toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shen, Y.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.; Song, X.; Yu, X.; Wang, Q.; Chen, H.; Dayeh, S.A.; Wu, T. doi  openurl
  Title Size-Induced Switching of Nanowire Growth Direction: a New Approach Toward Kinked Nanostructures Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 26 Issue 21 Pages 3687-3695  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Exploring self-assembled nanostructures with controllable architectures has been a central theme in nanoscience and nanotechnology because of the tantalizing perspective of directly integrating such bottom-up nanostructures into functional devices. Here, the growth of kinked single-crystal In2O3 nanostructures consisting of a nanocone base and a nanowire tip with an epitaxial and defect-free transition is demonstrated for the first time. By tailoring the growth conditions, a reliable switching of the growth direction from [111] to [110] or [112] is observed when the Au catalyst nanoparticles at the apexes of the nanocones shrink below approximate to 100 nm. The natural formation of kinked nanoarchitectures at constant growth pressures is related to the size-dependent free energy that changes for different orientations of the nanowires. The results suggest that the mechanism of forming such kinked nanocone-nanowire nanostructures in well-controlled growth environment may be universal for a wide range of functional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000377597400014 Publication Date 2016-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 2 Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:144705 Serial 4687  
Permanent link to this record
 

 
Author Tinck, S.; Tillocher, T.; Dussart, R.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Elucidating the effects of gas flow rate on an SF6inductively coupled plasma and on the silicon etch rate, by a combined experimental and theoretical investigation Type A1 Journal article
  Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 49 Issue 49 Pages 385201  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Experiments show that the etch rate of Si with SF6 inductively coupled plasma (ICP) is significantly influenced by the absolute gas flow rate in the range of 50–600 sccm, with a maximum at around 200 sccm. Therefore, we numerically investigate the effects of the gas flow rate on the bulk plasma properties and on the etch rate, to obtain more insight in the underlying reasons of this effect. A hybrid Monte Carlo—fluid model is applied to simulate an SF6 ICP. It is found that the etch rate is influenced by two simultaneous effects: (i) the residence time of the gas and (ii) the temperature profile of the plasma in the ICP volume, resulting indeed in a maximum etch rate at 200 sccm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384095900011 Publication Date 2016-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 1 Open Access  
  Notes We are very grateful to Mark Kushner for providing the computational model. The Fund for Scientific Research Flanders (FWO; grant no. 0880.212.840) is acknowledged for financial support of this work. The work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 2.588  
  Call Number c:irua:134867 Serial 4108  
Permanent link to this record
 

 
Author Horzum, S.; Torun, E.; Serin, T.; Peeters, F.M. pdf  doi
openurl 
  Title Structural, electronic and optical properties of Cu-doped ZnO : experimental and theoretical investigation Type A1 Journal article
  Year 2016 Publication Philosophical magazine Abbreviated Journal Philos Mag  
  Volume 96 Issue 96 Pages 1743-1756  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) Experiments are supplemented with ab initio density functional theory (DFT) calculations in order to investigate how the structural, electronic and optical properties of zinc oxide (ZnO) thin films are modified upon Cu doping. Changes in characteristic properties of doped thin films, that are deposited on a glass substrate by sol-gel dip coating technique, are monitored using X-ray diffraction (XRD) and UV measurements. Our ab initio calculations show that the electronic structure of ZnO can be well described by DFT+U/G(0)W(0) method and we find that Cu atom substitutional doping in ZnO is the most favourable case. Our XRD measurements reveal that the crystallite size of the films decrease with increasing Cu doping. Moreover, we determine the optical constants such as refractive index, extinction coefficient, optical dielectric function and optical energy band gap values of the films by means of UV-Vis transmittance spectra. The optical band gap of ZnO the thin film linearly decreases from 3.25 to 3.20 eV at 5% doping. In addition, our calculations reveal that the electronic defect states that stem from Cu atoms are not optically active and the optical band gap is determined by the ZnO band edges. Experimentally observed structural and optical results are in good agreement with our theoretical results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376076500002 Publication Date 2016-05-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-6435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.505 Times cited 29 Open Access  
  Notes ; Theoretical part of this work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. Experimental part of this work was supported by Ankara University BAP under Project Number [14B0443001]. ; Approved Most recent IF: 1.505  
  Call Number UA @ lucian @ c:irua:134161 Serial 4254  
Permanent link to this record
 

 
Author Ekimov, E.A.; Kudryavtsev, O.S.; Turner, S.; Korneychuk, S.; Sirotinkin, V.P.; Dolenko, T.A.; Vervald, A.M.; Vlasov, I.I. pdf  doi
openurl 
  Title The effect of molecular structure of organic compound on the direct high-pressure synthesis of boron-doped nanodiamond: Effect of organic compound on synthesis of boron-doped nanodiamond Type A1 Journal article
  Year 2016 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 213 Issue 213 Pages 2582-2589  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Evolution of crystalline phases with temperature has been studied in materials produced by high-pressure high-temperature treatment of 9-borabicyclo[3.3.1]nonane dimer (9BBN), triphenylborane and trimesitylborane. The boron-doped diamond nanoparticles with a size below 10 nm were obtained at 8–9 GPa and temperatures 970–1250 °C from 9BBN only. Bridged structure and the presence of boron atom in the carbon cycle of 9BBN were revealed to be a key point for the direct synthesis of doped diamond nanocrystals. The diffusional transformation of the disordered carbon phase is suggested to be the main mechanism of the nanodiamond formation from 9BBN in the temperature range of 970–1400 °C. Aqueous suspensions of primary boron-doped diamond nanocrystals were prepared upon removal of non-diamond phases that opens wide opportunities for application of this new nanomaterial in electronics and biotechnologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388321500006 Publication Date 2016-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.775  
  Call Number EMAT @ emat @ c:irua:135175 Serial 4120  
Permanent link to this record
 

 
Author Monico, L.; Janssens, K.; Cotte, M.; Sorace, L.; Vanmeert, F.; Brunetti, B.G.; Miliani, C. pdf  url
doi  openurl
  Title Chromium speciation methods and infrared spectroscopy for studying the chemical reactivity of lead chromate-based pigments in oil medium Type A1 Journal article
  Year 2016 Publication Microchemical journal T2 – TECHNART Conference, APR 27-30, 2015, Catania, ITALY Abbreviated Journal Microchem J  
  Volume 124 Issue Pages 272-282  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Environmental factors, such as light, humidity and temperature are triggering agents for the alteration of organic and/or inorganic constituents of oil paintings. The oxidation of the organic material is favored by increasing of relative humidity and temperature, whereas processes involving changes of the oxidation states of a number of inorganic pigments (e.g., vermilion, cadmium yellows, zinc yellows, chrome yellows) are mainly activated by light-exposure. In view of the optimization of the long-term conservation and restoration strategies of paintings it is of relevant interest to establish the consequences of thermal parameters (temperature and relative humidity) on the chemical/photochemical-reactivity and the nature of the alteration products of light sensitive-pigments in oil medium. To this aim here we propose a multi-method analytical approach based on the combination of diffuse reflectance UV-Vis, FTIR, synchrotron radiation (SR)-based micro X-ray fluorescence (mu-XRF)/micro-X-ray absorption neat edge structure ()CANES) and electron paramagnetic resonance (EPR) spectroscopies for studying the effects of different relative humidity conditions before and after light exposure on the reactivity of a series of lead chromate-based pigments [such as PbCrO4 center dot PbO (monoclinic), PbCrO4 (monoclinic) and PbCr0.2S0.8O4 (orthorhombic)] in an oil medium. The investigation of paint models was also compared to that of a late 19th century historical orthorhombic PbCr0.4S0.6O4 oil paint. Diffuse reflectance UV-Vis and FTIR spectroscopies were used to obtain information associated with chromatic changes and the formation of organo-metal degradation products at the paint surface. SR-based Cr K-edge mu-XANES/mu-XRF mapping analysis and EPR spectroscopy were employed in a complementary fashion to determine the amount, nature and distribution of Cr(III) and Cr(V)-based alteration compounds within the paints with micrometric spatial resolution. Under the employed thermal aging conditions, lead(II)-carboxylates and reduced Cr-compounds (in abundance of up to about 35% at the surface) have been identified in the lead chromate-based paints. The tendency of chromates to become reduced increased with increasing moisture levels and was favored for the orthorhombic PbCr0.2S0.8O4 compounds. The redox process gave rise to the formation of Cr(V)-species in relative amount much higher than that was formed in the equivalent paint which was exposed only to light. After light-exposure of the thermally aged paints, compounds ascribable to the oxidation of the organic binder were detected for all the types of pigments. Nevertheless, the previous thermal treatment increased the tendency toward photo-reduction of only the PbCr0.2S0.8O4 pigment. For this light-sensitive compound, the thickness variation of the reduced Cr-rich (ca. 70%) photo-alteration layer with moisture levels could be ascribed to a surface passivation phenomenon that had already occurred before photochemical aging. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000367755600042 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-265x; 0026-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.034 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 3.034  
  Call Number UA @ admin @ c:irua:131099 Serial 5519  
Permanent link to this record
 

 
Author Bacaksiz, C.; Cahangirov, S.; Rubio, A.; Senger, R.T.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Bilayer SnS2 : tunable stacking sequence by charging and loading pressure Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 125403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Employing density functional theory-based methods, we investigate monolayer and bilayer structures of hexagonal SnS2, which is a recently synthesized monolayer metal dichalcogenide. Comparison of the 1H and 1T phases of monolayer SnS2 confirms the ground state to be the 1T phase. In its bilayer structure we examine different stacking configurations of the two layers. It is found that the interlayer coupling in bilayer SnS2 is weaker than that of typical transition-metal dichalcogenides so that alternative stacking orders have similar structural parameters and they are separated with low energy barriers. A possible signature of the stacking order in the SnS2 bilayer has been sought in the calculated absorbance and reflectivity spectra. We also study the effects of the external electric field, charging, and loading pressure on the characteristic properties of bilayer SnS2. It is found that (i) the electric field increases the coupling between the layers at its preferred stacking order, so the barrier height increases, (ii) the bang gap value can be tuned by the external E field and under sufficient E field, the bilayer SnS2 can become a semimetal, (iii) the most favorable stacking order can be switched by charging, and (iv) a loading pressure exceeding 3 GPa changes the stacking order. The E-field tunable band gap and easily tunable stacking sequence of SnS2 layers make this 2D crystal structure a good candidate for field effect transistor and nanoscale lubricant applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371405000005 Publication Date 2016-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 38 Open Access  
  Notes ; The calculations were performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). C.B., H.S., and R.T.S. acknowledge support from TUBITAK Project No. 114F397. H.S. is supported by an FWO Pegasus Marie Curie Fellowship. S.C. and A.R. acknowledge financial support from the Marie Curie grant FP7-PEOPLE-2013-IEF Project No. 628876, the European Research Council (ERC-2010-AdG-267374), and Spanish grant Grupos Consolidados (IT578-13). S.C. acknowledges support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 115F388. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:132345 Serial 4144  
Permanent link to this record
 

 
Author de Mey, Y.; Wauters, E.; Schmid, D.; Lips, M.; Vancauteren, M.; Van Passel, S. doi  openurl
  Title Farm household risk balancing : empirical evidence from Switzerland Type A1 Journal article
  Year 2016 Publication European Review Of Agricultural Economics Abbreviated Journal Eur Rev Agric Econ  
  Volume 43 Issue 4 Pages  
  Keywords A1 Journal article; Economics  
  Abstract (down) Empirical evidence on household risk balancing behaviour is presented by estimating a fixed effects seemingly unrelated regression model using Swiss Farm Accountancy Data Network data. We find that in response to changes in expected business risks, Swiss farm households not only make strategic farm financial risk decisions (original risk balancing), but also make strategic off-farm decisions (household risk balancing) by altering their share of off-farm income and relative consumption. Small farms appear to make more use of household risk balancing strategies whereas large farms conversely make more use of the original risk balancing strategy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386026600005 Publication Date 2015-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-1587; 1464-3618 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 1.6 Times cited 15 Open Access  
  Notes ; This research was funded by a scholarship from the Agency for Innovation by Science and Technology (IWT) in Flanders. The authors are very grateful to Ludwig Lauwers and Frankwin van Winsen for many helpful discussions. They also thank the editor and two anonymous reviewers for their constructive comments and conference/workshop participants from ART, BAAE, EAAE, KU Leuven and WUR for excellent comments on earlier versions of the article. The views expressed in this article are those of the authors and do not necessarily reflect those of the Agroscope Institute for Sustainability Sciences ISS. ; Approved Most recent IF: 1.6  
  Call Number UA @ admin @ c:irua:138183 Serial 6202  
Permanent link to this record
 

 
Author Klimin, S.N.; Tempère, J.; Misko, V.R.; Wouters, M. doi  openurl
  Title Finite-temperature Wigner solid and other phases of ripplonic polarons on a helium film Type A1 Journal article
  Year 2016 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 89 Issue 89 Pages 172  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract (down) Electrons on liquid helium can form different phases depending on density, and temperature. Also the electron-ripplon coupling strength influences the phase diagram, through the formation of so-called “ripplonic polarons”, that change how electrons are localized, and that shifts the transition between the Wigner solid and the liquid phase. We use an all-coupling, finite-temperature variational method to study the formation of a ripplopolaron Wigner solid on a liquid helium film for different regimes of the electron-ripplon coupling strength. In addition to the three known phases of the ripplopolaron system (electron Wigner solid, polaron Wigner solid, and electron fluid), we define and identify a fourth distinct phase, the ripplopolaron liquid. We analyse the transitions between these four phases and calculate the corresponding phase diagrams. This reveals a reentrant melting of the electron solid as a function of temperature. The calculated regions of existence of the Wigner solid are in agreement with recent experimental data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000391225200001 Publication Date 2016-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 1 Open Access  
  Notes ; We thank A.S. Mishchenko and D.G. Rees for valuable discussions. This research has been supported by the Flemish Research Foundation (FWO-Vl), Project Nos. G.0115.12N, G.0119.12N, G.0122.12N, G.0429.15N, by the Scientific Research Network of the Research Foundation-Flanders, WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 1.461  
  Call Number UA @ lucian @ c:irua:140351 Serial 4454  
Permanent link to this record
 

 
Author Clark, L.; Guzzinati, G.; Béché, A.; Lubk, A.; Verbeeck, J. pdf  url
doi  openurl
  Title Symmetry-constrained electron vortex propagation Type A1 Journal article
  Year 2016 Publication Physical review A Abbreviated Journal Phys Rev A  
  Volume 93 Issue 93 Pages 063840  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Electron vortex beams hold great promise for development in transmission electron microscopy but have yet to be widely adopted. This is partly due to the complex set of interactions that occur between a beam carrying orbital angular momentum (OAM) and a sample. Herein, the system is simplified to focus on the interaction between geometrical symmetries, OAM, and topology. We present multiple simulations alongside experimental data to study the behavior of a variety of electron vortex beams after interacting with apertures of different symmetries and investigate the effect on their OAM and vortex structure, both in the far field and under free-space propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378197200006 Publication Date 2016-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 7 Open Access  
  Notes L.C., A.B., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510—VORTEX. J.V. and A.L. acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). The Qu-Ant-EM microscope was partly funded by the Hercules fund of the Flemish Government.; esteem2jra3; ECASJO; Approved Most recent IF: 2.925  
  Call Number c:irua:134086 c:irua:134086 Serial 4090  
Permanent link to this record
 

 
Author Goris, B.; Meledina, M.; Turner, S.; Zhong, Z.; Batenburg, K.J.; Bals, S. pdf  url
doi  openurl
  Title Three dimensional mapping of Fe dopants in ceria nanocrystals using direct spectroscopic electron tomography Type A1 Journal article
  Year 2016 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 171 Issue 171 Pages 55-62  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Electron tomography is a powerful technique for the 3D characterization of the morphology of nanostructures. Nevertheless, resolving the chemical composition of complex nanostructures in 3D remains challenging and the number of studies in which electron energy loss spectroscopy (EELS) is combined with tomography is limited. During the last decade, dedicated reconstruction algorithms have been developed for HAADF-STEM tomography using prior knowledge about the investigated sample. Here, we will use the prior knowledge that the experimental spectrum of each reconstructed voxel is a linear combination of a well-known set of references spectra in a so-called direct spectroscopic tomography technique. Based on a simulation experiment, it is shown that this technique provides superior results in comparison to conventional reconstruction methods for spectroscopic data, especially for spectrum images containing a relatively low signal to noise ratio. Next, this technique is used to investigate the spatial distribution of Fe dopants in Fe:Ceria nanoparticles in 3D. It is shown that the presence of the Fe2+ dopants is correlated with a reduction of the Ce atoms from Ce4+ towards Ce3+. In addition, it is demonstrated that most of the Fe dopants are located near the voids inside the nanoparticle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389106200007 Publication Date 2016-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 13 Open Access OpenAccess  
  Notes The work was supported by the Research Foundation Flanders (FWO Vlaanderen) by project funding (G038116N, 3G004613) and by a post-doctoral research grants to B.G. S.B. acknowledges funding from the European Research Council (Starting Grant no. COLOURATOMS 335078). K.J.B. acknowledges funding from The Netherlands Organization for Scientific Research (NWO) (program 639.072.005.). We would like to thank Dr. Hilde Poelman, Dr. Vladimir Galvita and Prof. Dr. Guy B. Marin for the synthesis of the investigated sample.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843  
  Call Number c:irua:135185 c:irua:135185 Serial 4123  
Permanent link to this record
 

 
Author Wang, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Effective ionisation coefficients and critical breakdown electric field of CO2at elevated temperature: effect of excited states and ion kinetics Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055025  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Electrical breakdown by the application of an electric field occurs more easily in hot gases than in cold gases because of the extra electron-species interactions that occur as a result of dissociation, ionization and excitation at higher temperature. This paper discusses some overlooked physics and clarifies inaccuracies in the evaluation of the effective ionization coefficients and the critical reduced breakdown electric field of CO2 at elevated temperature, considering the influence of excited states and ion kinetics. The critical reduced breakdown electric field is obtained by balancing electron generation and loss mechanisms using the electron energy distribution function (EEDF) derived from the Boltzmann transport equation under the two-term approximation. The equilibrium compositions of the hot gas mixtures are determined based on Gibbs free energy minimization considering the ground states as well as vibrationally and electronically excited states as independent species, which follow a Boltzmann distribution with a fixed excitation temperature. The interaction cross sections between electrons and the excited species, not reported previously, are properly taken into account. Furthermore, the ion kinetics, including electron–ion recombination, associative electron detachment, charge transfer and ion conversion into stable negative ion clusters, are also considered. Our results indicate that the excited species lead to a greater population of high-energy electrons at higher gas temperature and this affects the Townsend rate coefficients (i.e. of electron impact ionization and attachment), but the critical reduced breakdown electric field strength of CO2 is only affected when also properly accounting for the ion kinetics. Indeed, the latter greatly influences the effective ionization coefficients and hence the critical reduced breakdown electric field at temperatures above 1500 K. The rapid increase of the dissociative electron attachment cross-section of molecular oxygen with rising vibrational quantum number leads to a larger electron loss rate and this enhances the critical reduced breakdown electric field strength in the temperature range where the concentration of molecular oxygen is relatively high. The results obtained in this work show reasonable agreement with experimental results from literature, and are important for the evaluation of the dielectric strength of CO2 in a highly reactive environment at elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385494000006 Publication Date 2016-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 3 Open Access  
  Notes Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No.657304) and the FWO project (grant G.0383.16N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:135515 Serial 4281  
Permanent link to this record
 

 
Author Thomassen, G.; Egiguren Vila, U.; Van Dael, M.; Lemmens, B.; Van Passel, S. pdf  url
doi  openurl
  Title A techno-economic assessment of an algal-based biorefinery Type A1 Journal article
  Year 2016 Publication Clean Technologies And Environmental Policy Abbreviated Journal Clean Technol Envir  
  Volume 18 Issue 6 Pages 1849-1862  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract (down) Economic and technological assessments have identified difficulties with the commercialization of bulk products from microalgae, like biofuels. To overcome these problems, a multi-product algal-based biorefinery has been proposed. This paper performs a techno-economic assessment of such a biorefinery. Four production pathways, ranging from a base case with commercial technologies to an improved case with innovative technologies, are analyzed. All region-specific parameters were adapted to Belgian conditions. Three scenarios result in techno-economically viable production plants. The most profitable scenario is the scenario which uses a specialized membrane for medium recycling and an open pond algae cultivation. Although the inclusion of a photobioreactor decreases the culture medium costs, the higher investment costs result in lower economic profits. The carotenoid content and price are identified as critical parameters. Furthermore, the economies of scale assumption for the photobioreactor is critical for the feasibility of this cultivation technology. The techno-economic assessment is an important methodology to guide and evaluate further improvements in research and shorten the time-to-market for innovative technologies in this field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384470700017 Publication Date 2016-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-954x ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 3.331 Times cited 24 Open Access  
  Notes ; We would like to thank Herman Beckers, Metin Bulut, Frans Snijkers, Joris van der Have, Jan Vanderheyden, Leen Bastiaens, and Lies Eykens for the provision of technological and economic data and the useful discussions on the assumptions in the model. We would also like to thank Eva Cordery for proofreading the article and the anonymous reviewers for their valuable feedback and suggestions. Furthermore, we gratefully acknowledge the financial support of the Fundacion Novia Salcedo. ; Approved Most recent IF: 3.331  
  Call Number UA @ admin @ c:irua:139027 Serial 6262  
Permanent link to this record
 

 
Author Zarafshani, K.; Sharafi, L.; Azadi, H.; Van Passel, S. url  doi
openurl 
  Title Vulnerability assessment models to drought : toward a conceptual framework Type A1 Journal article
  Year 2016 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 8 Issue 6 Pages 1-21  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract (down) Drought is regarded as a slow-onset natural disaster that causes inevitable damage to water resources and to farm life. Currently, crisis management is the basis of drought mitigation plans, however, thus far studies indicate that effective drought management strategies are based on risk management. As a primary tool in mitigating the impact of drought, vulnerability assessment can be used as a benchmark in drought mitigation plans and to enhance farmers ability to cope with drought. Moreover, literature pertaining to drought has focused extensively on its impact, only awarding limited attention to vulnerability assessment as a tool. Therefore, the main purpose of this paper is to develop a conceptual framework for designing a vulnerability model in order to assess farmers level of vulnerability before, during and after the onset of drought. Use of this developed drought vulnerability model would aid disaster relief workers by enhancing the adaptive capacity of farmers when facing the impacts of drought. The paper starts with the definition of vulnerability and outlines different frameworks on vulnerability developed thus far. It then identifies various approaches of vulnerability assessment and finally offers the most appropriate model. The paper concludes that the introduced model can guide drought mitigation programs in countries that are impacted the most by drought.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000378776800084 Publication Date 2016-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.789 Times cited 15 Open Access  
  Notes ; ; Approved Most recent IF: 1.789  
  Call Number UA @ admin @ c:irua:134331 Serial 6278  
Permanent link to this record
 

 
Author Gonnissen, J.; Batuk, D.; Nataf, G.F.; Jones, L.; Abakumov, A.M.; Van Aert, S.; Schryvers, D.; Salje, E.K.H. pdf  doi
openurl 
  Title Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 26 Issue 26 Pages 7599-7604  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Direct observations of the ferroelectric domain boundaries in LiNbO3 are performed using high-resolution high-angle annular dark field scanning transmission electron microscopy imaging, revealing a very narrow width of the domain wall between the 180° domains. The domain walls demonstrate local side-way meandering, which results in inclinations even when the overall wall orientation follows the ferroelectric polarization. These local meanders contain kinks with “head-to-head” and “tail-to-tail” dipolar configurations and are therefore locally charged. The charged meanders are confined to a few cation layers along the polarization direction and are separated by longer stretches of straight domain walls.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388166700006 Publication Date 2016-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 23 Open Access  
  Notes J.G. acknowledges the support from the Research Foundation Flanders (FWO, Belgium) through various project fundings (G.0368.15N, G.0369.15N, and G.0374.13N), as well as the financial support from the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement no. 312483 (ESTEEM2). The authors thank J. Hadermann for useful suggestions on the interpretation of the HAADFSTEM images. E.K.H.S. thanks the EPSRC (EP/K009702/1) and the Leverhulme Trust (EM-2016-004) for support. G.F.N. thanks the National Research Fund, Luxembourg (FNR/P12/4853155/Kreisel) for support.; esteem2_jra2 Approved Most recent IF: 12.124  
  Call Number c:irua:135336 c:irua:135336 Serial 4129  
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Bogaerts, A.; Reniers, F. pdf  url
doi  openurl
  Title How do the barrier thickness and dielectric material influence the filamentary mode and CO2conversion in a flowing DBD? Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 045016  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Dielectric barrier discharges (DBDs) are commonly used to generate cold plasmas at

atmospheric pressure. Whatever their configuration (tubular or planar), the presence of a dielectric barrier is mandatory to prevent too much charge build up in the plasma and the formation of a thermal arc. In this article, the role of the barrier thickness (2.0, 2.4 and 2.8 mm) and of the kind of dielectric material (alumina, mullite, pyrex, quartz) is investigated on the filamentary behavior in the plasma and on the CO2 conversion in a tubular flowing DBD, by means of mass spectrometry measurements correlated with electrical characterization and IR imaging. Increasing the barrier thickness decreases the capacitance, while preserving the electrical charge. As a result, the voltage over the dielectric increases and a larger number of microdischarges is generated, which enhances the CO2 conversion. Furthermore, changing the dielectric material of the barrier, while keeping the same geometry and dimensions, also affects the CO2 conversion. The highest CO2 conversion and energy efficiency are obtained for quartz and alumina, thus not following the trend of the relative permittivity. From the

electrical characterization, we clearly demonstrate that the most important parameters are the somewhat higher effective plasma voltage (yielding a somewhat higher electric field and electron energy in the plasma) for quartz, as well as the higher plasma current (and thus larger electron density) and the larger number of microdischarge filaments (mainly for alumina, but also for quartz). The latter could be correlated to the higher surface roughness for alumina and to the higher voltage over the dielectric for quartz.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380380200030 Publication Date 2016-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 24 Open Access  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302  
  Call Number c:irua:134396 Serial 4100  
Permanent link to this record
 

 
Author Voss, A.; Wei, H.Y.; Zhang, Y.; Turner, S.; Ceccone, G.; Reithmaier, J.P.; Stengl, M.; Popov, C. pdf  doi
openurl 
  Title Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces Type A1 Journal article
  Year 2016 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 64 Issue 64 Pages 278-285  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Diamond is a promising material for a number of bio-applications, including the fabrication of platforms for attachment and investigation of neurons and of neuroprostheses, such as retinal implants. In the current work ultrananocrystalline diamond (UNCD) films were deposited by microwave plasma chemical vapor deposition, modified by UV/O-3 treatment or NH3 plasma, and comprehensively characterized with respect to their bulk and surface properties, such as crystallinity, topography, composition and chemical bonding nature. The interactions of insect circadian pacemaker neurons with UNCD surfaces with H-, O- and NH2-terminations were investigated with respect to cell density and viability. The fast and strong attachment achieved without application of adhesion proteins allowed for advantageous modification of dispersion protocols for the preparation of primary cell cultures. Centrifugation steps, which are employed for pelletizing dispersed cells to separate them from dispersing enzymes, easily damage neurons. Now centrifugation can be avoided since dispersed neurons quickly and strongly attach to the UNCD surfaces. Enzyme solutions can be easily washed off without losing many of the dispersed cells. No adverse effects on the cell viability and physiological responses were observed as revealed by calcium imaging. Furthermore, the enhanced attachment of the neurons, especially on the modified UNCD surfaces, was especially advantageous for the immunocytochemical procedures with the cell cultures. The cell losses during washing steps were significantly reduced by one order of magnitude in comparison to controls. In addition, the integration of a titanium grid structure under the UNCD films allowed for individual assignment of physiologically characterized neurons to immunocytochemically stained cells. Thus, employing UNCD surfaces free of foreign proteins improves cell culture protocols and immunocytochemistry with cultured cells. The fast and strong attachment of neurons was attributed to a favorable combination of topography, surface chemistry and wettability. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000376547700033 Publication Date 2016-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.164 Times cited 7 Open Access  
  Notes Approved Most recent IF: 4.164  
  Call Number UA @ lucian @ c:irua:134164 Serial 4251  
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C. url  doi
openurl 
  Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
  Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 120 Issue 120 Pages 472-477  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368562200057 Publication Date 2015-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 3 Open Access  
  Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536  
  Call Number c:irua:130677 Serial 4002  
Permanent link to this record
 

 
Author Van de Walle, E.; Van Nieuwenhove, I.; Vanderleyden, E.; Declercq, H.; Gellynck, K.; Schaubroeck, D.; Ottevaere, H.; Thienpont, H.; De Vos, W.H.; Cornelissen, M.; Van Vlierberghe, S.; Dubruel, P. pdf  doi
openurl 
  Title Polydopamine-gelatin as universal cell-interactive coating for methacrylate-based medical device packaging materials : when surface chemistry overrules substrate bulk properties Type A1 Journal article
  Year 2016 Publication Biomacromolecules Abbreviated Journal  
  Volume 17 Issue 1 Pages 56-68  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Despite its widespread application in the fields of ophthalmology, orthopedics and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials which ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethyleneglycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials posessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368047800007 Publication Date 2015-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-7797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:129159 Serial 8393  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Bahlouli, H.; Peeters, F.M. pdf  url
doi  openurl
  Title Effect of substitutional impurities on the electronic transport properties of graphene Type A1 Journal article
  Year 2016 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 84 Issue 84 Pages 22-26  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract (down) Density-functional theory in combination with the nonequilibrium Green's function formalism is used to study the effect of substitutional doping on the electronic transport properties of hydrogen passivated zig-zag graphene nanoribbon devices. B, N and Si atoms are used to substitute carbon atoms located at the center or at the edge of the sample. We found that Si -doping results in better electronic transport as compared to the other substitutions. The transmission spectrum also depends on the location of the substitutional dopants: for single atom doping the largest transmission is obtained for edge substitutions, whereas substitutions in the middle of the sample give larger transmission for double carbon substitutions. The obtained results are explained in terms of electron localization in the system due to the presence of impurities. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000382489600004 Publication Date 2016-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 17 Open Access  
  Notes ; H.B. and F.M.P. acknowledge the support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under research group project RG1329-1 and RG1329-2. G.R.B. acknowledges fruitful discussions with Dr. M.E. Madjet from Qatar Environment and Energy Research Institute. ; Approved Most recent IF: 2.221  
  Call Number UA @ lucian @ c:irua:135699 Serial 4301  
Permanent link to this record
 

 
Author Dharanipragada, N.V.R.A.; Meledina, M.; Galvita, V.V.; Poelman, H.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B. url  doi
openurl 
  Title Deactivation study of Fe2O3-CeO2 during redox cycles for CO production from CO2 Type A1 Journal article
  Year 2016 Publication Industrial and engineering chemistry research Abbreviated Journal Ind Eng Chem Res  
  Volume 55 Issue 55 Pages 5911-5922  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Deactivation was investigated in Fe2O3-CeO2 oxygen storage materials during repeated H-2-reduction and CO2-reoxidation. In situ XRD, XAS, and TEM were used to identify phases, crystallite sizes, and morphological changes upon cycling operation. The effect of redox cycling was investigated both in Fe-rich (80 wt % Fe2O3-CeO2) and Ce-rich (10 wt %Fe2O3-CeO2) materials. The former consisted of 100 nm Fe2O3 particles decorated with 5-10 nm Ce1-xFexO2-x. The latter presented CeO2 with incorporated Fe, i.e. a solid solution of Ce1-xFexO2-x, as the main oxygen carrier. By modeling the EXAFS Ce-K signal for as-prepared 10 wt %Fe2O3-CeO2, the amount of Fe in CeO2 was determined as 21 mol %, corresponding to 86% of the total iron content. Sintering and solid solid transformations, the latter including both new phase formation and element segregation, were identified as deactivation pathways upon redox cycling. In Ce-rich material, perovskite (CeFeO3) was identified by XRD. This phase remained inert during reduction and reoxidation, resulting in an overall lower oxygen storage capacity. Further, Fe segregated from the solid solution, thereby decreasing its reducibility. In addition, an increase in crystallite size occurred for all phases. In Fe-rich material, sintering is the main deactivation pathway, although Fe segregation from the solid solution and perovskite formation cannot be excluded.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000376825300013 Publication Date 2016-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0888-5885; 1520-5045 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 26 Open Access  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:134214 Serial 4158  
Permanent link to this record
 

 
Author Vanschoenwinkel, J.; Mendelsohn, R.; Van Passel, S. pdf  url
doi  openurl
  Title Do Western and Eastern Europe have the same agricultural climate response? Taking adaptive capacity into account Type A1 Journal article
  Year 2016 Publication Global Environmental Change-Human And Policy Dimensions Abbreviated Journal Global Environ Chang  
  Volume 41 Issue Pages 74-87  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract (down) Current cross-sectional methodologies measuring climate change impacts assume that regions at the same latitude face a similar climate response and therefore have the same adaptive capacity. This paper proves that assumption to be erroneous in the European Union. It does so by ameliorating the Ricardian methodology by restricting which farmers (and therefore which adaptation options) are allowed in the dataset. In doing so, a comparative Ricardian methodology is suggested that makes it possible to examine, for the first time, how the climate responsiveness of a region changes if adaptive capacity changes. The paper combines climate, soil, geographic, socio-economic, and farm-level data in a linear mixed-effect model and examines whether Eastern and Western Europe have the same climate responses and how these responses change if regional adaptive capacity increases. The paper concludes that both regions currently have a significantly different climate response, but that if Eastern Europe were to implement the same adaptation options as Western Europe, it could avoid a large decrease in land value and even benefit from climate change depending on the climate scenario.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389732700007 Publication Date 2016-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780; 1872-9495 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 6.327 Times cited 8 Open Access  
  Notes ; Steven Van Passel would kindly want to express his gratitude towards DG AGRI for access to the Farm Accountancy Data Network (FADN). The authors also thank the reviewers of this journal for their improvements to the final manuscript and they are grateful for the comments and suggestions they received at the conferences where this paper has been presented (IAMO forum 2015, EAAE PhD workshop 2015, Belgian PhD symposium 2015, EAERE conference 2016). Janka Vanschoenwinkel also wants to thank FWO and the Doctoral Schools of Hasselt University for giving a mobility grant to go to the EAAE PhD workshop in Rome. ; Approved Most recent IF: 6.327  
  Call Number UA @ admin @ c:irua:139026 Serial 6185  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides Type A1 Journal article
  Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 120 Issue 120 Pages 085707  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (down) Cu-based chalcogenides are promising materials for thin-film solar cells with more than 20% measured

cell efficiency. Using first-principles calculations based on density functional theory, the

optoelectronic properties of a group of Cu-based chalcogenides Cu2-II-IV-VI4 is studied. They are

then screened with the aim of identifying potential absorber materials for photovoltaic applications.

The spectroscopic limited maximum efficiency (SLME) introduced by Yu and Zunger [Phys. Rev.

Lett. 108, 068701 (2012)] is used as a metric for the screening. After constructing the currentvoltage

curve, the SLME is calculated from the maximum power output. The role of the nature of

the band gap, direct or indirect, and also of the absorptivity of the studied materials on the maximum

theoretical power conversion efficiency is studied. Our results show that Cu2II-GeSe4 with

II¼ Cd and Hg, and Cu2-II-SnS4 with II ¼ Cd, Hg, and Zn have a higher theoretical efficiency

compared with the materials currently used as absorber layer.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383913400074 Publication Date 2016-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 29 Open Access  
  Notes We acknowledge the financial support from the FWO-Vlaanderen through project G.0150.13N and a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), bothfunded by the FWO-Vlaanderen and the Flemish Government–department EWI. Approved Most recent IF: 2.068  
  Call Number c:irua:135089 Serial 4113  
Permanent link to this record
 

 
Author Courtens, E.N.P.; Vandekerckhove, T.; Prat, D.; Vilchez-Vargas, R.; Vital, M.; Pieper, D.H.; Meerbergen, K.; Lievens, B.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Empowering a mesophilic inoculum for thermophilic nitrification : growth mode and temperature pattern as critical proliferation factors for archaeal ammonia oxidizers Type A1 Journal article
  Year 2016 Publication Water research Abbreviated Journal  
  Volume 92 Issue Pages 94-103  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Cost-efficient biological treatment of warm nitrogenous wastewaters requires the development of thermophilic nitrogen removal processes. Only one thermophilic nitrifying bioreactor was described so far, achieving 200 mg N L-1 d-1 after more than 300 days of enrichment from compost samples. From the practical point of view in which existing plants would be upgraded, however, a more time-efficient development strategy based on mesophilic nitrifying sludge is preferred. This study evaluated the adaptive capacities of mesophilic nitrifying sludge for two linear temperature increase patterns (non-oscillating vs. oscillating), two different slopes (0.25 vs. 0.08 °C d-1) and two different reactor types (floc vs. biofilm growth). The oscillating temperature pattern (0.25 °C d-1) and the moving bed biofilm reactor (0.08 °C d-1) could not reach nitrification at temperatures higher than 46°C. However, nitrification rates up to 800 mg N L-1 d-1 and 150 mg N g-1 volatile suspended solids d-1 were achieved at a temperature as high as 49°C by imposing the slowest linear temperature increase to floccular sludge. Microbial community analysis revealed that this successful transition was related with a shift in ammonium oxidizing archaea dominating ammonia oxidizing bacteria, while for nitrite oxidation Nitrospira spp. was constantly more abundant than Nitrobacter spp.. This observation was accompanied with an increase in observed sludge yield and a shift in maximal optimum temperature, determined with ex-situ temperature sensitivity measurements, predicting an upcoming reactor failure at higher temperature. Overall, this study achieved nitrification at 49°C within 150 days by gradual adaptation of mesophilic sludge, and showed that ex-situ temperature sensitivity screening can be used to monitor and steer the transition process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371555200011 Publication Date 2016-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:130444 Serial 7900  
Permanent link to this record
 

 
Author Agarwal, T.; Sorée, B.; Radu, I.; Raghavan, P.; Fiori, G.; Iannaccone, G.; Thean, A.; Heyns, M.; Dehaene, W. doi  openurl
  Title Comparison of short-channel effects in monolayer MoS2 based junctionless and inversion-mode field-effect transistors Type A1 Journal article
  Year 2016 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 108 Issue 108 Pages 023506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Conventional junctionless (JL) multi/gate (MuG) field-effect transistors (FETs) require extremely scaled channels to deliver high on-state current with low short-channel effect related leakage. In this letter, using ultra-thin 2D materials (e.g., monolayer MoS2), we present comparison of short-channel effects in JL, and inversion-mode (IM) FETs. We show that JL FETs exhibit better sub-threshold slope (S.S.) and drain-induced-barrier-lowering (DIBL) in comparison to IM FETs due to reduced peak electric field at the junctions. But, threshold voltage (VT) roll-off with channel length downscaling is found to be significantly higher in JL FETs than IM FETs, due to higher source/drain controlled charges (dE/dx) in the channel. Further, we show that although VT roll-off in JL FETs improves by increasing the gate control, i.e., by scaling the oxide, or channel thickness, the sensitivity of threshold voltage on structural parameters is found out to be high. (C) 2016 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000370258400056 Publication Date 2016-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 13 Open Access  
  Notes ; ; Approved Most recent IF: 3.411  
  Call Number UA @ lucian @ c:irua:132318 Serial 4152  
Permanent link to this record
 

 
Author Liao, Z.; Huijben, M.; Zhong, Z.; Gauquelin, N.; Macke, S.; Green, R.J.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.; Held, K.; Sawatzky, G.A.; Koster, G.; Rijnders, G. url  doi
openurl 
  Title Controlled lateral anisotropy in correlated manganite heterostructures by interface-engineered oxygen octahedral coupling Type A1 Journal article
  Year 2016 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 15 Issue 15 Pages 425-431  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Controlled in-plane rotation of the magnetic easy axis in manganite heterostructures by tailoring the interface oxygen network could allow the development of correlated oxide-based magnetic tunnelling junctions with non-collinear magnetization, with possible practical applications as miniaturized high-switching-speed magnetic random access memory (MRAM) devices. Here, we demonstrate how to manipulate magnetic and electronic anisotropic properties in manganite heterostructures by engineering the oxygen network on the unit-cell level. The strong oxygen octahedral coupling is found to transfer the octahedral rotation, present in the NdGaO3 (NGO) substrate, to the La2/3Sr1/3MnO3 (LSMO) film in the interface region. This causes an unexpected realignment of the magnetic easy axis along the short axis of the LSMO unit cell as well as the presence of a giant anisotropic transport in these ultrathin LSMO films. As a result we possess control of the lateral magnetic and electronic anisotropies by atomic-scale design of the oxygen octahedral rotation.  
  Address MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000372591700017 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 273 Open Access  
  Notes We would like to acknowledge Dr. Evert Houwman for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010- 246102 IFOX. J.V. and S.V.A. acknowledges funding from FWO project G.0044.13N and G. 0368.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G., S.V.A., J.V. and G.V.T. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483-ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. Z.Z. acknowledges funding from the SFB ViCoM (Austrian Science Fund project ID F4103- N13), and Calculations have been done on the Vienna Scientific Cluster (VSC).; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 39.737  
  Call Number c:irua:133190 c:irua:133190UA @ admin @ c:irua:133190 Serial 4041  
Permanent link to this record
 

 
Author Misseeuw, L.; Krajewska, A.; Pasternak, I.; Ciuk, T.; Strupinski, W.; Reekmans, G.; Adriaensens, P.; Geldof, D.; Geldof, D.; Van Vlierberghe, S.; Thienpont, H.; Dubruelf, P.; Vermeulen, N. pdf  doi
openurl 
  Title Optical-quality controllable wet-chemical doping of graphene through a uniform, transparent and low-roughness F4-TCNQ/MEK layer Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal  
  Volume Issue 106 Pages 104491-104501  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Controllable chemical doping of graphene has already proven very useful for electronic applications, but when turning to optical and photonic applications, the additional requirement of having both a high transparency and a low surface roughness has, to our knowledge, not yet been fulfilled by any chemical dopant system reported so far. In this work, a new method that meets for the first time this opticalquality requirement while also providing efficient, controllable doping is presented. The method relies on F4-TCNQ dissolved in methyl ethyl ketone (MEK) yielding a uniform deposition after spin coating because of an extraordinary charge transfer interaction between the F4-TCNQ and MEK molecules. The formed F4-TCNQ/MEK layer exhibits a very high surface quality and optical transparency over the visible-infrared wavelength range between 550 and 1900 nm. By varying the dopant concentration of F4-TCNQ from 2.5 to 40 mg ml1 MEK, the doping effect can be controlled between Dn ¼ +5.73 1012 cm2 and +1.09 1013 cm2 for initially strongly p-type hydrogen-intercalated graphene grown on 6Hsilicon- carbide substrates, and between Dn ¼ +5.56 1012 cm2 and +1.04 1013 cm2 for initially weakly p-type graphene transferred on silicon samples. This is the first time that truly optical-quality chemical doping of graphene is demonstrated, and the obtained doping values exceed those reported before for F4-TCNQ-based graphene doping by as much as 50%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388111900075 Publication Date 2016-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:136405 Serial 8335  
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Reniers, F.; Bogaerts, A. pdf  url
doi  openurl
  Title DBD in burst mode: solution for more efficient CO2conversion? Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 055005  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) CO2 conversion into value-added products has gained significant interest over the few last years, as the greenhouse gas concentrations constantly increase due to anthropogenic activities. Here we report on experiments for CO2 conversion by means of a cold atmospheric plasma using a cylindrical flowing dielectric barrier discharge (DBD) reactor. A detailed comparison of this DBD ignited in a so-called burst mode (i.e. where an AC voltage is applied during a limited amount of time) and pure AC mode is carried out to evaluate their effect on the conversion of CO2 as well as on the energy efficiency. Decreasing the duty cycle in the burst mode from 100% (i.e. corresponding to pure AC mode) to 40% leads to a rise in the

conversion from 16–26% and to a rise in the energy efficiency from 15 to 23%. Based on a detailed electrical analysis, we show that the conversion correlates with the features of the microfilaments. Moreover, the root-mean-square voltage in the burst mode remains constant as a function of the process time for the duty cycles <70%, while a higher duty cycle or the usual pure AC mode leads to a clear voltage decay by more than 500 V, over approximately 90 s, before reaching a steady state regime. The higher plasma voltage in the burst mode yields a higher electric field. This causes the increasing the electron energy, and therefore their

involvement in the CO2 dissociation process, which is an additional explanation for the higher CO2 conversion and energy efficiency in the burst mode.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000403945500005 Publication Date 2016-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 17 Open Access  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A. Ozkan would also like to thank financial support given by ‘Fonds David et Alice Van Buuren’. Approved Most recent IF: 3.302  
  Call Number c:irua:134841 Serial 4107  
Permanent link to this record
 

 
Author Wang, W.; Berthelot, A.; Kolev, S.; Tu, X.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 065012  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (down) CO 2 conversion by a gliding arc plasma is gaining increasing interest, but the underlying mechanisms for an energy-efficient process are still far from understood. Indeed, the chemical complexity of the non-equilibrium plasma poses a challenge for plasma modeling due to the huge computational load. In this paper, a one-dimensional (1D) gliding arc model is developed in a cylindrical frame, with a detailed non-equilibrium CO 2 plasma chemistry set, including the CO 2 vibrational kinetics up to the dissociation limit. The model solves a set of time- dependent continuity equations based on the chemical reactions, as well as the electron energy balance equation, and it assumes quasi-neutrality in the plasma. The loss of plasma species and heat due to convection by the transverse gas flow is accounted for by using a characteristic frequency of convective cooling, which depends on the gliding arc radius, the relative velocity of the gas flow with respect to the arc and on the arc elongation rate. The calculated values for plasma density and plasma temperature within this work are comparable with experimental data on gliding arc plasma reactors in the literature. Our calculation results indicate that excitation to the vibrational levels promotes efficient dissociation in the gliding arc, and this is consistent with experimental investigations of the gliding arc based CO 2 conversion in the literature. Additionally, the dissociation of CO 2 through collisions with O atoms has the largest contribution to CO 2 splitting under the conditions studied. In addition to the above results, we also demonstrate that lumping the CO 2 vibrational states can bring a significant reduction of the computational load. The latter opens up the way for 2D or 3D models with an accurate description of the CO 2 vibrational kinetics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000386605100002 Publication Date 2016-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 3 Open Access  
  Notes This research was supported by the European Marie Skłodowska-Curie Individual Fellowship ‘GlidArc’ within Horizon2020 (Grant No. 657304) and by the FWO project (grant G.0383.16N). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:135990 Serial 4286  
Permanent link to this record
 

 
Author Hill, E.H.; Claes, N.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Layered Silicate Clays as Templates for Anisotropic Gold Nanoparticle Growth Type A1 Journal article
  Year 2016 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 28 Issue 28 Pages 5131-5139  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Clay minerals are abundant natural materials arising in the presence of water and are composed of small particles of different sizes and shapes. The interlamellar space between layered silicate clays can also be used to host a variety of different organic and inorganic guest molecules or particles. Recent studies of clay−metal hybrids formed by impregnation of nanoparticles into the interlayer spaces of the clays have not demonstrated the ability for templated growth following the shape of the particles. Following this line of interest, a method for the synthesis of gold nanoparticles on the synthetic layered silicate clay laponite was developed. This approach can be used to make metal−clay nanoparticles with a variety of morphologies while retaining the molecular adsorption properties of the clay. The surface enhanced Raman scattering enhancement of these particles was also found to be greater than that obtained from other metal nanoparticles of a similar morphology, likely due to increased dye adsorption by the presence of the clay. The hybrid particles presented herein will contribute to further study of plasmonic

sensing, catalysis, dye aggregation, and novel composite materials.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000380576700031 Publication Date 2016-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 13 Open Access OpenAccess  
  Notes This work has been supported by the European Research Council (ERC Advanced Grant No. 267867, PLASMAQUO). E.H.H. thanks the Spanish Ministry of Economy and Competitiveness for providing a Juan de la Cierva Fellowship (FJCI-2014-22598). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). We gratefully acknowledge A. B. Serrano-Montes for providing the seed-mediated Au nanostars.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466  
  Call Number c:irua:135178 c:irua:135178 Serial 4117  
Permanent link to this record
 

 
Author Zhang, L.; Fernández Becerra, V.; Covaci, L.; Milošević, M.V. url  doi
openurl 
  Title Electronic properties of emergent topological defects in chiral p-wave superconductivity Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 024520  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Chiral p-wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the relative OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented nonsuperconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000381479500002 Publication Date 2016-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:135742 Serial 4303  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: