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We report characteristic vortex configurations in s + id superconductors with time-reversal symmetry break-
ing, exposed to magnetic field. A vortex in the s + id state tends to have an opposite phase winding between
s- and d-wave condensates. We find that this peculiar feature together with the competition between s- and
d-wave symmetry results in three distinct classes of vortical configurations. When either s or d condensate
absolutely dominates, vortices form a conventional lattice. However, when one condensate is relatively dominant,
vortices organize in chains that exhibit skyrmionic character, separating the chiral components of the s ± id
order parameter into domains within and outside the chain. Such skyrmionic chains are found stable even at
high magnetic field. When s and d condensates have comparable strength, vortices split cores in two chiral
components to form full-fledged skyrmions, i.e., coreless topological structures with an integer topological
charge, organized in a lattice. We provide characteristic magnetic field distributions of all states, enabling their
identification in, e.g., scanning Hall probe and scanning SQUID experiments. These unique vortex states are
relevant for high-Tc cuprate and iron-based superconductors, where the relative strength of competing pairing
symmetries is expected to be tuned by temperature and/or doping level, and can help distinguish s + is and
s + id superconducting phases.
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I. INTRODUCTION

Over the years there has been large experimental and
theoretical interest in superconducting states that exhibit time-
reversal symmetry breaking (TRSB). Such states can appear
in superconductors with two or more coupled condensates
when the phase differences between condensates are neither 0
nor π in the ground state, and often host novel features [1]. For
example, the TRSB px + ipy and dx2−y2 + idxy states are topo-
logically nontrivial, allowing for characteristic edge states and
hosting Majorana zero modes for topological quantum com-
puting [2]. The px + ipy state has been proposed for layered
ruthenate superconductor Sr2RuO4 [3,4], and the dx2−y2 + idxy

state for hexagonal systems in, e.g., doped graphene [5,6] and
SrPtAs [7].

Superconductors with TRSB often exhibit rich and novel
phenomena associated with topological defects [8,9]. Being
multicomponent as a rule, such superconductors can sup-
port nonmonotonic interactions between vortices, leading to
nonuniform vortex patterns [10–12]. Leggett mode and phase
solitons can arise as topological defects associated with non-
trivial phase difference between different components [13,14].
Furthermore, in the state with TRSB, domain walls may
separate areas with different TRSB ground states [15–17].
A closed domain wall of such kind with attached vortices
exhibits nonzero, integer topological charge, defining such
a topological defect as a skyrmion [18,19]. Skyrmions have
been studied to date in p + ip state [19–23], s + is state [24],
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and in nematic superconductors [25]. Such skyrmion was first
identified as a coreless vortex in superfluid 3He-A [26]. It is
also often referred to as a Mermin-Ho [27,28] or Anderson-
Toulouse vortices [29] in Bose-Einstein condensates [30–39].

Over the last decade, the immense interest in iron-based
superconductors has stimulated extensive studies on the s + is
and s + id superconducting phases with TRSB [40–43]. The
majority of researchers believe that most moderately doped
iron-based superconductors possess an s± pairing symmetry
due to strong interaction between electron and hole Fermi
pockets [44,45]. For example, the Ba1−xKxFe2As2 favors the
s± state at x = 0.4, where the superconducting gap changes
sign between electron and hole pockets, consistent with
ARPES [46], thermal conductivity [47], and neutron scat-
tering experiments [48]. However, further potassium doping
results in topological changes in the Fermi surface, where
the electron pockets disappear and additional hole pockets
appear [49]. Theorists have suggested another s± pairing or
a d-wave pairing in that case. Therefore, one expects an
intermediate s + is [50,51] or s + id state [52] at some doping
level between x = 0.4 and 1, and the competition between the
two different pairing symmetries depends on the doping level.
Recently, a TRSB state was found in the Ba1−xKxFe2As2

at x ≈ 0.75 [53], which is consistent with the theoretical
argument.

To distinguish between s + is and s + id states in real
materials, great efforts have been made on understanding
their superconducting properties. Spontaneous magnetization
near an impurity site has been studied in detail for both
states [42,51,52]. Thermoelectric effect was found to be un-
conventional in the s + is state [54,55]. In particular, topologi-
cal defects such as vortices, domain walls, and skyrmions have

2469-9950/2020/101(6)/064501(13) 064501-1 ©2020 American Physical Society

https://orcid.org/0000-0002-3826-3493
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.064501&domain=pdf&date_stamp=2020-02-03
https://doi.org/10.1103/PhysRevB.101.064501


LING-FENG ZHANG et al. PHYSICAL REVIEW B 101, 064501 (2020)

FIG. 1. Solid lines show the homogeneous Cooper-pair density
of the s and d condensates, |ψs|2 and |ψd |2, as a function of
their relative strength αs, in absence of magnetic field. α′

s = 2/3
and α′′

s = 1 are the critical values for which |ψs| and |ψd | vanish,
respectively. At α∗

s = 6/7, |ψd | = |ψs|. Depending on the relative
amplitude |ψd/ψs|, i.e., αs, the s + id state under magnetic field
can exhibit vortex lattice, skyrmionic chains, or skyrmionic lattices
(depicted by different colors and transitions between them).

been studied for the s + is state under magnetic field [16]. The
corresponding study for the s + id state is lacking, and that is
the primary objective of this paper.

To date, only single vortex and vortex lattice solutions have
been studied in the mixed s- and d-wave superconducting
states, i.e., s + d state [56–58] and s + id state [59]. Based
on symmetry considerations, when the d-wave component
is dominant, the s-wave component is known to have an
opposite phase winding relative to the d-wave component near
a vortex in the s + d state [60]. As we will show, partially due
to the latter feature, the TRSB s + id state under magnetic
field can exhibit rich and unique phenomena associated with
vortex matter, domain walls and skyrmions. In particular,
we study the vortical configurations under different levels of
competition between participating condensates. We find that
when the s + id state is changed from a d-wave dominant
state to an s-wave dominant state (induced by, e.g., changing
temperature or doping level in iron-based superconductors),
the system can host three distinct classes of vortex matter,
as seen from Fig. 1, namely, the vortex lattice, skyrmionic
vortex chains, and skyrmionic lattices. For each of the classes
their characteristic magnetic field distributions enable ex-
perimental identification, in, e.g., scanning Hall probe and
scanning SQUID microscopy. In particular, we identify that
the competing orders between different symmetries in the
s + id state result in the skyrmionic vortex chain that has
no analogy in the p + ip and s + is state, being important
for distinguishing the s + id state from the s + is state in
unconventional superconductors.

The paper is organized as follows. In Sec. II, we in-
troduce the mixed s- and d-wave Ginzburg-Landau formal-
ism that is used in the simulations of vortex configurations.
In Sec. III, we discuss the ground-state properties as the
competition between two condensates is varied. Then, in
Secs. III A–III C, we detail the results with respect to the
three distinct classes of vortex matter, found as the result
of the competition of pairing symmetries. The characteristics
of the latter states are then compared to those found in the

s + is state in Sec. IV. Our conclusions are summoned in
Sec. V.

II. THEORETICAL FORMALISM

The dimensionless Ginzburg-Landau (GL) free energy
functional describing the mixed s- and dx2−y2 -wave symmetry
with two order parameters (ψd , ψs) reads [56]

F = 1

�

∫ {
− 2αs|ψs|2 − |ψd |2 + 4

3
|ψs|4 + 1

2
|ψd |4

+ 2|�ψ∗
s |2 + |�ψ∗

d |2 + κ2(∇ × �A)2

+ �∗
xψs�xψ

∗
d − �∗

yψs�yψ
∗
d + c.c.︸ ︷︷ ︸

ζ

+ 8

3
|ψs|2|ψd |2︸ ︷︷ ︸

η

+ 2

3

(
ψ∗2

s ψ2
d + c.c.

)
︸ ︷︷ ︸

δ

}
d�, (1)

where � ≡ i∇ − �A is the momentum operator, � is specimen
volume, and the ζ , η, and δ terms are direct density coupling,
mixed gradient, and Josephson coupling, respectively. The
δ term is associated with the relative phase between both
condensates, and can be rewritten as

2
3

(
ψ∗2

s ψ2
d + c.c.

) = 4
3 |ψs|2|ψd |2cos(2θsd ), (2)

with relative phase θsd = θs − θd . The mixed gradient ζ term
is not symmetric with respect to x and y direction, which plays
a key role in the resulting vortex structure.

Equation (1) contains only two adjustable parameters,
namely, the relative nominal strength of the two condensates
αs in absence of magnetic field, and the GL parameter κ

that controls the magnetic screening of the applied field. αs

may be expressed as a function of temperature T as αs =
ln(Ts/T )/ ln(Td/T ), where Ts and Td are the nominal critical
temperatures of the s-wave and the d-wave superconducting
order, respectively, with Ts ∝ e−1/(N (0)Vs ) and Td ∝ e−1/(N (0)Vd )

[where N (0) is the density of states at the Fermi surface,
and Vs and Vd are the effective attractive interaction strengths
in the s- and d-wave channels, respectively]. Therefore αs

determines the relative strength between the condensates, i.e.,
|ψd |/|ψs|, which can be varied by temperature T and/or Vs

and Vd through variation of the doping level. For Td > Ts,
αs < 1.

The remaining coefficients in Eq. (1) are determined by
taking pairing symmetry of both condensates into account. For
detailed derivation of the GL functional, we refer to Ref. [56].
In Eq. (1), the dimensionless units for the order parame-
ters and all distances are �0 = √

(4/3α) ln(Td/T ) and ξ =
vF

√
α/ ln(Td/T )/2, respectively, where α = 7ζ (3)/(8π2T 2).

The dimensionless unit for vector potential �A is �0/(2πξ )
with �0 = hc/2e being the flux quantum.

Minimizing the free energy, we arrive at the following GL
equations:

− αsψs + 4
3 |ψs|2ψs + 2

3 |ψd |2ψs + 2
3ψ2

d ψ∗
s

+ �∗2
ψs + 1

2

(
�∗

x
2 − �∗

y
2)

ψd = 0, (3)
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− ψd + |ψd |2ψd + 8
3 |ψs|2ψd + 4

3ψ2
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y

2)
ψs = 0, (4)

κ2(∇ × ∇ × �A) = (ψ∗
s �∗ψs + c.c.) + 1

2 (ψ∗
d �∗ψd + c.c.)

+ 1
2 (ψ∗

d �∗
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s �∗
xψd + c.c.)x̂

+ 1
2 (ψ∗

d �∗
yψs + ψ∗

s �∗
yψd + c.c.)ŷ. (5)

These equations are then solved numerically and self-
consistently using gradient descent algorithm, as a two-
dimensional problem with periodic boundary conditions and
with applied perpendicular magnetic field. The boundary con-
ditions impose the constraint of fixing the average magnetic
field H̄ by specifying the integer flux m = �/�0 in the unit
cell. The general expression for periodic conditions on a unit
cell spanned by vectors �t1 and �t2 is [61]

ψs,d (�x + �tk ) = ψs,d (�x) exp(igk (x)),

�A(�x + �tk ) = �A(�x) + ∇(gk (x)),

gk (�x) ≡ ck − 1
2 H̄[(1 + θ )tkyx − (1 − θ )tkxy].

Here, gk (x) is the so-called generation function, and θ and
ck (k = 1, 2) are arbitrary constants. The applied magnetic
field is given by H̄ = 2πm/� with integer m being the
number of the magnetic flux quanta through the simulated unit
cell with area � = |�t1 × �t2|.

Unless specified otherwise, in this paper, we consider a
large unit cell with area � = 1024ξ 2 and calculate on a dense
numerical mesh with grid spacing of 0.1ξ . For convenience,
we define the unit of magnetic field as H0 ≡ 2π/�, so that
the applied field can be expressed as H̄ = mH0. We also take
θ = −1 and c1 = c2 = 0 for simplicity. The chosen GL pa-
rameter κ = 4 is representative for a type-II superconductor.
We confirmed that all reported features remain robust for
κ = 2 and κ → ∞.

The simulations start from multiple artificially generated
initial conditions for each value of the parameter αs. These
initial conditions include artificially generated regular vortex
configurations and randomly generated vortex states. Then,
we sweep the aspect ratio (γ = |�t1/�t2| = 1 to 3) and the
magnetic field H̄ = H0 to 16H0 back and forth until no other
new solution is found. After repeating the above procedure
many times, the lowest energy state can be regarded as the
ground state for each value of αs and magnetic field H̄ .

III. RESULTS

In absence of applied magnetic field, i.e., for ∇ × �A = 0
and �ψs = �ψd = 0, the GL free energy (1) is expressed as

F = −2αs|ψs|2 − |ψd |2 + 4

3
|ψs|4 + 1

2
|ψd |4

+ 8

3
|ψs|2|ψd |2︸ ︷︷ ︸

η

+ 4

3
|ψs|2|ψd |2cos(2θsd )︸ ︷︷ ︸

δ

. (6)

The ground-state homogeneous solutions, obtained by mini-
mizing this free energy, are given in Table I.

When αs � α′
s = 2/3, the ground state is a purely d-wave

state. In contrast, when 2/3 < αs < 1, both condensates have

TABLE I. Ground state of the mixed s- and d-wave GL model
in absence of a magnetic field, as a function of the relative strength
of the condensates αs. |ψs|2 and |ψd |2 are the Cooper-pair densities
of the s- and d-wave condensates, respectively. θsd = θs − θd is
the phase difference between the condensates. The time-reversal
symmetry breaking (TRSB) s + id state sets in for αs ∈ (2/3, 1).

|ψs|2 |ψd |2 θsd

αs � 2/3 0 1 −
2/3 < αs < 1 (9αs − 6)/4 3(1 − αs ) ±π/2 (TRSB)

nonzero density. Due to the Josephson coupling δ term in
Eq. (6), the condensates favor a phase difference θsd = ±π/2,
forming the s ± id state. In that phase, there are two de-
generate uniform phases, i.e., the s + id state and the s − id
state. One can never transform either of them into the other
by the U(1) gauge transformation, thus leading to the TRSB.
However, the system remains invariant under combination of
time-reversal symmetry operation and C4 rotations.

Note that in the s + id state regime, the density of both
condensates, |ψd | and |ψs|, changes with variation of their
relative strength αs, as shown in Fig. 1. One finds a transition
from a purely d-wave state at α′

s = 2/3 to a purely s-wave
state at α′′

s = 1. At α∗
s = 6/7, both condensates have the same

density, i.e., |ψs| = |ψd | = √
3/7. Therefore the competition

between the two condensates changes with αs.
In what follows, we show that in the s + id state the system

under magnetic field undergoes transitions between five vor-
tical states, i.e., states A-E shown in Fig. 1, with increasing
αs, or equivalently, |ψd/ψs|. These states are further classified
into three distinct classes, namely the vortex lattice (states A
and E), skyrmionic vortex chains (B and D), and skyrmionic
lattices (C). States D and E are analogous to the states B and
A, respectively, upon swapping the role between the s-wave
and the d-wave condensates. Therefore, in the remainder of
the paper, we focus on the states A–C, being representative
of the three classes of characteristic vortical states in a s + id
superconductor.

A. Vortex lattice at the onset of the s + id state

Vortex states in the s + d-wave regime (αs � α′
s) have been

well studied previously. In the ground state, the density is zero
in the s-wave component |ψs|. However, near a vortex core in
the d-wave component ψd , the s-wave component is always
induced, and has an opposite winding number relative to the
d-wave component. As αs approaches α′

s from below, the in-
duced s-wave component near the vortex core becomes more
significant. This results in the change in the vortex structure
from isotropic to the fourfold anisotropic, affecting further
the vortex lattice and inducing the change from triangular to
square lattice [57].

When αs > α′
s, the system enters the s + id-wave regime.

Both s-wave and d-wave components are nonzero in the
ground state. However, when αs is very close to the critical
α′

s, the density of the s-wave component is low. Therefore the
vortex states remain the same as in the s + d-wave regime.
In this section, we show vortex states for αs = 0.67 (≈ α′

s). It
results in the d-wave component density |ψd | → 1, whereas
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FIG. 2. Structure of a single vortex (top) and the square vortex lattice (bottom) for αs = 0.67, obtained by threading one and two flux
quanta through the simulation unit cell, respectively. Panels left-to-right show the spatial distributions of the d-wave amplitude |ψd |, s-wave
amplitude |ψs|, magnetic field intensity H , the phase distributions of the d-wave θd , s-wave θs, and the phase difference θsd between the two
condensates, respectively. The cross sign indicates a vortex with phase winding +1 in the d-wave component ψd . Open circles and open
triangles indicate vortices with phase winding −1 and +2, respectively, in the s-wave component ψs.

the s-wave component density |ψs| ≈ 0.1. We shall review
some important features of the vortex structure for facilitated
understanding of the vortex (skyrmionic) chains in the next
section.

Figures 2(a1)–2(a6) focuses on the structure of a single
vortex. The vortex is located in the center of the unit cell,
where the magnetic field intensity H reaches its maximum
[Fig. 2(a3)]. As seen, the d-wave component ψd contains a
vortex with phase winding +1 [Fig. 2(a4)], and density |ψd |
drops to zero in the vortex core. For such a d-wave component
ψd , the s-wave component ψs has the solution of the form
ψs ∼ f1(r)e−iθ + f2(r)ei3θ , when |ψd | � |ψs| and |∇ψd | �
|∇ψs| [58]. It means that there is an antivortex inside the
core, whose winding number is −1. This is induced by the
x − y asymmetric form of the mixed gradient term [the ζ term
in Eq. (1)]. Therefore the s-wave component ψs contains an
antivortex, coinciding with the positive vortex in the d-wave
component ψd .

The opposite winding between two components leads to
their relative phase θsd twirling twice around the vortex core,
with four domain walls appearing along the ±x and ±y axes
[Fig. 2(a6)], on which either θsd = 0 or π . The domain walls
are energetically unfavorable because θsd on the domain walls
deviate from the preferred value ±π/2 stemming from the
Josephson coupling [δ term in Eq. (1)]. In regions outside the
domain walls, the relative phase θsd is indeed ±π/2.

To lower the energy cost of the domain wall, the phase
change across the domain walls is very rapid, such that the
density in the s-wave component |ψs| is suppressed there. In
this way, the s-wave component |ψs| exhibits a four-leafed
clover shape [Fig. 2(a2)], which further leads to the fourfold
symmetry reflected in the d-wave component |ψd | and in the
magnetic field intensity H far away from the vortex core.
Note that the phase change on each domain wall is π . The
four domain walls contribute total phase winding +2 at the
boundary of the unit cell. As a result, the total phase winding

in the s-wave component ψs is +1, the same as in the d-wave
component ψd .

To illustrate the features of the vortex lattice rather than
the isolated vortices, we threaded two flux quanta (m = 2)
through the unit cell. By comparing the free energy for various
aspect ratios γ of the unit cell, we found that the minimum
free energy is obtained when γ = 1, i.e., for the square lattice.
The structure of that lattice is shown in Fig. 2(b1)–2(b6).
As seen from the d-wave component |ψd | [Fig. 2(b1)] and
the magnetic field H [Fig. 2(b3)], two vortices are located
on the diagonal of the unit cell. The s-wave component
|ψs| and the relative phase θsd are arranged in the same
way.

One should note that the total +2 state winding in the
s-wave component ψs [see Fig. 2(b5)] is reached via a square
sublattice of vortices with +2 state winding, with two an-
tivortices residing at locations of vortices in the d-wave com-
ponent ψd . However, the giant-vortexlike +2 state winding
is energetically expensive. Therefore, when the density in
the s-wave |ψs| is further enhanced with αs increasing, the
vortices with phase winding +2 will become unstable, leading
to completely different vortex states.

B. Skyrmionic vortex chains

When αs is increased, the s-wave component ψs becomes
more important, and couples back to the d-component more
strongly. To start with, it changes the structure of a single
vortex, as compared to the case in the previous section. In
addition, the vortices favor to be interconnected via phase
domain walls, forming vortex chains that exhibit skyrmionic
character. In this section, we present results for αs = 0.71 as
an example. In the ground state, the density of the d-wave
component is |ψd | = 0.93 while the density in the s-wave
component is |ψs| = 0.31, making the relative amplitude
|ψd/ψs| = 3.
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FIG. 3. Structure of a single vortex (top row), a dimer vortex state (the second row), a continuous vortex chain (the third row), and a
terminated vortex chain (the last row), obtained by threading one, two, three and three flux quanta, respectively, through the unit cell. The first
three cases are obtained using a square unit cell, while the last case is obtained using a rectangular unit cell with aspect ratio γ = 1.8. Panels
from left to right show the spatial distributions of the d-wave amplitude |ψd |, s-wave amplitude |ψs|, magnetic field intensity H , the phase
distributions of the d-wave θd , s-wave θs, and the phase difference θs,d between the two condensates, respectively. The + sign indicates a vortex
with phase winding +1 in d-wave component ψd . Open circle and open square indicate a vortex with phase winding −1 and +1, respectively,
in the s-wave component ψs.

Figures 3(a1)–3(a6) show the single vortex state, obtained
by threading one flux quantum in the square unit cell. The sin-
gle vortex is at center, i.e., (x, y) = (0, 0), where the dominant
d-wave component contains a vortex with phase winding +1,
and where the peak in the magnetic field intensity H is found
[Fig. 3(a3)]. As before, the s-wave component ψs carries the
opposite winding relative to the d-wave component ψd near
the vortex core due to the mixed gradient term [the ζ term
in Eq. (1)]. It means that the antivortex with phase winding
−1 in the s-wave component ψs is superimposed on a positive
vortex in ψd . Therefore this is a composite vortex where both
components’ densities drop to zero in the vortex core.

Different from the previous case where there were four
positive vortices around the antivortex in the s-wave com-
ponent ψs, there are only two positive vortices around the
antivortex in this case, as seen in the phase plot in Fig. 3(a5),
and the trace in the density of the s-wave component in
Fig. 3(a2). The two positive vortices in the s-wave component
ψs are connected with the composite vortex at (0,0) through

phase domain walls, with a phase knot at the composite vortex
[Fig. 3(a6)]. In fact, the domain walls become significantly
shorter as compared to the previous case. This is because
the domain walls cost more energy in this case as |ψs|2|ψd |2
becomes larger in the Josephson coupling δ term in Eq. (1).
As a result, the domain walls shrink for saving energy and
pull the attached positive vortex in the s-wave component ψs

from the boundary of the unit cell to a position closer to the
composite vortex.

To understand the interaction of such vortices, we next
consider the states with two flux quanta in the unit cell,
with structure shown in Figs. 3(b1)–3(b6). As seen, the two
positive vortices in the d-wave component ψd are on a di-
agonal of the unit cell [indicated by + marks in Fig. 3(b4)],
accompanied by two maxima in the magnetic field intensity
H there [Fig. 3(b3)]. Interestingly, the s-wave component ψs

has two positive vortices on the other diagonal of the unit
cell [open squares in Fig. 3(b5)], that connect to the vortices
in ψd via phase domain walls [Fig. 3(b6)]. The density in
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FIG. 4. (a) shows the free energy of four typical vortex states found for different aspect ratio of the simulation region (dashed box),
for αs = 0.71 and 8 times larger magnetic field than in Fig. 3(a). The vortex configurations marked by solid squares are shown in (b)–(e),
respectively. Panels labeled 1–4 show the d-wave amplitude |ψd |, s-wave amplitude |ψs|, magnetic field intensity H , and the phase difference
θsd , respectively.

the s-wave component, |ψs|, is low on the domain walls,
forming the same ring pattern. The corresponding ring-shape
is visible also in the magnetic field intensity H at the outskirt
of the two main peaks [Fig. 3(b3)]. Therefore, we see that the
structure of an isolated vortex in Fig. 3(a6) is not preserved
when higher density of vortices is imposed. Instead of the
separated vortex-antivortex eight-loops, one loop is formed
containing all the singularities [with one vortex-antivortex
pair in the s-component annihilating under the vortices in
the d-component, but with phase trace remaining due to the
mixed gradient term in Eq. (1)], with phase difference π/2
inside the loop and −π/2 outside. As will be discussed
further on, the corresponding domain wall exhibits skyrmionic
topology, similarly to the cases of split-vortices in multiband
and multicomponent superconductors in the literature [19,21].

With further increasing vortex density, the above discussed
loops can interconnect throughout the sample, and form
skyrmionic vortex chains. Here the antivortex in ψs again

coincides with the positive vortex in the ψd to form the
composite vortex, and the additional vortices in ψs attach
to domain walls to connect the chain. Inside the chain the
phase difference between the components is π/2, and −π/2
outside the chain. Figures 3(c1)–3(c6) shows the structure of
such a skyrmionic vortex chain. As seen, the three composite
vortices are connected through domain walls, forming a chain.
They are arranged to form a line, that results in three aligned
peaks in the magnetic field intensity H , with visible outskirt
structure due to domain walls.

A skyrmionic vortex chain can also terminate and take
finite (short) length [see Fig. 3(d)], by annihilating vortex-
antivortex pairs in ψs at its ends. It retains similar features
to what was seen in the continuous (long) vortex chain [see
Fig. 3(b)], but also combines features from the dimer state
[see Fig. 3(c)]. However, the short, terminated vortex chains
are always energetically more expensive than the continuous
(long) vortex chains.

064501-6



SKYRMIONIC CHAINS AND LATTICES IN s + id … PHYSICAL REVIEW B 101, 064501 (2020)

(a1)

-8 -4 0 4 8

-8

-4

0

4

8

y/

0 0.5

(a2)

-8 -4 0 4 8

0 0.5

(a3)

-8 -4 0 4 8

0 0.05

(a4)

-8 -4 0 4 8

-1 0 1

(a5)

-8 -4 0 4 8

-1 0 1

(a6)

-8 -4 0 4 8

-1 0 1

(b1)

-10 -5 0 5 10

-10

-5

0

5

10

y/

(b2)

-10 -5 0 5 10

(b3)

-10 -5 0 5 10

(b4)

-10 -5 0 5 10

(b5)

-10 -5 0 5 10

(b6)

-10 -5 0 5 10

(c1)

-10 -5 0 5 10
x/

-15

-10

-5

0

5

10

15

y/

(c2)

-10 -5 0 5 10
x/

(c3)

-10 -5 0 5 10
x/

(c4)

-10 -5 0 5 10
x/

(c5)

-10 -5 0 5 10
x/

(c6)

-10 -5 0 5 10
x/

|
d
| |

s
| H

d
/

s
/ cos(

sd
)

s=0.86

FIG. 5. Structure of a single vortex (a), doubly quantized coreless vortex, i.e., skyrmion (b) and doubly quantized coreless vortices in a
lattice (c), for αs = 0.86, obtained by threading one and two flux quanta through the square unit cell, and four flux quanta in the rectangular
unit cell with aspect ratio γ = 1.5, respectively. Panels from left to right show the spatial distributions of the d-wave amplitude |ψd |, s-wave
amplitude |ψs|, magnetic field intensity H , the phase distributions of the d-wave θd , s-wave θs, and the phase difference θsd between the two
condensates, respectively. + marks and open squares indicate vortices with phase winding +1 in ψd and ψs, respectively.

To find the ground state at different magnetic fields, we
have performed simulations by increasing the number of flux
quanta piercing the unit cell up to m = 16. We find that
the continuous vortex chains [shown in Figs. 3(c1)–3(c6)]
always have the lowest energy. Therefore the skyrmionic
vortex chains are energetically favorable and observable. To
prove the point, we show in Fig. 4 four typical vortex states
obtained for the magnetic field 8 times larger than in Fig. 3(a),
where we varied the aspect ratio of the simulation region
in order to probe all possible stable configurations. The free
energies of found states are shown in panel (a), proving
that the lowest-energy state is indeed the one with vortex
chains [Figs. 3(e1)–3(e4)], followed by zigzag vortex chains
[Figs. 3(d1)–3(d4)], double vortex chains [Figs. 3(c1)–3(c4)],
and the fractional chain state [Figs. 3(b1)–3(b4)].

Chain organization of vortices indicates presence of the
nonmonotonic interactions and strong multibody forces be-
tween them. In a conceptually simpler two-component system
where two condensates are only coupled by density coupling
(the same as the η term in Eq. (1) but with a different
prefactor), the tendency to form vortex chains is found in
the phase-separated ground state (i.e. |ψ1| �= 0 but |ψ2| =
0) [62]. However, it competes with the increased importance
of current-current interactions in the relatively dense vortex
matter. Therefore the vortex chains in that case will become
less ordered under higher magnetic field. In our s + id state,
in contrast, the vortex chain is very stable even under high

magnetic field where the vortex matter is dense. This is
attributed to the opposite phase winding between two conden-
sates near the composite vortex, in which the domain walls are
knotted. The opposite winding between components inside the
composite vortex also generates additional single-component
vortices, that support propagation of domain walls through
the sample. In such a way, composite vortices interconnect
to form skyrmionic chains and minimize the energy.

C. Skyrmionic lattices

In what follows, we examine the further trend in the
vortical configurations as αs is increased further and the s-
wave component |ψs| in the ground state becomes comparable
to the d-wave component. In this regime, we find that each
vortex tends to split its core within different condensates,
and form coreless vortex structures that are characterized
by a skyrmionic topological structure. In this section, we
exemplify the results for αs = 0.86, where the ground state
amplitudes of the components are |ψs| ≈ 0.66 and |ψd |≈0.65.

Figures 5(a1)–5(a6) shows the structure of an isolated
vortex. The s-wave component ψs exhibits a large change as
compared to the case shown in Figs. 3(a1)–3(a6) as the vortex-
antivortex molecule [best seen in Fig. 3(a5)] recombines into
just one positive vortex, forming a composite vortex with the
vortex of same winding in the d-wave component. Such a
composite vortex is a consequence of the Josephson coupling
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δ term and the direct coupling η term in Eq. (1) overcoming
the gradient ζ term, so that opposite local phase winding in
two condensates is no longer warranted.

The obtained single-vortex structure is similar to one found
in chiral p-wave superconductors [19]. Both components, |ψs|
and |ψd |, have nearly same spatial distribution and winding
symmetry. In other words, the s-wave component ψs can be
nearly obtained by rotating the d-wave component ψd by 90◦.
As a result, the phase difference θsd is near the energetically
favorable value ±π/2 in the entire region, even close to the
vortex core.

Similar to the chiral p-wave superconductor, the s + id
state in this case favors to form coreless vortices, i.e., clusters
of vortices with split cores between the component con-
densates. This is seen upon increasing the magnetic field,
as shown for m = 2 (two flux quanta in the unit cell) in
Figs. 5(b1)–5(b6). Instead of the vortex state with two com-
posite vortices, we find that it is energetically cheaper to have
vortex cores spatially separated, as facilitated by the direct
coupling term η. Namely, the two vortices in the d-wave
component ψd [see symbols + in Fig. 5(b)] are located on
the diagonal of the unit cell while the two vortices in the
s-wave component ψs [open squares in Fig. 5(b)] are on
the other diagonal. The four one-component vortex cores
therefore form a loop structure, interconnected by domain
walls in the relative phase [Fig. 5(b6)]. Such structure hosts
θsd being π/2 inside, and −π/2 outside the domain wall.
As seen previously, the domain wall traps vortices to lower
its energy cost. The magnetic field intensity H exhibits a
corresponding ring structure [Fig. 5(b3)], with peaks found at
the vortex cores of the s-wave component ψs (being slightly
dominant for αs = 0.86).

This structure of four one-component vortices alternating
on a phase domain wall can be seen as a double-quanta core-
less vortex, but is topologically a representation of a skyrmion.
To reveal the skyrmionic feature of the double-quanta coreless
vortex, we map the two-component order parameter ψs and
ψd on the pseudospin n. The n is defined as [18]

n = (nx, ny, nz ) = ψ† �σψ

ψ†ψ
, (7)

where ψ = (ψs, ψd ) and �σ is the Pauli matrices. n is a
3D unit vector |n| = 1, and points to the surface of a solid
unit sphere in three-dimensional space S2. The pseudospin
texture is shown in Fig. 6(a). Notably, the nz projection of the
pseudospin flips four times when moving along the domain
wall. This indicates that n wraps twice inside the unit cell. To
clarify this further, we also calculate the topological charge Q
as

Q =
∫

Q(x, y)dxdy = 1

4π

∫
n · (∂xn × ∂yn) dxdy, (8)

where Q(x, y) is the topological charge density. As shown in
Fig. 6(b), the topological charge density Q(x, y) is nontrivial
along the domain wall, and the integration on the topological
charge density Q(x, y) in space leads to Q = 2. Therefore
the double-quanta coreless vortex is indeed a skyrmion, with
topological charge Q = 2.

As seen from Fig. 6(b), the topological charge density
Q(x, y) is not significant at the four one-component vortex
cores. Instead, it is largest along the domain wall between

FIG. 6. (a) The pseudospin texture n(x, y) of the double-quanta
coreless vortex shown in Figs. 5(b1)–5(b6). The color indicates the
z amplitude of the pseudospin field n(x, y). (b) Topological charge
density Q(x, y). It is nontrivial on the closed domain wall. This
double-quanta coreless vortex exhibits a topological charge Q = 2,
and is therefore a skyrmion.

the vortices. We emphasize again that these skyrmions have a
twofold symmetry due to present disbalance between the two
components. They are therefore different from the skyrmions
in the chiral p-wave superconductor, which possess a cylindri-
cal symmetry [19].

In the next step, we consider the behavior of above Q = 2
skyrmions as magnetic field is increased. We find that lattice
of such skyrmions remains favorable compared to states con-
taining single-quanta vortices. For example, in the case shown
in Figs. 5(c1)–5(c6) for four flux quanta in the simulation
region, the obtained lowest energy state is the one with a
triangular lattice of Q = 2 skyrmions! We have tested this
further at 4 times larger field, with the same conclusion. The
free energy of the skyrmion lattice state is shown in Fig. 7(a)
as the lowest-energy state but its configuration is not shown
explicitly.

In fact, the skyrmion can have a larger topological charge,
i.e., Q > 2 by trapping more vortices on the phase domain
wall. Those are usually energetically expensive so the asso-
ciated vortical configurations are meta-stable. In Fig. 7, we
show the structure of three such metastable states and their
energies. The state shown in Figs. 7(b1)–7(b4) consists of
two large skyrmions with Q = 7 (seven flux quanta) and two
single-quanta vortices in the unit cell. The state shown in
Figs. 7(d1)–7(d4) consists of a very large skyrmion (Q =
15, fifteen flux quanta) and a single-quanta vortex within
the unit cell. As seen from Fig. 7(a), their free energies are
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FIG. 7. (a) shows the free energy of four typical vortex states as a function of aspect ratio γ for αs = 0.86 and 16 flux quanta threading
the simulation region (dashed box). The structures indicated by solid squares in (a) are shown in panels (b1)–(b4), (c1)–(c4), and (d1)–
(d4), respectively. The state shown in (b1)–(b4) contains Q = 7 skyrmions and single-quanta vortices. The state shown in (c1)–(c4) contains
Q = 6 skyrmions, Q = 2 skyrmions, and single-quanta vortices. The state shown in (d1)–(d4) contains Q = 15 skyrmions and single-quanta
vortices. Panels labeled 1–4 show the d-wave amplitude |ψd |, s-wave amplitude |ψs|, magnetic field intensity H and the phase difference θsd ,
respectively. The lowest energy state is the one with a pure lattice of Q = 2 skyrmions (configuration not shown).

significantly higher than the lowest-energy state with lattice
of Q = 2 skyrmions. From stability point of view, skyrmions
with arbitrary integer Q are possible, and if formed, they are
protected by a finite potential barrier. One can therefore expect
that in a real experimental system, characterized by disorder,
finite size, shape anisotropy, this skyrmionic phase will en-
ergetically tend to form the lattice of Q = 2 skyrmions, but
likely coexisting with single-quanta vortices and skyrmions
of larger topological charge (Q > 2).

IV. DISTINCTION TO VORTEX STATES IN s + is
SUPERCONDUCTORS

The general GL model for s + is superconductors is written
as [51]

F = 1

�

∫ {∑
i=1,2

(ki|�ψ∗
i |2 + αi|ψi|2 + βi|ψi|4)

+ ζ (�∗
xψ1�xψ

∗
2 + �∗

yψ1�yψ
∗
2 + c.c.)

γ |ψ1|2|ψ2|2 + δ
(
ψ∗2

1 ψ2
2 + c.c.

) + κ2(∇ × �A)2

}
d�. (9)

Note that the bilinear Josephson term ψ∗
1 ψ2 + c.c. is excluded

for stabilizing the s + is state with the relative phase θ12 =
π/2. This model is relevant to describe some iron-based
superconductors, e.g., the hole-doped Ba1−xKxFe2As2 [43].

The form of the energy functional is the same as in
Eq. (1) for the s + id state. The crucial distinction is that
the sign between the x and y part of the mixed gradient
term ζ is changed. The mixed gradient term is symmetric
(ζx = ζy) for the s + is state, but it is antisymmetric ζx =
−ζy for the s + id state. As a result, the s + is state pre-
serves crystal symmetries but only breaks the time-reversal
symmetry. In contrast, the s + id state only remains invari-
ant under C4 rotations and subsequently the time-reversal
operation.

Both s + is and s + id states support rich topological
defects such as vortices, domain walls and skyrmions [43],
hence bare appearance of these topological defects will not
distinguish between those pairing symmetries. However, the
different symmetry in the two states results in different struc-
tures of these topological defects, further leading to different
magnetic field profile. The latter can be used for distinguish-
ing between two states experimentally.
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To begin with, the magnetic field profile of a (composite)
vortex in the s + id state is square or rectangular, as seen from
Figs. 2, 4, and 7. In contrast, the profile of the vortex in the
s + is state is circular or elliptical, as seen from, e.g., Fig. 4 in
Ref. [16].

For some parameter sets, vortices in both states favor to
split cores and attach to domain walls to form skyrmionic
phases. In such cases, the magnetic signature of the vortices
is smeared out along the domain wall. For the s + is state,
the domain walls enclose in geometry with rounded corners,
which results in the same pattern in the magnetic field profile.
As a result, the field profile looks similar to bead strings, as
seen from Fig. 4 in Ref. [16]. In contrast, the domain walls
in the s + id state exhibit zigzag patterns (see Fig. 7). When
domain walls enclose (form a skyrmion), the magnetic field
profile clearly exhibits squared features.

In addition, the composite vortex in the s + id state in-
trinsically knots domain walls due to the opposite winding
between s and d condensates. This enables rich configurations
from square vortex lattice to zigzag chain organizations, with
skyrmionic character. The vortex chains may terminate or
further connect with other chains through domain walls to
form irregular patterns. In contrast, the composite vortex in
the s + is state minimizes its energy on a domain wall, but
does not support the knot in domain walls because the winding
in two s-components is the same. To test this comparison, we
solved Eq. (9) for the s + is state with the coefficients taken
same as in Eq. (1), and obtained a conventional triangular
vortex lattice, in which each single vortex has a circular
symmetry.

V. CONCLUSIONS

In summary, motivated by the lack of distinctive properties
of s + is and s + id states in superconducting materials, we
have investigated vortex states for the s + id-wave supercon-
ductor by Ginzburg-Landau simulations. The superconduct-
ing state is characterized by the competition between the two
coupled condensates, and the interaction of the corresponding
s-wave and d-wave superconducting order parameters. We
reveal how the variation in the relative strength of those
condensates leads to the changes in their competition and
changes in the ground state, so that the s + id superconducting
phase under magnetic field can exhibit three distinct states of
vortex matter, i.e., the vortex lattice, skyrmionic vortex chains
and the skyrmion lattice. Vortex lattices occur when one of the
component is absolutely dominant; skyrmionic vortex chains
appear when one of the components is relatively dominant;
the skyrmion lattices occur when two condensates have a
matching strength.

In formation of such rich and peculiar vortical states we
identified two key competitions. One is the competition be-
tween different pairing symmetries of s- and d-wave con-
densates, resulting in the crucial characteristic of the vor-
tex, where two condensates tend to have an opposite phase
winding. Another is the segregative tendency of the s + id
and s − id state, resulting in the formation of phase domain
walls interconnecting the vortex cores in s and d condensates.

We show that such walls enclosing domains of π/2 state
difference between the condensates, surrounded by −π/2
state difference, carry topological charge and therefore have
skyrmionic character. Due to their particular organizational
geometry and their characteristic magnetic field distributions,
each of the three characteristic states in s + id supercon-
ductors can be distinctively observed experimentally, in e.g.
scanning Hall and scanning SQUID experiments.

We emphasize that the skyrmionic vortex chains are a
novel and unusual state, completely different from the pure
skyrmion (coreless vortex) states. The pure skyrmion states
result from the segregative tendency between chiral states.
In such states, the composite vortex splits to form coreless
vortex. On the other hand, the skyrmionic vortex chains result
also from the competing symmetries. Such symmetries (s and
d condensates in our case) impose the opposite phase winding
between two components, preventing the composite vortex
from splitting its core. Meanwhile, restriction of the topology
in such case induces the coreless vortices in order to keeping
the same phase winding for both condensates. Finally, in the
phase of skyrmionic vortex chains, the composite vortices are
connected in a chain through coreless vortices, forming ex-
otic vortex pattern and exhibiting skyrmionic topology. Such
skyrmionic vortex chain cannot be obtained trivially, by mere
transformation from the coreless vortices, and has no analogy
in the s + is and p + ip states. As a result, the skyrmionic
vortex chains provide a unique signature to distinguish s +
id state from s + is and p + ip states. Moreover, they are
a unique example in multicomponent superconductors with
competing orders where singular core vortices and coreless
vortices combine to create a novel topological object.

The s + id superconductivity is relevant for high-Tc

cuprates, e.g., YBCO and BSCCO, and iron-based supercon-
ductors, e.g., Ba1−xKxFe2As2. The high-Tc cuprates originally
have a d-wave pairing symmetry [63], but the existence of
a subdominant s-wave symmetry has long been considered
near inhomogeneous regions around defects and vortices,
and in nanoengineered samples. Recently observed nodeless
superconducting gap in a CuO2 monolayer on BSCCO is
interpreted as an intrinsic s-wave state [64,65], opening an-
other possibility for realizing the competition between the
s-wave and the d-wave pairing symmetry. That competition
in the above systems is expected to be dependent on tempera-
ture (thus can be tunable). In the iron-based superconductor
Ba1−xKxFe2As2 s + id state is expected according to the
theoretical arguments, with competition between the conden-
sates tunable by doping levels. Our results about the unique
vortex states to be expected in s + id state can therefore
serve as its ubiquitous experimental proof in these and other
superconducting materials of interest.

Very recently, it was shown that the second-order topo-
logical superconductor can be induced by the s + id state
when brought in proximity to a Rashba spin-orbit coupled
semiconductor [66]. Topological superconductors may sup-
port Majorana zero modes in vortex cores, the control of
which can enable quantum computations. Our results here are
a needed step towards understanding properties of vortices in
such systems.
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Finally, we remark that the Ginzburg-Landau simulations
used in this paper are on the mean-field level, thus, neglecting
fluctuations, which is appropriate for sufficiently low tem-
perature. Since the strength of the fluctuations grows with
temperature, new phenomena such as vortical/skyrmionic
lattice melting [67,68] may take place in the high temperature
range, worth of further investigation.
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vortex lattices in coherently coupled three-component Bose-
Einstein condensates, Phys. Rev. A 94, 023617 (2016).

[36] P. Kuopanportti, N. V. Orlova, and M. V. Milošević, Ground-
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