Journal article
  Year 2014 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 108 Issue 5 Pages 57001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the framework of the time-dependent Ginzburg-Landau formalism, we study the dynamics of vortex-antivortex (V-Av) pairs in mesoscopic symmetric and asymmetric superconducting loops under an applied ac current. In contrast to the case of a constant biasing dc current, the process of the V-Av collision and annihilation is strongly affected by the time-periodic ac signal. As the direction of the applied ac current is reversed, the existed V-Av pair moves backward and then collides with a new created Av-V pair in a symmetric loop. In the presence of an appropriate external magnetic field, a novel sinusoidal-like oscillatory mode of the magnetization curve is observed, and the periodic dynamical process of the V-Av annihilation occurs in both branches of the sample. Moreover, for the asymmetric sample with an off-centered hole the creation point of the V-Av pair shifts away from the center of the sample, and the creation and annihilation dynamics of V-Av pairs turns out to be very different from the symmetric case. Copyright (C) EPLA, 2014  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000346792400027 Publication Date 2014-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 4 Open Access  
  Notes ; We are grateful to GOLIBJON BERDIYOROV for useful discussions. This work was supported by NSF China under Grant Nos. 61371020 and 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2014 IF: 2.095  
  Call Number UA @ lucian @ c:irua:122800 Serial 3851  
Permanent link to this record
 

 
Author (down) Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.; Peeters, F.M. url  doi
openurl 
  Title Influence of impurities and surface defects on the flux-induced current in mesoscopic d-wave superconducting loops Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 13 Pages 132501-132501,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigated the magnetic flux dependence of the supercurrent in mesoscopic d-wave superconducting loops, containing impurities and surface defects, by numerically solving the Bogoliubovde Gennes equations self-consistently. In the presence of impurities, bound states arise close to the Fermi energy. In the case of a single impurity, the flux-induced current is found to be suppressed. This can be different when more impurities are introduced in the sample due to the quantum interference effect, which depends sensitively on the relative position between the impurities. We further analyze the effect of small surface defects at the inner or outer edge of the loop, and show that indentation and bulge defects have pronounced and different effects on the supercurrent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000295713600002 Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by Belgian Science Policy (IAP), by National Science Foundation of China (Grant Nos. 10904089 and 60971053), and by research funds under Grant Nos. 20093108120005, S30105, 09JC1406000, and 10zz63. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92811 Serial 1623  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: