|
Record |
Links |
|
Author |
Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. |
|
|
Title |
First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Journal of applied physics |
Abbreviated Journal |
J Appl Phys |
|
|
Volume |
120 |
Issue |
120 |
Pages |
085707 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT) |
|
|
Abstract |
Cu-based chalcogenides are promising materials for thin-film solar cells with more than 20% measured
cell efficiency. Using first-principles calculations based on density functional theory, the
optoelectronic properties of a group of Cu-based chalcogenides Cu2-II-IV-VI4 is studied. They are
then screened with the aim of identifying potential absorber materials for photovoltaic applications.
The spectroscopic limited maximum efficiency (SLME) introduced by Yu and Zunger [Phys. Rev.
Lett. 108, 068701 (2012)] is used as a metric for the screening. After constructing the currentvoltage
curve, the SLME is calculated from the maximum power output. The role of the nature of
the band gap, direct or indirect, and also of the absorptivity of the studied materials on the maximum
theoretical power conversion efficiency is studied. Our results show that Cu2II-GeSe4 with
II¼ Cd and Hg, and Cu2-II-SnS4 with II ¼ Cd, Hg, and Zn have a higher theoretical efficiency
compared with the materials currently used as absorber layer. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000383913400074 |
Publication Date |
2016-08-30 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0021-8979 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.068 |
Times cited |
29 |
Open Access |
|
|
|
Notes |
We acknowledge the financial support from the FWO-Vlaanderen through project G.0150.13N and a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), bothfunded by the FWO-Vlaanderen and the Flemish Government–department EWI. |
Approved |
Most recent IF: 2.068 |
|
|
Call Number |
c:irua:135089 |
Serial |
4113 |
|
Permanent link to this record |