toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verleysen, E.; Bender, H.; Richard, O.; Schryvers, D.; Vandervorst, W. doi  openurl
  Title Compositional characterization of nickel silicides by HAADF-STEM imaging Type A1 Journal article
  Year 2011 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 46 Issue 7 Pages 2001-2008  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A methodology for the quantitative compositional characterization of nickel silicides by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) imaging is presented. HAADF-STEM images of a set of nickel silicide reference samples Ni3Si, Ni31Si12, Ni2Si, NiSi and NiSi2 are taken at identical experimental conditions. The correlation between sample thickness and HAADF-STEM intensity is discussed. In order to quantify the relationship between the experimental Z-contrast intensities and the composition of the analysed layers, the ratio of the HAADF-STEM intensity to the sample thickness or to the intensity of the silicon substrate is determined for each nickel silicide reference sample. Diffraction contrast is still detected on the HAADF-STEM images, even though the detector is set at the largest possible detection angle. The influence on the quantification results of intensity fluctuations caused by diffraction contrast and channelling is examined. The methodology is applied to FUSI gate devices and to horizontal TFET devices with different nickel silicides formed on source, gate and drain. It is shown that, if the elements which are present are known, this methodology allows a fast quantitative 2-dimensional compositional analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000286633000002 Publication Date 2011-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461;1573-4803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.599; 2011 IF: 2.015  
  Call Number UA @ lucian @ c:irua:88950 Serial 446  
Permanent link to this record
 

 
Author Pourbabak, S.; Orekhov, A.; Schryvers, D. pdf  url
doi  openurl
  Title Twin-jet electropolishing for damage-free transmission electron microscopy specimen preparation of metallic microwires Type A1 Journal article
  Year 2020 Publication Microscopy Research And Technique Abbreviated Journal Microsc Res Techniq  
  Volume Issue Pages 1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A method to prepare TEM specimens from metallic microwires and based on conventional twin-jet electropolishing is introduced. The wire is embedded in an opaque epoxy resin medium and the hardened resin is mechanically polished to reveal the wire on both sides. The resin containing wire is then cut into discs of the appropriate size. The obtained embedded wire is electropolished in a conventional twin-jet electropolishing machine until electron transparency in large areas without radiation damage is achieved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000567944200001 Publication Date 2020-09-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1059-910x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access OpenAccess  
  Notes ; Fonds Wetenschappelijk Onderzoek, Grant/Award Number: G.0366.15N ; Approved Most recent IF: 2.5; 2020 IF: 1.147  
  Call Number UA @ admin @ c:irua:171969 Serial 6642  
Permanent link to this record
 

 
Author Verbist, K.; Lebedev, O.I.; Van Tendeloo, G.; Tafuri, F.; Granozio, F.M.; Di Chiara, A.; Bender, H. pdf  doi
openurl 
  Title A potential method to correlate electrical properties and microstructure of a unique high-Tc superconducting Josephson junction Type A1 Journal article
  Year 1999 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 74 Issue 7 Pages 1024-1026  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A method to correlate microstructure from cross-section transmission electron microscopy (TEM) investigations and transport properties of a single well characterized high-T-c artificial grain boundary junction is reported. A YBa2Cu3O7-delta 45 degrees twist junction exhibiting the typical phenomenology of high T-c Josephson weak links was employed. The TEM sample preparation is based on focused ion beam etching and allows to easily localize the electron transparent area on a microbridge. The reported technique opens clear perspectives in the determination of the microstructural origin of variations in Josephson junction properties, such as the spread in I-c and IcRN values and the presence of different transport regimes in nominally identical junctions. (C) 1999 American Institute of Physics. [S0003-6951(99)03404-X].  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000078571400043 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.411; 1999 IF: 4.184  
  Call Number UA @ lucian @ c:irua:102912 Serial 2686  
Permanent link to this record
 

 
Author de Gryse, O.; Clauws, P.; Rossou, L.; van Landuyt, J.; Vanhellemont, J. doi  openurl
  Title Accurate infrared spectroscopy determination of interstitial and precipitated oxygen in highly doped Czochralski-grown silicon Type A1 Journal article
  Year 1999 Publication The review of scientific instruments Abbreviated Journal Rev Sci Instrum  
  Volume 70 Issue 9 Pages 3661-3663  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A method has been developed to determine the interstitial and precipitated oxygen concentration in highly doped n- and p-type silicon. 10-30-mu m-thin silicon samples in a mechanical stress-free state and without alteration of the thermal history are prepared and measured with Fourier transform infrared spectroscopy at 5.5-6 K. The measured oxygen contents in the as-grown Si samples agree well with those obtained with gas fusion analysis. In the highly boron-doped samples, the interstitial oxygen can be determined down to 10(17) cm(-3). (C) 1999 American Institute of Physics. [S0034-6748(99)04909-6].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000082289200026 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6748; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.515 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.515; 1999 IF: 1.293  
  Call Number UA @ lucian @ c:irua:103487 Serial 48  
Permanent link to this record
 

 
Author Kirilenko, D.A. pdf  doi
openurl 
  Title Electron diffraction measurement of the binding rigidity of free-standing graphene Type A1 Journal article
  Year 2013 Publication Technical physics letters Abbreviated Journal Tech Phys Lett+  
  Volume 39 Issue 4 Pages 325-328  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A method for measuring the binding rigidity of free-standing graphene from the dependence of the short-wavelength spectral range of transverse structural fluctuations of a crystal is proposed. The fluctuation spectrum is measured according to the variation in electron-diffraction patterns derived in a transmission electron microscope while tilting the sample.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319162600003 Publication Date 2013-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850;1090-6533; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.771 Times cited 3 Open Access  
  Notes Approved Most recent IF: 0.771; 2013 IF: 0.583  
  Call Number UA @ lucian @ c:irua:109031 Serial 920  
Permanent link to this record
 

 
Author Gorlé, C.; Larsson, J.; Emory, M.; Iaccarino, G. pdf  doi
openurl 
  Title The deviation from parallel shear flow as an indicator of linear eddy-viscosity model inaccuracy Type A1 Journal article
  Year 2014 Publication Physics of fluids Abbreviated Journal Phys Fluids  
  Volume 26 Issue 5 Pages 051702  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A marker function designed to indicate in which regions of a generic flow field the results from linear eddy-viscosity turbulence models are plausibly inaccurate is introduced. The marker is defined to identify regions that deviate from parallel shear flow. For two different flow fields it is shown that these regions largely coincide with regions where the prediction of the Reynolds stress divergence is inaccurate. The marker therefore offers a guideline for interpreting results obtained from Reynolds-averaged Navier-Stokes simulations and provides a basis for the further development of turbulence model-form uncertainty quantification methods. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000337103900002 Publication Date 2014-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-6631;1089-7666; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.232 Times cited 19 Open Access  
  Notes Approved Most recent IF: 2.232; 2014 IF: 2.031  
  Call Number UA @ lucian @ c:irua:118385 Serial 684  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Possibilities and limitations of advanced transmission electron microscopy for carbon-based nanomaterials Type A1 Journal article
  Year 2015 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 6 Issue 6 Pages 1541-1557  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) A major revolution for electron microscopy in the past decade is the introduction of aberration correction, which enables one to increase both the spatial resolution and the energy resolution to the optical limit. Aberration correction has contributed significantly to the imaging at low operating voltages. This is crucial for carbon-based nanomaterials which are sensitive to electron irradiation. The research of carbon nanomaterials and nanohybrids, in particular the fundamental understanding of defects and interfaces, can now be carried out in unprecedented detail by aberration-corrected transmission electron microscopy (AC-TEM). This review discusses new possibilities and limits of AC-TEM at low voltage, including the structural imaging at atomic resolution, in three dimensions and spectroscopic investigation of chemistry and bonding. In situ TEM of carbon-based nanomaterials is discussed and illustrated through recent reports with particular emphasis on the underlying physics of interactions between electrons and carbon atoms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357977300001 Publication Date 2015-07-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 10 Open Access  
  Notes 246791 Countatoms Approved Most recent IF: 3.127; 2015 IF: 2.670  
  Call Number c:irua:126857 Serial 2682  
Permanent link to this record
 

 
Author Hervieu, M.; Damay, F.; Poienar, M.; Elkaim, E.; Rouquette, J.; Abakumov, A.M.; Van Tendeloo, G.; Maignan, A.; Martin, C. doi  openurl
  Title Nanostructures in LuFe2O4+\delta Type A1 Journal article
  Year 2013 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume 23 Issue Pages 26-34  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A LuFe2O4+delta sample, previously characterized by X-ray synchrotron and neutron diffraction, has been studied by electron microscopy techniques, in order to get a precise description of its micro- and nanostructures at room temperature. The X-ray synchrotron data vs. temperature show that the monoclinic distortion is associated with the charge ordering; this distortion results in elongated twinning domains, which enhance the complexity of the microstructural state at room temperature. The structural modulation associated with oxygen excess is observed in large domains inside a non modulated matrix, in contrast with the modulations associated with the charge ordering of the Fe2+ and Fe3+ species, which are mostly short-range. The investigation of the nature and density of defects in the sample shows that they are nano-scaled, preserving the regularity of the layer stacking mode, and limited to the formation of one- or two-units large stacking faults, associated with gliding mechanisms. Based on these observations, an original description of the LuFe2O4 ferrite structure, through puckered [LuO4](infinity) sandwiching [Fe-2](infinity) layers, is proposed. (C) 2013 Elsevier Masson SAS. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000324156200005 Publication Date 2013-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 7 Open Access  
  Notes Approved Most recent IF: 1.811; 2013 IF: 1.679  
  Call Number UA @ lucian @ c:irua:111196 Serial 2276  
Permanent link to this record
 

 
Author Corthals, S.; van Noyen, J.; Geboers, J.; Vosch, T.; Liang, D.; Ke, X.; Hofkens, J.; Van Tendeloo, G.; Jacobs, P.; Sels, B. pdf  doi
openurl 
  Title The beneficial effect of CO2 in the low temperature synthesis of high quality carbon nanofibers and thin multiwalled carbon nanotubes from CH_{4} over Ni catalysts Type A1 Journal article
  Year 2012 Publication Carbon Abbreviated Journal Carbon  
  Volume 50 Issue 2 Pages 372-384  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A low temperature chemical vapor deposition method is described for converting CH4 into high-quality carbon nanofibers (CNFs) using a Ni catalyst supported on either spinel or perovskite oxides in the presence of CO2. The addition of CO2 has a significant influence on CNF purity and stability, while the CNF diameter distribution is significantly narrowed. Ultimately, the addition of CO2 changes the CNF structure from fishbone fibers to thin multiwalled carbon nanotubes. A new in situ cooling principle taking into account dry reforming chemistry and thermodynamics is introduced to account for the structural effects of CO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000297397700004 Publication Date 2011-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 26 Open Access  
  Notes Iwt; Iap Approved Most recent IF: 6.337; 2012 IF: 5.868  
  Call Number UA @ lucian @ c:irua:93626 Serial 228  
Permanent link to this record
 

 
Author Fang, C.M.; Sluiter, M.H.F.; van Huis, M.; Ande, C.K.; Zandbergen, H.W. url  doi
openurl 
  Title Origin of predominance of cementite among iron carbides in steel at elevated temperature Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 105 Issue 5 Pages 4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A long-standing challenge in physics is to understand why cementite is the predominant carbide in steel. Here we show that the prevalent formation of cementite can be explained only by considering its stability at elevated temperature. A systematic highly accurate quantum mechanical study was conducted on the stability of binary iron carbides. The calculations show that all the iron carbides are unstable relative to the elemental solids, -Fe and graphite. Apart from a cubic Fe23C6 phase, the energetically most favorable carbides exhibit hexagonal close-packed Fe sublattices. Finite-temperature analysis showed that contributions from lattice vibration and anomalous Curie-Weis magnetic ordering, rather than from the conventional lattice mismatch with the matrix, are the origin of the predominance of cementite during steel fabrication processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000280472900008 Publication Date 2010-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 65 Open Access  
  Notes Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:84064 Serial 2526  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Claes, N.; Solís, D.M.; Taboada, J.M.; Bals, S.; Liz-Marzán, L.M.; Grzelczak, M. pdf  url
doi  openurl
  Title Reversible Clustering of Gold Nanoparticles under Confinement Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 57 Pages 3183-3186  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A limiting factor of solvent-induced nanoparticle self-assembly is the need for constant sample dilution in assembly/disassembly cycles. Changes in the nanoparticle concentration alter the kinetics of the subsequent assembly process, limiting optical signal recovery. Herein, we show that upon confining hydrophobic nanoparticles in permeable silica nanocapsules, the number of nanoparticles participating in cyclic aggregation remains constant despite bulk changes in solution, leading to highly reproducible plasmon band shifts at different solvent compositions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426759900031 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 53 Open Access OpenAccess  
  Notes L.M.L.-M. and M.G. acknowledge funding from the Spanish MINECO (Grant #MAT2013-46101R). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). D.M.S., and J.M.T, acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish MINECO (Projects TEC2017-85376-C2-1-R, TEC2017-85376-C2-2-R), and from the ERDF and the Galician Regional Government under agreement for funding the Atlantic Research Center for Information and Communication Technologies (AtlantTIC). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 11.994  
  Call Number EMAT @ emat @c:irua:149558UA @ admin @ c:irua:149558 Serial 4911  
Permanent link to this record
 

 
Author Van Tendeloo, G.; De Meulenaere, P.; Schryvers, D. pdf  doi
openurl 
  Title Landscape roughness at an atomic scale Type A1 Journal article
  Year 1997 Publication Physica: D : nonlinear phenomena Abbreviated Journal Physica D  
  Volume 107 Issue Pages 401-410  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A large number of materials have a highly degenerate ground state and therefore a complex microstructure. Because of this degenerate state, phase transitions between the different phases play an important role. High resolution techniques in electron microscopy and nano-scale chemical analysis allow to study not only the microstructure but also the interfaces down to an atomic scale. We focus particularly on the ambiguity of alloys oil approaching the phase transition. The short range order (SRO) in ''1 1/20'' type alloys and the microstructure of ''tweed'' and needle formation in martensite like alloys with composition Ni5Al3 are considered in more detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1997YC73400034 Publication Date 2003-05-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-2789; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.514 Times cited 2 Open Access  
  Notes Approved Most recent IF: 1.514; 1997 IF: 1.508  
  Call Number UA @ lucian @ c:irua:21347 Serial 1775  
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Jones, L.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Hybrid statistics-simulations based method for atom-counting from ADF STEM images Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 177 Issue 177 Pages 69-77  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A hybrid statistics-simulations based method for atom-counting from annular dark field scanning transmission electron microscopy (ADF STEM) images of monotype crystalline nanostructures is presented. Different atom-counting methods already exist for model-like systems. However, the increasing relevance of radiation damage in the study of nanostructures demands a method that allows atom-counting from low dose images with a low signal-to-noise ratio. Therefore, the hybrid method directly includes prior knowledge from image simulations into the existing statistics-based method for atom-counting, and accounts in this manner for possible discrepancies between actual and simulated experimental conditions. It is shown by means of simulations and experiments that this hybrid method outperforms the statistics-based method, especially for low electron doses and small nanoparticles. The analysis of a simulated low dose image of a small nanoparticle suggests that this method allows for far more reliable quantitative analysis of beam-sensitive materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000401219800010 Publication Date 2017-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0368.15N, G.0369.15N, and WO.010.16N), and a postdoctoral research Grant to A. De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). The authors are grateful to G.T. Martinez for providing image simulations. Approved Most recent IF: 2.843  
  Call Number EMAT @ emat @ c:irua:141718 Serial 4486  
Permanent link to this record
 

 
Author Kee-Hyun, K.; van Daele, B.; Van Tendeloo, G.; Jong-Kyu, Y. openurl 
  Title Observations of intermetallic compound formation of hot dip aluminized steel Type A1 Journal article
  Year 2006 Publication Aluminium alloys: part 1-2 Abbreviated Journal  
  Volume 519-521 Issue 1-2 Pages 1871-1875  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A hot dip aluminizing process to simulate the continuous galvanizing line (CGL) was carried out in three successive steps by a hot dip simulator: the pre-treatment for removing scales on the 200 x 250 mm(2) and 1mm in thickness cold rolled steel sheet, the dipping in 660 degrees C Al-Si melt for 3s and the cooling. In a pre-treatment, the steel specimen was partly coated by Au to confirm the mechanism of intermetallic compound (IMC) formation. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses were followed to observe the cross-section and the distribution of the elements. The specimen was analyzed in the boundary of the dipped-undipped part to see the formation mechanism of the aluminized steel. An intermetallic compound (IMC) is rapidly developed and grown in the steel-liquid interface. It has been usually reported that the IMC was formed by the dissolution of iron in the steel substrate toward the melt and the diffusion of aluminum in an opposite direction. The specimen is covered with aluminum-10 wt.% silicon, forms the IMC in the part that was not Au coated. However, IMC is not formed in the Au-coated part. The interface of the dipped-undipped is also analyzed by EDX. At the interface of the steel-IMC, it is clearly shown that the IMC is only formed in the dipped part and exists in the steel substrate as well, and contributes by iron, aluminum and silicon. The result clearly shows that only aluminum diffuses into the steel substrate without the dissolution of iron and forms the IMC between the steel substrate and the melt. Au coating and the short dipping time prevent the iron from dissolving into the aluminum melt. By TEM combined with focused ion beam (FIB) sample preparation, the IMC is confirmed as Fe2SiAl8, a hexagonal structure with space group P6(3)/mmc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:104062 Serial 2425  
Permanent link to this record
 

 
Author Vasiliev, R.B.; Babynina, A.V.; Maslova, O.A.; Rumyantseva, M.N.; Ryabova, L.I.; Dobrovolsky, A.A.; Drozdov, K.A.; Khokhlov, D.R.; Abakumov, A.M.; Gaskov, A.M. doi  openurl
  Title Photoconductivity of nanocrystalline SnO2 sensitized with colloidal CdSe quantum dots Type A1 Journal article
  Year 2013 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 1 Issue 5 Pages 1005-1010  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A highly reproducible photoresponse is observed in nanocrystalline SnO2 thick films sensitized with CdSe quantum dots. The effect of the SnO2 matrix microstructure on the photoconductivity kinetics and photoresponse amplitude is demonstrated. The photoresponse of the sensitized SnO2 thick films reaches more than two orders of magnitude under illumination with the wavelength of the excitonic transition of the quantum dots. Long-term photoconductivity kinetics and photoresponse dependence on illumination intensity reveal power-law behavior inherent to the disordered nature of SnO2. The photoconductivity of the samples rises with the coarsening of the granular structure of the SnO2 matrix. At the saturation region, the photoresponse amplitude remains stable under 10(4) pulses of illumination switching, demonstrating a remarkably high stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314803600016 Publication Date 2012-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 13 Open Access  
  Notes Approved Most recent IF: 5.256; 2013 IF: NA  
  Call Number UA @ lucian @ c:irua:107705 Serial 2610  
Permanent link to this record
 

 
Author Lu, Y.; Liu, X.-L.; He, L.; Zhang, Y.-X.; Hu, Z.-Y.; Tian, G.; Cheng, X.; Wu, S.-M.; Li, Y.-Z.; Yang, X.-H.; Wang, L.-Y.; Liu, J.-W.; Janiak, C.; Chang, G.-G.; Li, W.-H.; Van Tendeloo, G.; Yang, X.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Spatial heterojunction in nanostructured TiO₂ and its cascade effect for efficient photocatalysis Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue 5 Pages 3122-3129  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) A highly efficient photoenergy conversion is strongly dependent on the cumulative cascade efficiency of the photogenerated carriers. Spatial heterojunctions are critical to directed charge transfer and, thus, attractive but still a challenge. Here, a spatially ternary titanium-defected TiO2@carbon quantum dots@reduced graphene oxide (denoted as V-Ti@CQDs@rGO) in one system is shown to demonstrate a cascade effect of charges and significant performances regarding the photocurrent, the apparent quantum yield, and photocatalysis such as H-2 production from water splitting and CO2 reduction. A key aspect in the construction is the technologically irrational junction of Ti-vacancies and nanocarbons for the spatially inside-out heterojunction. The new “spatial heterojunctions” concept, characteristics, mechanism, and extension are proposed at an atomic- nanoscale to clarify the generation of rational heterojunctions as well as the cascade electron transfer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535255300024 Publication Date 2020-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 5 Open Access Not_Open_Access  
  Notes ; This work was supported by the joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft (NSFC-DFG) project (NSFC grant 51861135313, DFG JA466/39-1), Fundamental Research Funds for the Central Universities (19lgpy113, 19lgzd16), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) and Jilin Province Science and Technology Development Plan (20180101208JC). ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:170263 Serial 6608  
Permanent link to this record
 

 
Author Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; Pokochueva, E.V.; Kovtunov, K.V.; Koptyug, I.V.; Villar-Garcia, I.J.; Escudero, C.; Altantzis, T.; Liu, P.; Béché, A.; Bals, S.; Kosinov, N.; Hensen, E.J.M. url  doi
openurl 
  Title Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles Type A1 Journal article
  Year 2022 Publication Nature Catalysis Abbreviated Journal Nat Catal  
  Volume 5 Issue 11 Pages 1051-1060  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (down) A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884939300006 Publication Date 2022-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1158 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.8 Times cited 32 Open Access OpenAccess  
  Notes This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective program on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement No 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) I003218N “Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments”. I.V.K., D.B.B., and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract 075-15-2021-580) for financial support of parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and Rim C.J. van de Poll are acknowledged for the help with RPES measurements.; esteem3reported; esteem3jra Approved Most recent IF: 37.8  
  Call Number EMAT @ emat @c:irua:192068 Serial 7230  
Permanent link to this record
 

 
Author Jorissen, K.; Rehr, J.J.; Verbeeck, J. url  doi
openurl 
  Title Multiple scattering calculations of relativistic electron energy loss spectra Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 15 Pages 155108,1-155108,6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A generalization of the real-space Greens-function approach is presented for ab initio calculations of relativistic electron energy loss spectra (EELS) which are particularly important in anisotropic materials. The approach incorporates relativistic effects in terms of the transition tensor within the dipole-selection rule. In particular, the method accounts for relativistic corrections to the magic angle in orientation resolved EELS experiments. The approach is validated by a study of the graphite C  K edge, for which we present an accurate magic angle measurement consistent with the predicted value.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000277210500038 Publication Date 2010-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:82805UA @ admin @ c:irua:82805 Serial 2230  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Mohanchandra, K.P.; Carman, G.P.; van Humbeeck, J. pdf  doi
openurl 
  Title Fabrication and characterization of functionally graded Ni-Ti multilayer thin films Type A1 Journal article
  Year 2009 Publication Functional materials letters Abbreviated Journal Funct Mater Lett  
  Volume 2 Issue 2 Pages 61-66  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A functionally graded multilayer NiTi thin film was deposited on a SiO2/Si substrate by d.c. sputtering using a ramped heated NiTi alloy target. The stand-alone films were crystallized at 500°C in vacuum better than 10-7 Torr. Transmission electron microscopy micrographs taken along the film cross section show two distinct regions, thin and thick, with weak R and B2 phases, respectively. The film compositions along the thickness were measured and quantified using the standard-less EELSMODEL method. The film deposited during the initial thermal ramp (thin regions) displays an average of 54 at.% Ni while the film deposited at a more elevated target temperature (thick regions) shows about 51 at.% Ni.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000271077000003 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1793-6047;1793-7213; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.234 Times cited 9 Open Access  
  Notes Fwo Approved Most recent IF: 1.234; 2009 IF: 2.561  
  Call Number UA @ lucian @ c:irua:77655 Serial 1165  
Permanent link to this record
 

 
Author Gontard, L.C.; Jinschek, J.R.; Ou, H.; Verbeeck, J.; Dunin-Borkowski, R.E. pdf  doi
openurl 
  Title Three-dimensional fabrication and characterisation of core-shell nano-columns using electron beam patterning of Ge-doped SiO2 Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 26 Pages 263113  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A focused electron beam in a scanning transmission electron microscope (STEM) is used to create arrays of core-shell structures in a specimen of amorphous SiO2 doped with Ge. The same electron microscope is then used to measure the changes that occurred in the specimen in three dimensions using electron tomography. The results show that transformations in insulators that have been subjected to intense irradiation using charged particles can be studied directly in three dimensions. The fabricated structures include core-shell nano-columns, sputtered regions, voids, and clusters. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4731765]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000305831500081 Publication Date 2012-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:100337 Serial 3651  
Permanent link to this record
 

 
Author Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D. pdf  url
doi  openurl
  Title First-principles study of carbon impurities in CuInSe2 and CuGaSe2, present in non-vacuum synthesis methods Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 015104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (down) A first-principles study of the structural and electronic properties of carbon impurities in CuInSe2 and CuGaSe2 is presented. Carbon is present in organic molecules in the precursor solutions used in non-vacuum growth methods for CuInSe2 and CuGaSe2 based photovoltaic cells. These growth methods make more efficient use of material, time, and energy than traditional vacuum methods. The formation energies of several carbon impurities are calculated using the hybrid HSE06 functional. C Cu acts as a shallow donor, CIn and interstitial C yield deep donor levels in CuInSe2, while in CuGaSe2 CGa and interstitial C act as deep amphoteric defects. So, these defects reduce the majority carrier (hole) concentration in p-type CuInSe2 and CuGaSe2 by compensating the acceptor levels. The deep defects are likely to act as recombination centers for the photogenerated charge carriers and are thus detrimental for the performance of the photovoltaic cells. On the other hand, the formation energies of the carbon impurities are high, even under C-rich growth conditions. Thus, few C impurities will form in CuInSe2 and CuGaSe2 in thermodynamic equilibrium. However, the deposition of the precursor solution in non-vacuum growth methods presents conditions far from thermodynamic equilibrium. In this case, our calculations show that C impurities formed in non-equilibrium tend to segregate from CuInSe2 and CuGaSe2 by approaching thermodynamic equilibrium, e.g., via thorough annealing.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000347958600055 Publication Date 2015-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 6 Open Access  
  Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:122064 Serial 1215  
Permanent link to this record
 

 
Author Kirsanova, M.A.; Mori, T.; Maruyama, S.; Abakumov, A.M.; Van Tendeloo, G.; Olenev, A.; Shevelkov, A.V. pdf  doi
openurl 
  Title Cationic clathrate of type-III Ge172-xPxTey (y\approx21,5, x\approx2y) : synthesis, crystal structure and thermoelectric properties Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 14 Pages 8272-8279  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A first germanium-based cationic clathrate of type-III, Ge129.3P42.7Te21.53, was synthesized and structurally characterized (space group P42/mnm, a = 19.948(3) Å, c = 10.440(2) Å, Z = 1). In its crystal structure, germanium and phosphorus atoms form three types of polyhedral cages centered with Te atoms. The polyhedra share pentagonal and hexagonal faces to form a 3D framework. Despite the complexity of the crystal structure, the Ge129.3P42.7Te21.53 composition corresponds to the Zintl counting scheme with a good accuracy. Ge129.3P42.7Te21.53 demonstrates semiconducting/insulating behavior of electric resistivity, high positive Seebeck coefficient (500 μV K1 at 300 K), and low thermal conductivity (<0.92 W m1 K1) within the measured temperature range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000322087100052 Publication Date 2013-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 3 Open Access  
  Notes Countatoms Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:109214 Serial 301  
Permanent link to this record
 

 
Author Kirsanova, M.A.; Mori, T.; Maruyama, S.; Matveeva; Batuk, D.; Abakumov, A.M.; Gerasimenko, A.V.; Olenev, A.V.; Grin, Y.; Shevelkov, A.V. doi  openurl
  Title Synthesis, structure, and transport properties of type-I derived clathrate Ge46-xPxSe8-y (x=15.4(1); y=0-2.65) with diverse host-guest bonding Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 52 Issue 2 Pages 577-588  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A first clathrate compound with selenium guest atoms, [Ge46-xPx]Se8-y square(y) (x = 15.4(1); y = 0-2.65; square denotes a vacancy), was synthesized as a single-phase and structurally characterized. It crystallizes in the space group Fm (3) over bar with the unit cell parameter a varying from 20.310(2) to 20.406(2) angstrom and corresponding to a 2 x 2 x 2 supercell of a usual clathrate-I structure. The superstructure is formed due to the symmetrical arrangement of the three-bonded framework atoms appearing as a result of the framework transformation of the parent clathrate-I structure. Selenium guest atoms occupy two types of polyhedral cages inside the positively charged framework; all selenium atoms in the larger cages form a single covalent bond with the framework atoms, relating the title compounds to a scanty family of semiclathrates. According to the measurements of electrical resistivity and Seebeck coefficient, [Ge46-xPx]Se8-y square(y) is an n-type semiconductor with E-g = 0.41 eV for x = 15.4(1) and y = 0; it demonstrates the maximal thermoelectric power factor of 2.3 x 10(-5) W K-2 m(-1) at 660 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000314007500010 Publication Date 2012-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 14 Open Access  
  Notes Approved Most recent IF: 4.857; 2013 IF: 4.794  
  Call Number UA @ lucian @ c:irua:107689 Serial 3463  
Permanent link to this record
 

 
Author Moggia, G.; Hoekx, S.; Daems, N.; Bals, S.; Breugelmans, T. url  doi
openurl 
  Title Synthesis and characterization of a highly electroactive composite based on Au nanoparticles supported on nanoporous activated carbon for electrocatalysis Type A1 Journal article
  Year 2023 Publication ChemElectroChem Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (down) A facile, “one-pot”, chemical approach to synthesize gold-based nanoparticles finely dispersed on porous activated carbon (Norit) was demonstrated in this work. The pH of the synthesis bath played a critical role in determining the optimal gold-carbon interaction, which enabled a successful deposition of the gold nanoparticles onto the carbon matrix with a maximized metal utilization of 93 %. The obtained AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques. It was found that the Au nanoparticles, with diameters between 5 and 20 nm, were evenly distributed over the carbon matrix, both inside and outside the pores. Electrochemical characterization indicated that the composite had a very large electroactive surface area (EASA), as high as 282.4 m2 gAu-1. By exploiting its very high EASA, the catalyst was intended to boost the productivity of glucaric acid in the electrooxidation of its precursor, gluconic acid. However, cyclic voltammetry experiments revealed a very limited reactivity towards gluconic acid oxidation, due to the spacial hindrance of gluconic acid molecule which prevented diffusion inside the catalyst nanopores. On the other hand, the as-synthesized nanocomposite promises to be effective towards the ORR, and might thus find potential application as anode catalyst for fuel cells as well as for the scalability of all those electrochemical reactions involving small molecules with high diffusivity and catalysed by noble metals (i. e. CO2, CH4, N2, etc..). Electrocatalysis: Gold nanoparticles with diameter between 5 and 20 nm evenly distributed onto porous activated carbon (Norit) were obtained using a facile “one-pot” chemical synthesis technique with very high metal utilization. The AuNP/C nanocomposite was characterized using SEM, HAADF-STEM electron tomography and electrochemical techniques, revealing a very large electroactive surface area (EASA). The figure shows the HAADF-STEM image (a) and the respective EDX elemental distribution (b) for the AuNP/C composite with 9.3 % Au-loading developed in this work (Au is marked in red and C in green).image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001060398900001 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 1 Open Access OpenAccess  
  Notes The research described in this article has not been supported by the Climate, Infrastructure and Environment Executive Agency of the European Commission. The views expressed in this article have not been adopted or in any way approved by the European Commission and do not constitute a statement of the European Commission & apos;s views.r S. Hoekx was supported by Research Foundation Flanders (FWO 1S42623N). The authors would like to thank Prof. Dr. Christophe Vande Velde, University of Antwerp, for the XRD analysis. Approved Most recent IF: 4; 2023 IF: 4.136  
  Call Number UA @ admin @ c:irua:199210 Serial 8941  
Permanent link to this record
 

 
Author Neira, I.S.; Kolen'ko, Y.V.; Lebedev, O.I.; Van Tendeloo, G.; Gupta, H.S.; Guitián, F.; Yoshimura, M. pdf  doi
openurl 
  Title An effective morphology control of hydroxyapatite crystals via hydrothermal synthesis Type A1 Journal article
  Year 2009 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des  
  Volume 9 Issue 1 Pages 466-474  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A facile urea-assisted hydrothermal synthesis and systematic characterization of hydroxyapatite (HA) with calcium nitrate tetrahydrate and diammonium hydrogen phosphate as precursors are reported. The advantage of the proposed technique over previously reported synthetic approaches is the simple but precise control of the HA crystals morphology, which is achieved by employing an intensive, stepwise, and slow thermal decomposition of urea as well as varying initial concentrations of starting reagents. Whereas the plate-, hexagonal prism- and needle-like HA particles preferentially growth along the c-axis, the smaller and fine-plate-like HA crystals demonstrate crystal growth along the (102) and (211) directions, uncommon for HA. Furthermore, it was established that the hydrothermally derived powdered products are phase-pure HA containing CO32− anions in the crystal lattice, that is, AB-type carbonated hydroxyapatite. Transmission electron microscopy (TEM) and electron diffraction (ED) of selected samples reveal that the as-prepared HA crystals are single-crystalline and exhibit a nearly defect-free microstructure. The hardness and elastic modulus of the hexagonal prism-like HA crystals have been investigated on a nanoscale using the nanoindentation technique; the observed trends are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000262332700073 Publication Date 2008-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.055 Times cited 183 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.055; 2009 IF: 4.162  
  Call Number UA @ lucian @ c:irua:75740 Serial 853  
Permanent link to this record
 

 
Author Ying, J.; Hu, Z.-Y.; Yang, X.-Y.; Wei, H.; Xiao, Y.-X.; Janiak, C.; Mu, S.-C.; Tian, G.; Pan, M.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title High viscosity to highly dispersed PtPd bimetallic nanocrystals for enhanced catalytic activity and stability Type A1 Journal article
  Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 52 Issue 52 Pages 8219-8222  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A facile high-viscosity-solvent method is presented to synthesize PtPd bimetallic nanocrystals highly dispersed in different mesostructures (2D and 3D structures), porosities (large and small pore sizes), and compositions (silica and carbon). Further, highly catalytic activity, stability and durability of the nanometals have been proven in different catalytic reactions.  
  Address State Key Laboratory Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122, Luoshi Road, Wuhan, 430070, China. xyyang@whut.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000378715400006 Publication Date 2016-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 19 Open Access  
  Notes This work was supported by NFSC (51472190 and 51503166), ISTCP (2015DFE52870), PCSIRT (IRT15R52) of China, and the Integrated Infrastructure Initiative of EU (312483-ESTEEM2).; esteem2jra4 Approved Most recent IF: 6.319  
  Call Number c:irua:134660 c:irua:134660 Serial 4110  
Permanent link to this record
 

 
Author Lemoine, G.; Delannay, L.; Idrissi, H.; Colla, M.-S.; Pardoen, T. pdf  doi
openurl 
  Title Dislocation and back stress dominated viscoplasticity in freestanding sub-micron Pd films Type A1 Journal article
  Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 111 Issue 111 Pages 10-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) A dislocation-based crystal plasticity model is developed in order to study the mechanical and creep/ relaxation behaviour of polycrystalline metallic thin films. The model accounts for the confinement of plasticity due to grain boundaries and for the anisotropy of individual grains, as well as for the significant viscoplastic effects associated to dislocation dominated thermally activated mechanisms. Numerical predictions are assessed based on experimental tensile test followed by relaxation on freestanding Pd films, based on an on-chip test technique. The dislocation-based mechanism assumption captures all the experimental trends, including the stress strain response, the relaxation behaviour and the dislocation density evolution, confirming the dominance of a dislocation driven deformation mechanism for the present Pd films with high defects density. The model has also been used to address some original experimental evidences involving back stresses, Bauschinger effect, backward creep and strain recovery. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000375812100002 Publication Date 2016-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 6 Open Access  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ lucian @ c:irua:133636 Serial 4162  
Permanent link to this record
 

 
Author Hadad, C.; Ke, X.; Carraro, M.; Sartorel, A.; Bittencourt, C.; Van Tendeloo, G.; Bonchio, M.; Quintana, M.; Prato, M. pdf  doi
openurl 
  Title Positive graphene by chemical design : tuning supramolecular strategies for functional surfaces Type A1 Journal article
  Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 50 Issue 7 Pages 885-887  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A diazonium based-arylation reaction was efficiently used for the covalent addition of 4-amino-N,N,N-trimethylbenzene ammonium to stable dispersions of few layer graphene (FLG) yielding an innovative FLG platform with positive charges to immobilize inorganic polyanions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000328884500036 Publication Date 2013-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 19 Open Access  
  Notes Approved Most recent IF: 6.319; 2014 IF: 6.834  
  Call Number UA @ lucian @ c:irua:113733 Serial 2678  
Permanent link to this record
 

 
Author Boyat, X.; Ballat-Durand, D.; Marteau, J.; Bouvier, S.; Favergeon, J.; Orekhov, A.; Schryvers, D. pdf  doi
openurl 
  Title Interfacial characteristics and cohesion mechanisms of linear friction welded dissimilar titanium alloys: Ti–5Al–2Sn–2Zr–4Mo–4Cr (Ti17) and Ti–6Al–2Sn–4Zr–2Mo (Ti6242) Type A1 Journal article
  Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 158 Issue Pages 109942  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) A detailed microstructural examination endeavoring to understand the interfacial phenomena yielding to cohesion

in solid-state assembling processes was performed. This study focuses on the transition zone of a dissimilar

titanium alloy joint obtained by Linear Friction Welding (LFW) the β-metastable Ti17 to the near-α

Ti6242. The transition zone delimitating both alloys is characterized by a sharp microstructure change from

acicular HCP (Hexagonal Close-Packed) α′ martensitic laths in the Ti6242 to equiaxed BCC β (Body-Centered

Cubic) subgrains in the Ti17; these α′ plates were shown to precipitate within prior-β subgrains remarkably more

rotated than the ones formed in the Ti17. Both α′ and β microstructures were found to be intermingled within

transitional subgrains demarcating a limited gradient from one chemical composition to the other. These peculiar

interfacial grains revealed that the cohesive mechanisms between the rubbing surfaces occurred in the

single-phase β domain under severe strain and high-temperature conditions. During the hot deformation process,

the mutual migration of the crystalline interfaces from one material to another assisted by a continuous dynamic

recrystallization process was identified as the main adhesive mechanism at the junction zone. The latter led to

successful cohesion between the rubbing surfaces. Once the reciprocating motion stopped, fast cooling caused

both materials to experience either a βlean→α′ or βlean→βmetastable transformation in the interfacial zone depending

on their local chemical composition. The limited process time and the subsequent hindered chemical

homogenization at the transition zone led to retaining the so-called intermingled α’/βm subgrains constituting

the border between both Ti-alloys.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503314000018 Publication Date 2019-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited Open Access  
  Notes The authors gratefully acknowledge the financial support of the French National Research Agency (ANR) through the OPTIMUM ANR- 14-CE27-0017 project. The authors would also like to thank the Hautsde- France Region and the European Regional Development Fund (ERDF) 2014/2020 for the co-funding of this work. The authors would also like to thank ACB for providing LFW samples as well as Airbus for their technical support. Approved Most recent IF: 2.714  
  Call Number EMAT @ emat @c:irua:165084 Serial 5441  
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Srinivasu, K.; Korneychuk, S.; Banerjee, D.; Barman, A.; Bhattacharya, G.; Phase, D.M.; Gupta, M.; Verbeeck, J.; Leou, K.C.; Lin, I.N.; Haenen, K.; Roy, S.S. pdf  doi
openurl 
  Title Local probing of the enhanced field electron emission of vertically aligned nitrogen-doped diamond nanorods and their plasma illumination properties Type A1 Journal article
  Year 2018 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater  
  Volume 83 Issue 83 Pages 118-125  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) A detailed conductive atomic force microscopic investigation is carried out to directly image the electron emission behavior for nitrogen-doped diamond nanorods (N-DNRs). Localized emission measurements illustrate uniform distribution of high-density electron emission sites from N-DNRs. Emission sites coupled to nano graphitic phases at the grain boundaries facilitate electron transport and thereby enhance field electron emission from N-DNRs, resulting in a device operation at low turn-on fields of 6.23 V/mu m, a high current density of 1.94 mA/cm(2) (at an applied field of 11.8 V/mu m) and a large field enhancement factor of 3320 with a long lifetime stability of 980 min. Moreover, using N-DNRs as cathodes, a microplasma device that can ignite a plasma at a low threshold field of 390 V/mm achieving a high plasma illumination current density of 3.95 mA/cm2 at an applied voltage of 550 V and a plasma life-time stability for a duration of 433 min was demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000430767200017 Publication Date 2018-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.561 Times cited 9 Open Access Not_Open_Access  
  Notes ; S. Deshmulch, D. Banerjee and G. Bhattacharya are indebted to Shiv Nadar University for providing Ph.D. scholarships. K.J. Sankaran and K. Haenen like to thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. K.J. Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. Korneychuk and J. Verbeeck acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.561  
  Call Number UA @ lucian @ c:irua:151609UA @ admin @ c:irua:151609 Serial 5030  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: