|
Record |
Links |
|
Author |
Lu, Y.; Liu, X.-L.; He, L.; Zhang, Y.-X.; Hu, Z.-Y.; Tian, G.; Cheng, X.; Wu, S.-M.; Li, Y.-Z.; Yang, X.-H.; Wang, L.-Y.; Liu, J.-W.; Janiak, C.; Chang, G.-G.; Li, W.-H.; Van Tendeloo, G.; Yang, X.-Y.; Su, B.-L. |
|
|
Title |
Spatial heterojunction in nanostructured TiO₂ and its cascade effect for efficient photocatalysis |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Nano Letters |
Abbreviated Journal |
Nano Lett |
|
|
Volume |
20 |
Issue |
5 |
Pages |
3122-3129 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
A highly efficient photoenergy conversion is strongly dependent on the cumulative cascade efficiency of the photogenerated carriers. Spatial heterojunctions are critical to directed charge transfer and, thus, attractive but still a challenge. Here, a spatially ternary titanium-defected TiO2@carbon quantum dots@reduced graphene oxide (denoted as V-Ti@CQDs@rGO) in one system is shown to demonstrate a cascade effect of charges and significant performances regarding the photocurrent, the apparent quantum yield, and photocatalysis such as H-2 production from water splitting and CO2 reduction. A key aspect in the construction is the technologically irrational junction of Ti-vacancies and nanocarbons for the spatially inside-out heterojunction. The new “spatial heterojunctions” concept, characteristics, mechanism, and extension are proposed at an atomic- nanoscale to clarify the generation of rational heterojunctions as well as the cascade electron transfer. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000535255300024 |
Publication Date |
2020-04-28 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-6984 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
10.8 |
Times cited |
5 |
Open Access |
Not_Open_Access |
|
|
Notes |
; This work was supported by the joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft (NSFC-DFG) project (NSFC grant 51861135313, DFG JA466/39-1), Fundamental Research Funds for the Central Universities (19lgpy113, 19lgzd16), Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) and Jilin Province Science and Technology Development Plan (20180101208JC). ; |
Approved |
Most recent IF: 10.8; 2020 IF: 12.712 |
|
|
Call Number |
UA @ admin @ c:irua:170263 |
Serial |
6608 |
|
Permanent link to this record |