|
Record |
Links |
|
Author |
Zhang, F.; Batuk, M.; Hadermann, J.; Manfredi, G.; Mariën, A.; Vanmeensel, K.; Inokoshi, M.; Van Meerbeek, B.; Naert, I.; Vleugels, J. |
|
|
Title |
Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: Grain boundary segregation and oxygen vacancy annihilation |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Acta materialia |
Abbreviated Journal |
Acta Mater |
|
|
Volume |
106 |
Issue |
106 |
Pages |
48-58 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
The hydrothermal aging stability of 3Y-TZP-xM2O3 (M = La, Nd, Sc) was investigated as a function of 0.02–5 mol% M2O3 dopant content and correlated to the overall phase content, t-ZrO2 lattice parameters, grain size distribution, grain boundary chemistry and ionic conductivity.
The increased aging stability with increasing Sc2O3 content and the optimum content of 0.4–0.6 mol% Nd2O3 or 0.2–0.4 mol% La2O3, resulting in the highest aging resistance, could be directly related to the constituent phases and the lattice parameters of the remaining tetragonal zirconia.
At low M2O3 dopant contents ≤0.4 mol%, the different aging behavior of tetragonal zirconia was attributed to the defect structure of the zirconia grain boundary which was influenced by the dopant cation radius. It was observed that the grain boundary ionic resistivity and the aging resistance followed the same trend: La3+ > Nd3+ > Al3+ > Sc3+, proving that hydrothermal aging is driven by the diffusion of water-derived mobile species through the oxygen vacancies. Accordingly, we elucidated the underlying mechanism by which a larger trivalent cation segregating at the zirconia grain boundary resulted in a higher aging resistance. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000371650300006 |
Publication Date |
2016-01-08 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1359-6454 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
5.301 |
Times cited |
37 |
Open Access |
|
|
|
Notes |
The authors acknowledge the Research Fund of KU Leuven under project 0T/10/052 and the Fund for Scientific Research Flanders (FWO-Vlaanderen) under grant G.0431.10N. F. Zhang thanks the Research Fund of KU Leuven for her post-doctoral fellowship (PDM/15/153). |
Approved |
Most recent IF: 5.301 |
|
|
Call Number |
c:irua:132435 |
Serial |
4076 |
|
Permanent link to this record |