toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Béché, A.; Winkler, R.; Plank, H.; Hofer, F.; Verbeeck, J. pdf  url
doi  openurl
  Title Focused electron beam induced deposition as a tool to create electron vortices Type A1 Journal article
  Year 2015 Publication Micron Abbreviated Journal Micron  
  Volume 80 Issue 80 Pages 34-38  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Focused electron beam induced deposition (FEBID) is a microscopic technique that allows geometrically controlled material deposition with very high spatial resolution. This technique was used to create a spiral aperture capable of generating electron vortex beams in a transmission electron microscope (TEM). The vortex was then fully characterized using different TEM techniques, estimating the average orbital angular momentum to be approximately 0.8variant Planck's over 2pi per electron with almost 60% of the beam ending up in the l=1 state.  
  Address EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000366770100006 Publication Date 2015-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.98 Times cited 21 Open Access  
  Notes A.B and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. J.V., R.W., H.P. and F.H. acknowledge financial support from the European Union under the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). R.W and H.P also acknowledge financial support by the COST action CELINA (Nr. CM1301) and the EUROSTARS project TRIPLE-S (Nr. E!8213). The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government.; esteem2jra3 ECASJO; Approved Most recent IF: 1.98; 2015 IF: 1.988  
  Call Number c:irua:129203 c:irua:129203UA @ admin @ c:irua:129203 Serial 3946  
Permanent link to this record
 

 
Author Idrissi, H.; Turner, S.; Mitsuhara, M.; Wang, B.; Hata, S.; Coulombier, M.; Raskin, J.-P.; Pardoen, T.; Van Tendeloo, G.; Schryvers, D. doi  openurl
  Title Point defect clusters and dislocations in FIB irradiated nanocrystalline aluminum films : an electron tomography and aberration-corrected high-resolution ADF-STEM study Type A1 Journal article
  Year 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 17 Issue 6 Pages 983-990  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Focused ion beam (FIB) induced damage in nanocrystalline Al thin films has been characterized using advanced transmission electron microscopy techniques. Electron tomography was used to analyze the three-dimensional distribution of point defect clusters induced by FIB milling, as well as their interaction with preexisting dislocations generated by internal stresses in the Al films. The atomic structure of interstitial Frank loops induced by irradiation, as well as the core structure of Frank dislocations, has been resolved with aberration-corrected high-resolution annular dark-field scanning TEM. The combination of both techniques constitutes a powerful tool for the study of the intrinsic structural properties of point defect clusters as well as the interaction of these defects with preexisting or deformation dislocations in irradiated bulk or nanostructured materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000297832300018 Publication Date 2011-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 25 Open Access  
  Notes Iap; Fwo Approved Most recent IF: 1.891; 2011 IF: 3.007  
  Call Number UA @ lucian @ c:irua:93627 Serial 2653  
Permanent link to this record
 

 
Author Bals, S.; Tirry, W.; Geurts, R.; Yang, Z.; Schryvers, D. doi  openurl
  Title High-quality sample preparation by low kV FIB thinning for analytical TEM measurements Type A1 Journal article
  Year 2007 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal  
  Volume 13 Issue 2 Pages 80-86  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Focused ion beam specimen preparation has been used for NiTi samples and SrTiO(3)/SrRuO(3) multilayers with prevention of surface amorphization and Ga implantation by a 2-kV cleaning procedure. Transmission electron microscopy techniques show that the samples are of high quality with a controlled thickness over large scales. Furthermore, preferential thinning effects in multicompounds are avoided, which is important when analytical transmission electron microscopy measurements need to be interpreted in a quantitative manner. The results are compared to similar measurements acquired for samples obtained using conventional preparation techniques such as electropolishing for alloys and ion milling for oxides.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, Mass. Editor  
  Language Wos 000245662200002 Publication Date 2007-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.891 Times cited 82 Open Access  
  Notes Fwo; Goa Approved Most recent IF: 1.891; 2007 IF: 1.941  
  Call Number UA @ lucian @ c:irua:65850 Serial 1441  
Permanent link to this record
 

 
Author Ke, X.; Bittencourt, C.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM Type A1 Journal article
  Year 2013 Publication Beilstein journal of nanotechnology Abbreviated Journal Beilstein J Nanotech  
  Volume 4 Issue Pages 77-86  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Focused-electron-beam-induced deposition (FEBID) is used as a direct-write approach to decorate ultrasmall Pt nanoclusters on carbon nanotubes at selected sites in a straightforward maskless manner. The as-deposited nanostructures are studied by transmission electron microscopy (TEM) in 2D and 3D, demonstrating that the Pt nanoclusters are well-dispersed, covering the selected areas of the CNT surface completely. The ability of FEBID to graft nanoclusters on multiple sides, through an electron-transparent target within one step, is unique as a physical deposition method. Using high-resolution TEM we have shown that the CNT structure can be well preserved thanks to the low dose used in FEBID. By tuning the electron-beam parameters, the density and distribution of the nanoclusters can be controlled. The purity of as-deposited nanoclusters can be improved by low-energy electron irradiation at room temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314499700001 Publication Date 2013-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4286; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.127 Times cited 12 Open Access  
  Notes 262348 ESMI; 246791 COUNTATOMS; FWO G002410N; ESF Cost Action NanoTP MP0901 Approved Most recent IF: 3.127; 2013 IF: 2.332  
  Call Number UA @ lucian @ c:irua:106187 Serial 1848  
Permanent link to this record
 

 
Author Mehta, A.N.; Gauquelin, N.; Nord, M.; Orekhov, A.; Bender, H.; Cerbu, D.; Verbeeck, J.; Vandervorst, W. pdf  url
doi  openurl
  Title Unravelling stacking order in epitaxial bilayer MX₂ using 4D-STEM with unsupervised learning Type A1 Journal article
  Year 2020 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 31 Issue 44 Pages 445702  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Following an extensive investigation of various monolayer transition metal dichalcogenides (MX2), research interest has expanded to include multilayer systems. In bilayer MX2, the stacking order strongly impacts the local band structure as it dictates the local confinement and symmetry. Determination of stacking order in multilayer MX(2)domains usually relies on prior knowledge of in-plane orientations of constituent layers. This is only feasible in case of growth resulting in well-defined triangular domains and not useful in-case of closed layers with hexagonal or irregularly shaped islands. Stacking order can be discerned in the reciprocal space by measuring changes in diffraction peak intensities. Advances in detector technology allow fast acquisition of high-quality four-dimensional datasets which can later be processed to extract useful information such as thickness, orientation, twist and strain. Here, we use 4D scanning transmission electron microscopy combined with multislice diffraction simulations to unravel stacking order in epitaxially grown bilayer MoS2. Machine learning based data segmentation is employed to obtain useful statistics on grain orientation of monolayer and stacking in bilayer MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561424400001 Publication Date 2020-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.5 Times cited 13 Open Access OpenAccess  
  Notes ; J.V. acknowledges funding from FLAG-ERA JTC2017 project 'Graph-Eye'. N.G. acknowledges funding from GOA project 'Solarpaint' of the University of Antwerp. This project has received funding from the European Union's Horizon 2020 research and innovation programme under Grant Agreement No. 823717-ESTEEM3. 4D STEM data was acquired on a hybrid pixel detector funded with a Hercules fund 'Direct electron detector for soft matter TEM' from the Flemish Government. M. N. acknowledges funding from a Marie Curie Fellowship agreement No 838001. We thank Dr Jiongjiong Mo and Dr Benjamin Groven for developing the CVD-MoS<INF>2</INF> growth on sapphire and providing the material used in this article. ; Approved Most recent IF: 3.5; 2020 IF: 3.44  
  Call Number UA @ admin @ c:irua:171119 Serial 6649  
Permanent link to this record
 

 
Author Smeulders, G.; Meynen, V.; van Baelen, G.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Maes, B.U.W.; Cool, P. pdf  doi
openurl 
  Title Rapid microwave-assisted synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
  Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 19 Issue 19 Pages 3042-3048  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)  
  Abstract (up) Following extended use in organic chemistry, microwave-assisted synthesis is gaining more importance in the field of inorganic chemistry, especially for the synthesis of nanoporous materials. It offers some major advantages such as a significant shortening of the synthesis time and an improved promotion of nucleation. In the research here reported, microwave technology is applied for the synthesis of benzene bridged PMOs (periodic mesoporous organosilicas). PMOs are one of the latest innovations in the field of hybrid ordered mesoporous materials and have attracted much attention because of their feasibility in electronics, catalysis, separation and sorption applications. The different synthesis steps (stirring, aging and extraction) of the classical PMO synthesis are replaced by microwave-assisted synthesis steps. The characteristics of the as-synthesized materials are evaluated by X-ray diffraction, N2-sorption, thermogravimetric analysis, scanning- and transmission electron microscopy. The microwave-assisted synthesis drastically reduces the synthesis time by more than 40 hours without any loss in structural properties, such as mesoscale and molecular ordering. The porosity of the PMO materials has even been improved by more than 25%. Moreover, the number of handling/transfer steps and amounts of chemicals and waste are drastically reduced. The study also shows that there is a clear time (1 to 3 hours) and temperature frame (373 K to 403 K) wherein synthesis of benzene bridged PMO is optimal. In conclusion, the microwave-assisted synthesis pathway allows an improved material to be obtained in a more economical way i.e. a much shorter time with fewer chemicals and less waste.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000265919300024 Publication Date 2009-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 20 Open Access  
  Notes Fwo; Iwt Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:76844 Serial 2810  
Permanent link to this record
 

 
Author De Meulenaere, P.; van Dyck, D.; Van Tendeloo, G.; van Landuyt, J. pdf  doi
openurl 
  Title Dynamical electron diffraction in substitutionally disordered column structures Type A1 Journal article
  Year 1995 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 60 Issue 1 Pages 171-185  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (up) For column structures, such as fee-based alloys viewed along the cube direction, the concept of electron channelling through the atom columns is more and more used to interpret the corresponding HREM images. In the case of(partially) disordered columns, the projected potential approach which is used in the channelling description must be questioned since the arrangement of the atoms along the beam direction might affect the exit wave of the electrons. In this paper, we critically inspect this top-bottom effect using multi-slice calculations. A modified channelling theory is introduced which turns out to be very appropriate for the interpretation of these results. For substitutionally disordered column structures, it is also discussed how to link the chemical composition of the material to statistical data of the HREM image. This results in a convenient tool to discern images taken at different thicknesses and focus values.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1995TG59500017 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.436 Times cited 14 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:13013 Serial 770  
Permanent link to this record
 

 
Author Zhang, Z.; Chen, X.; Shi, X.; Hu, Y.; Huang, J.; Liu, S.; Ren, Z.; Huang, H.; Han, G.; Van Tendeloo, G.; Tian, H. pdf  doi
openurl 
  Title Morphotropic phase boundary in pure perovskite lead titanate at room temperature Type A1 Journal article
  Year 2022 Publication Materials Today Nano Abbreviated Journal  
  Volume 20 Issue Pages 100275-5  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) For many decades, great efforts have been devoted to pursue a large piezoelectric response by an intelligent design of morphotropic phase boundaries (MPB) in solid solutions, where tetragonal (T) and rhombohedral (R) structures coexist. For example, classical PbZrxTi1-xO3 and Pb(Mg1/3Nb2/3)O-3-PbTiO3 single crystals demonstrate a giant piezoelectric response near MPB. However, as the end member of these solids, perovskite-structured PbTiO3 always adopts the T phase at room temperature. Here, we report a pathway to create room temperature MPB in a single-phase PbTiO3. The uniaxial stress along the c-axis drives a T-R phase transition bridged by a monoclinic (M) phase, which facilitates a polarization rotation in the monodomain PbTiO3. Meanwhile, we demonstrate that the coexistence of T and R phases at room temperature can be achieved via an extremely mismatched heterointerface system. The uniaxial pressure is proved as an efficient way to break the inherent symmetry and able to substantially tailor the phase transition temperature Tc. These findings provide new insights into MPB, offering the opportunity to explore the giant piezoelectric response in single-phase materials. (c) 2022 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000906548600002 Publication Date 2022-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2588-8420 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 10.3  
  Call Number UA @ admin @ c:irua:193477 Serial 7324  
Permanent link to this record
 

 
Author Ghekiere, P.; Mahieu, S.; De Winter, G.; De Gryse, R.; Depla, D.; Lebedev, O.I. doi  openurl
  Title Growth mechanism of biaxially aligned magnesium oxide deposited by unbalanced magnetron sputtering Type A1 Journal article
  Year 2005 Publication Diffusion and defect data : solid state data : part B : solid state phenomena T2 – 2nd International Conference on Texture and Anisotropy of Polycrystals, JUL 07-09, 2004, Metz, FRANCE Abbreviated Journal  
  Volume 105 Issue Pages 433-438  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) For many years magnesium oxide (MgO) has been a topic of research as buffer layer for high-temperature superconducting copper oxides and as protective layer in plasma display panels. Since epitaxial growth of MgO is expensive, time consuming and size restricted, other techniques have been developed to grow highly oriented MgO layers for industrial processes. MgO thin films were deposited on a tilted polycrystalline substrate by reactive sputtering using an unbalanced magnetron. By varying different deposition parameters, it is possible to grow biaxially aligned MgO layers, i.e. layers with both out-of-plane and in-plane alignment. XRD measurements were performed to examine the crystallographic structure of the thin film. The preferential out-of-plane orientation is analysed by angular scans using the peak intensity of different reflections while the in-plane orientation is determined by (002) pole figures. Fully [111] out-of-plane oriented layers were grown with a strong in-plane alignment. SEM and TEM measurements were performed to reveal the topographical and cross-sectional microstructure and to investigate the texture evolution of the MgO layers. Evolutionary columnar growth and a roof-tile surface have been observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Vaduz Editor  
  Language Wos 000230478000069 Publication Date 2009-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-9779; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:104085 Serial 1392  
Permanent link to this record
 

 
Author Batuk, M.; Vandemeulebroucke, D.; Ceretti, M.; Paulus, W.; Hadermann, J. url  doi
openurl 
  Title Topotactic redox cycling in SrFeO2.5+δ explored by 3D electron diffraction in different gas atmospheres Type A1 Journal article
  Year 2022 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) For oxygen conducting materials applied in solid oxide fuel cells and chemical-looping processes, the understanding of the oxygen diffusion mechanism and the materials’ crystal structure at different stages of the redox reactions is a key parameter to control their performance. In this paper we report the first ever in situ 3D ED experiment in a gas environment and with it uncover the structure evolution of SrFeO2.5 as notably different from that reported from in situ X-ray and in situ neutron powder diffraction studies in gas environments. Using in situ 3D ED on submicron sized single crystals obtained from a high quality monodomain SrFeO2.5 single crystal , we observe the transformation under O2 flow of SrFeO2.5 with an intra- and interlayer ordering of the left and right twisted (FeO4) tetrahedral chains (space group Pcmb) into consecutively SrFeO2.75 with space group Cmmm (at 350°C, 33% O2) and SrFeO3-δ with space group Pm3 ̅m (at 400°C, 100% O2). Upon reduction in H2 flow, the crystals return to the brownmillerite structure with intralayer order, but without regaining the interlayer order of the pristine crystals. Therefore, redox cycling of SrFeO2.5 crystals in O2 and H2 introduces stacking faults into the structure, resulting in an I2/m(0βγ)0s symmetry with variable β.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000891928400001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited Open Access OpenAccess  
  Notes Financial support is acknowledged from the FWO-Hercules fund I003218N ‘Infrastructure for imaging nanoscale processes in gas/vapor or liquid environments’, from the University of Antwerp through grant BOF TOP 38689. This work was supported by the European Commission Horizon 2020 NanED grant number 956099. Financial support from the French National Research Agency (ANR) through the project “Structural induced Electronic Complexity controlled by low temperature Topotactic Reaction” (SECTOR No. ANR-14-CE36- 0006-01) is gratefully acknowledged. Approved Most recent IF: 11.9  
  Call Number EMAT @ emat @c:irua:192325 Serial 7229  
Permanent link to this record
 

 
Author Lepoittevin, C.; Hadermann, J.; Malo, S.; Pérez, O.; Van Tendeloo, G.; Hervieu, M. pdf  doi
openurl 
  Title Two variants of the 1/2[110]p(203)p crystallographic shear structures: the phasoid Sr0.61Pb0.18(Fe0.75Mn0.25)O2.29 Type A1 Journal article
  Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 48 Issue 17 Pages 8257-8262  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) For the composition (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29, a new modulated crystallographic shear structure, related to perovskite, has been synthesized and structurally characterized by transmission electron microscopy. The structure can be described using a monoclinic supercell with cell parameters am = 27.595(2) Å, bm = 3.8786(2) Å, cm = 13.3453(9) Å, and βm = 100.126(5)°, refined from powder X-ray diffraction data. The incommensurate crystallographic shear phases require an alternative approach using the superspace formalism. This allows a unified description of the incommensurate phases from a monoclinically distorted perovskite unit cell and a modulation wave vector. The structure deduced from the high-resolution transmission electron microscopy and high-angle annular dark-field−scanning transmission electron microscopy images is that of a 1/2[110]p(203)p crystallographic shear structure. The structure follows the concept of a phasoid, with two coexisting variants with the same unit cell. The difference is situated at the translational interface, with the local formation of double (phase 2) or single (phase 1) tunnels, where the Pb cations are likely located.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000269313500032 Publication Date 2009-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 11 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.857; 2009 IF: 4.657  
  Call Number UA @ lucian @ c:irua:78482 Serial 3786  
Permanent link to this record
 

 
Author Batuk, M.; Buffiere, M.; Zaghi, A.E.; Lenaers, N.; Verbist, C.; Khelifi, S.; Vleugels, J.; Meuris, M.; Hadermann, J. pdf  doi
openurl 
  Title Effect of the burn-out step on the microstructure of the solution-processed Cu(In,Ga)Se2 solar cells Type A1 Journal article
  Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 583 Issue 583 Pages 142-150  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) For the development of the photovoltaic industry cheap methods for the synthesis of Cu(In,Ga)Se-2 (CIGSe) based solar cells are required. In this work, CIGSe thin films were obtained by a solution-based method using oxygen-bearing derivatives. With the aimof improving the morphology of the printed CIGSe layers, we investigated two different annealing conditions of the precursor layer, consisting of (1) a direct selenization step (reference process), and (2) a pre-treatment thermal step prior to the selenization. We showed that the use of an Air/H2S burn-out step prior to the selenization step increases the CIGSe grain size and reduces the carbon content. However, it leads to the reduction of the solar cell efficiency from 4.5% in the reference sample down to 0.5% in the annealed sample. Detailed transmission electron microscopy analysis, including high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray mapping, was applied to characterize the microstructure of the film and to determine the relationship between microstructure and the solar cell performance. We demonstrated that the relatively low efficiency of the reference solar cells is related not only to the nanosize of the CIGSe grains and presence of the pores in the CIGSe layer, but also to the high amount of secondary phases, namely, In/Ga oxide (or hydroxide) amorphous matter, residuals of organicmatter (carbon), and copper sulfide that is formed at the CIGSe/MoSe2 interface. The annealing in H2S during the burn-out step leads to the formation of the copper sulfide at all grain boundaries and surfaces in the CIGSe layer, which results in the noticeably efficiency drop. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000353812400024 Publication Date 2015-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.879; 2015 IF: 1.759  
  Call Number c:irua:126009 Serial 845  
Permanent link to this record
 

 
Author Tan, H.; Lebedev, O.I.; McLaughlin, A.C.; Van Tendeloo, G. pdf  doi
openurl 
  Title The superstructure and superconductivity of Ru1222 based RuSr2Gd2-x-yYyCexCu2O10-\delta compounds Type A1 Journal article
  Year 2010 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech  
  Volume 23 Issue 11 Pages 115013-115013,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) For the first time, the local structure and physical properties of Ru1222 based compounds (RuSr(2)Gd(1.4)Ce(0.6)Cu(2)O(10-delta) and RuSr(2)Gd(1.8-x)Y(0.2)CexCu(2)O(10) (x = 0.90-0.55)) have been investigated and analyzed together on the very same compounds. The Ru1222 superstructure was confirmed by TEM at a local scale and was suggested to have an orthorhombic symmetry with space group Aba2 and lattice parameters a(s) similar or equal to root 2a, b(s) similar or equal to root 2a and c(s) = c. This new Ru1222 superstructure distortion from tetragonal symmetry is proposed to have a positive correlation with the superconductivity variation of these compounds. The more the distortion towards orthorhombic symmetry, the higher the critical superconducting temperature these compounds can achieve. The T(c)(0) of RuSr(2)Gd(1.8-x)Y(0.2)Ce(x)Cu(2)O(10-delta) (x = 0.85-0.55) increases monotonically from 4 to 16 K when x decreases from 0.85 to 0.70, then RuSr(2)Gd(2)Cu(2)O(8) defects emerge and the T(c) decreases with decreasing x. Ru1212 defects are observed to intergrow epitaxially with the Ru1222 structure as lamellas along the c-axis in RuSr(2)Gd(1.4)Ce(0.6)Cu(2)O(10-delta). Although Ru1212 is a superconductor, the intergrowth severely restrains its superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000284308000013 Publication Date 2010-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.878 Times cited 1 Open Access  
  Notes Fwo; Esteem 026019 Approved Most recent IF: 2.878; 2010 IF: 2.402  
  Call Number UA @ lucian @ c:irua:95553 Serial 3385  
Permanent link to this record
 

 
Author Blommaerts, N.; Vanrompay, H.; Nuti, S.; Lenaerts, S.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title Unraveling Structural Information of Turkevich Synthesized Plasmonic Gold-Silver Bimetallic Nanoparticles Type A1 Journal article
  Year 2019 Publication Small Abbreviated Journal Small  
  Volume 15 Issue 15 Pages 1902791  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) For the synthesis of gold-silver bimetallic nanoparticles, the Turkevich method has been the state-of-the-art method for several decades. It has been presumed that this procedure results in a homogeneous alloy, although this has been debatable for many years. In this work, it is shown that neither a full alloy, nor a perfect core-shell particle is formed but rather a core-shell-like particle with altering metal composition along the radial direction. In-depth wet-chemical experiments are performed in combination with advanced transmission electron microscopy, including EDX tomography, and Finite Element Method modeling to support the observations. From the electron tomography results, the core-shell structure could be clearly visualized and the spatial distribution of gold and silver atoms could be quantified. Theoretical simulations are performed to demonstrate that even though UV-Vis spectra show only one plasmon band, this still originates from core-shell type structures. The simulations also indicate that the core-shell morphology does not so much affect the location of the plasmon band, but mainly results in significant band broadening. Wet-chemistry experiments provide the evidence that the synthesis pathway starts with gold enriched alloy cores, and later on in the synthesis mainly silver is incorporated to end up with a silver enriched alloy shell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482637100001 Publication Date 2019-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 26 Open Access OpenAccess  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 1S32617N G.0369.15N G.0381.16N ; Approved Most recent IF: 8.643  
  Call Number EMAT @ emat @c:irua:161636 Serial 5290  
Permanent link to this record
 

 
Author Jannis, D.; Hofer, C.; Gao, C.; Xie, X.; Béché, A.; Pennycook, Tj.; Verbeeck, J. pdf  url
doi  openurl
  Title Event driven 4D STEM acquisition with a Timepix3 detector: Microsecond dwell time and faster scans for high precision and low dose applications Type A1 Journal article
  Year 2022 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 233 Issue Pages 113423  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Four dimensional scanning transmission electron microscopy (4D STEM) records the scattering of electrons in a material in great detail. The benefits offered by 4D STEM are substantial, with the wealth of data it provides facilitating for instance high precision, high electron dose efficiency phase imaging via centre of mass or ptychography based analysis. However the requirement for a 2D image of the scattering to be recorded at each probe position has long placed a severe bottleneck on the speed at which 4D STEM can be performed. Recent advances in camera technology have greatly reduced this bottleneck, with the detection efficiency of direct electron detectors being especially well suited to the technique. However even the fastest frame driven pixelated detectors still significantly limit the scan speed which can be used in 4D STEM, making the resulting data susceptible to drift and hampering its use for low dose beam sensitive applications. Here we report the development of the use of an event driven Timepix3 direct electron camera that allows us to overcome this bottleneck and achieve 4D STEM dwell times down to 100 ns; orders of magnitude faster than what has been possible with frame based readout. We characterize the detector for different acceleration voltages and show that the method is especially well suited for low dose imaging and promises rich datasets without compromising dwell time when compared to conventional STEM imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000734396800003 Publication Date 2021-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.2 Times cited 31 Open Access OpenAccess  
  Notes This project has received funding from the Euro- pean Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3. J.V. and A.B. acknowledge funding from FWO project G093417N (‘Compressed sensing enabling low dose imaging in transmission electron microscopy’). J.V. and D.J. ac- knowledge funding from FWO project G042920N ‘Co- incident event detection for advanced spectroscopy in transmission electron microscopy’. We acknowledge funding under the European Union’s Horizon 2020 re- search and innovation programme (J.V. and D.J un- der grant agreement No 101017720, FET-Proactive EBEAM, and C.H., C.G., X.X. and T.J.P. from the Eu- ropean Research Council (ERC) Grant agreement No. 802123-HDEM).; esteem3JRA; esteem3reported Approved Most recent IF: 2.2  
  Call Number EMAT @ emat @c:irua:183948 Serial 6828  
Permanent link to this record
 

 
Author Juchtmans, R.; Guzzinati, G.; Verbeeck, J. url  doi
openurl 
  Title Extension of Friedel's law to vortex-beam diffraction Type A1 Journal article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys Rev A  
  Volume 94 Issue 94 Pages 033858  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Friedel's law states that the modulus of the Fourier transform of real functions is centrosymmetric, while the phase is antisymmetric. As a consequence of this, elastic scattering of plane-wave photons or electrons within the first-order Born-approximation, as well as Fraunhofer diffraction on any aperture, is bound to result in centrosymmetric diffraction patterns. Friedel's law, however, does not apply for vortex beams, and centrosymmetry in general is not present in their diffraction patterns. In this work we extend Friedel's law for vortex beams by showing that the diffraction patterns of vortex beams with opposite topological charge, scattered on the same two-dimensional potential, always are centrosymmetric to one another, regardless of the symmetry of the scattering object. We verify our statement by means of numerical simulations and experimental data. Our research provides deeper understanding in vortex-beam diffraction and can be used to design new experiments to measure the topological charge of vortex beams with diffraction gratings or to study general vortex-beam diffraction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000384374500010 Publication Date 2016-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 13 Open Access  
  Notes The authors acknowledge support from the FWO (Aspirant Fonds Wetenschappelijk Onderzoek – Vlaanderen) and the EU under the Seventh Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2 and ERC Starting Grant No. 278510 VORTEX.; ECASJO_; Approved Most recent IF: 2.925  
  Call Number EMAT @ emat @ c:irua:137200UA @ admin @ c:irua:137200 Serial 4314  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Kaun, C.C.; Peeters, F.M. url  doi
openurl 
  Title Superconducting nanowires: interplay of discrete transverse modes with supercurrent Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 80 Issue 2 Pages 024513,1-024513,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (up) From a numerical solution of the Bogoliubov-de Gennes equations, we investigate an interplay of the transverse discrete modes with a longitudinal supercurrent in a metallic cylindrical superconducting nanowire. The superconductor-to-normal transition induced by a longitudinal superflow of electrons is found to occur as a cascade of jumps in the order parameter (supercurrent and superfluid density) as a function of the superfluid velocity for diameters d<1015 nm (for Al parameters) and sufficiently low temperatures T<0.30.4Tc, with Tc the critical temperature. When approaching Tc, the jumps are smoothed into steplike but continuous drops. A similar picture occurs for d>1520 nm. Only when the diameter exceeds 5070 nm the quantum-size cascades are fully washed out, and we arrive at the mesoscopic regime. Below this regime the critical current density jc exhibits the quantum-size oscillations with pronounced resonant enhancements: the smaller the diameter, the more significant is the enhancement. Thickness fluctuations of real samples will smooth out such oscillations into an overall growth of jc with decreasing nanowire diameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000268617500092 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 21 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77949 Serial 3358  
Permanent link to this record
 

 
Author Hofer, C.; Mustonen, K.; Skakalova, V.; Pennycook, T.J. url  doi
openurl 
  Title Picometer-precision few-tilt ptychotomography of 2D materials Type A1 Journal article
  Year 2023 Publication 2D materials Abbreviated Journal  
  Volume 10 Issue 3 Pages 035029-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) From ripples to defects, edges and grain boundaries, the 3D atomic structure of 2D materials is critical to their properties. However the damage inflicted by conventional 3D analysis precludes its use with fragile 2D materials, particularly for the analysis of local defects. Here we dramatically increase the potential for precise local 3D atomic structure analysis of 2D materials, with both greatly improved dose efficiency and sensitivity to light elements. We demonstrate light atoms can now be located in complex 2D materials with picometer precision at doses 30 times lower than previously possible. Moreover we demonstrate this using WS2, in which the light atoms are practically invisible to conventional methods at low doses. The key advance is combining the concept of few tilt tomography with highly dose efficient ptychography in scanning transmission electron microscopy. We further demonstrate the method experimentally with the even more challenging and newly discovered 2D CuI, leveraging a new extremely high temporal resolution camera.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001013151600001 Publication Date 2023-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.5; 2023 IF: 6.937  
  Call Number UA @ admin @ c:irua:197809 Serial 8915  
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Easily doped p-type, low hole effective mass, transparent oxides Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 20446  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract (up) Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications – i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe.  
  Address EMAT, Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000369568900001 Publication Date 2016-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 55 Open Access  
  Notes We acknowledge the financial support of FWO-Vlaanderen through project G.0150.13 and of a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government–department EWI. Approved Most recent IF: 4.259  
  Call Number c:irua:131611 Serial 4036  
Permanent link to this record
 

 
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Ding, X.; Salje, E.K.H. pdf  doi
openurl 
  Title Functional twin boundaries Type A1 Journal article
  Year 2013 Publication Phase transitions Abbreviated Journal Phase Transit  
  Volume 86 Issue 11 Pages 1052-1059  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Functional interfaces are at the core of research in the emerging field of domain boundary engineering where polar, conducting, chiral, and other interfaces and twin boundaries have been discovered. Ferroelectricity was found in twin walls of paraelectric CaTiO3. We show that the effect of functional interfaces can be optimized if the number of twin boundaries is increased in densely twinned materials. Such materials can be produced by shear in the ferroelastic phase rather than by rapid quench from the paraelastic phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000327475900002 Publication Date 2013-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-1594;1029-0338; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.06 Times cited 5 Open Access  
  Notes Approved Most recent IF: 1.06; 2013 IF: 1.044  
  Call Number UA @ lucian @ c:irua:107344 Serial 1304  
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Nuyts, G.; Peeters, H.; Pedrazo-Tardajos, A.; Nuti, S.; Vande Velde, C.; De Wael, K.; Lenaerts, S.; Bals, S.; Verbruggen, S. pdf  url
doi  openurl
  Title Selectivity in ligand functionalization of photocatalytic metal oxide nanoparticles for phase transfer and self‐assembly applications Type A1 Journal article
  Year 2021 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages chem.202100029-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract (up) Functionalization of photocatalytic metal oxide nanoparticles of TiO 2 , ZnO, WO 3 and CuO with amine‐terminated (oleylamine) and thiol‐terminated (1‐dodecanethiol) alkyl chained ligands was studied under ambient conditions. A high selectivity was observed in the binding specificity of a ligand towards nanoparticles of these different oxides. It was observed that oleylamine binds stably to only TiO 2 and WO 3 , while 1‐dodecanethiol binds stably only to ZnO and CuO. Similarly, polar to non‐polar solvent phase transfer of TiO 2 and WO 3 nanoparticles could be achieved by using oleylamine, but not by 1‐dodecanethiol, while the contrary holds for ZnO and CuO. The surface chemistry of ligand functionalized nanoparticles was probed by ATR‐FTIR spectroscopy, that enabled to elucidate the occupation of the ligands at the active sites. The photo‐stability of the ligands on the nanoparticle surface was determined by the photocatalytic self‐cleaning properties of the material. While TiO 2 and WO 3 degrade the ligands within 24 hours under both UV and visible light, ligands on ZnO and CuO remain unaffected. The gathered insights are also highly relevant from an application point of view. As an example, since the ligand functionalized nanoparticles are hydrophobic in nature, they can thus be self‐assembled at the air‐water interface, for obtaining nanoparticle films with demonstrated photocatalytic as well as anti‐fogging properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652651400001 Publication Date 2021-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 15 Open Access OpenAccess  
  Notes R.B. and S.W.V. acknowledge financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Program by means of the grant agreement no. 731019 EUSMI and the ERC Consolidator grant no. 815128 REALNANO.; sygmaSB Approved Most recent IF: 5.317  
  Call Number UA @ admin @ c:irua:177495 Serial 6787  
Permanent link to this record
 

 
Author Lueangchaichaweng, W.; Brooks, N.R.; Fiorilli, S.; Gobechiya, E.; Lin, K.; Li, L.; Parres-Esclapez, S.; Javon, E.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A.; Jacobs, P.A.; Pescarmona, P.P.; pdf  url
doi  openurl
  Title Gallium oxide nanorods : novel, template-free synthesis and high catalytic activity in epoxidation reactions Type A1 Journal article
  Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 53 Issue 6 Pages 1585-1589  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Gallium oxide nanorods with unprecedented small dimensions (20-80nm length and 3-5nm width) were prepared using a novel, template-free synthesis method. This nanomaterial is an excellent heterogeneous catalyst for the sustainable epoxidation of alkenes with H2O2, rivaling the industrial benchmark microporous titanosilicate TS-1 with linear alkenes and being much superior with bulkier substrates. A thorough characterization study elucidated the correlation between the physicochemical properties of the gallium oxide nanorods and their catalytic performance, and underlined the importance of the nanorod morphology for generating a material with high specific surface area and a high number of accessible acid sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330558400021 Publication Date 2014-01-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 61 Open Access OpenAccess  
  Notes START 1; Methusalem; Prodex; IAP-PAI; and the ERC (grant number 24691-COUNTATOMS and grant number 335078-COLOURATOM) projects; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261  
  Call Number UA @ lucian @ c:irua:115726 Serial 1314  
Permanent link to this record
 

 
Author Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Monitoring galvanic replacement through three-dimensional morphological and chemical mapping Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 6 Pages 3220-3226  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence toward understanding the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000337337100038 Publication Date 2014-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 120 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:116954 Serial 2189  
Permanent link to this record
 

 
Author Tan, H.; Tian, H.; Verbeeck, J.; Janssens, K.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nanoscale investigation of the degradation mechanism of a historical chrome yellow paint by quantitative electron energy loss spectroscopy mapping of chromium species Type A1 Journal article
  Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 52 Issue 43 Pages 11360-11363  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Getting the picture: The investigation of 100 year old chrome yellow paint by transmission electron microscopy and spectroscopy has led to the identification of four types of coreshell particles. This nanoscale investigation has allowed a mechanism to be proposed for the darkening of some bright yellow colors in Van Gogh's paintings (e.g. in Falling leaves (Les Alyscamps), 1888).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000330735800026 Publication Date 2013-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 29 Open Access  
  Notes Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved Most recent IF: 11.994; 2013 IF: 11.336  
  Call Number UA @ lucian @ c:irua:110947UA @ admin @ c:irua:110947 Serial 2266  
Permanent link to this record
 

 
Author Park, D.-s.; Hadad, M.; Riemer, L.M.; Ignatans, R.; Spirito, D.; Esposito, V.; Tileli, V.; Gauquelin, N.; Chezganov, D.; Jannis, D.; Verbeeck, J.; Gorfman, S.; Pryds, N.; Muralt, P.; Damjanovic, D. url  doi
openurl 
  Title Induced giant piezoelectricity in centrosymmetric oxides Type A1 Journal article
  Year 2022 Publication Science Abbreviated Journal Science  
  Volume 375 Issue 6581 Pages 653-657  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Giant piezoelectricity can be induced in centrosymmetric oxides by controlling the long-range motion of oxygen vacancies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000753975300036 Publication Date 2022-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 56.9 Times cited 51 Open Access OpenAccess  
  Notes D.-S.P., V.E., N.P., P.M., and D.D. acknowledge the European Commission for project Biowings H2020 Fetopen 2018-2022 (grant no. 80127). N.P. acknowledges funding from the Villum Fonden for the NEED project (grant no. 00027993) and the Danish Council for Independent Research Technology and Production Sciences for the DFF-Research Project 3 (grant no. 00069B). S.G. acknowledges funding from the Israel Science Foundation (research grant 1561/18 and equipment grant 2247/18). This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant no. 823717 – ESTEEM3. D.C. acknowledges TOP/BOF funding of the University of Antwerp. M.H. and P.M. acknowledge funding from the Swiss National Science Foundation (grant nos. 200020-162664/1 and 200021-143424/1); esteem3reported; esteem3TA Approved Most recent IF: 56.9  
  Call Number EMAT @ emat @c:irua:185876 Serial 6909  
Permanent link to this record
 

 
Author Malakho, A.; Fargin, E.; Lahaye, M.; Lazoryak, B.; Morozov, V.; Van Tendeloo, G.; Rodriguez, V.; Adamietz, F. doi  openurl
  Title Enhancement of second harmonic generation signal in thermally poled glass ceramic with NaNbO3 nanocrystals Type A1 Journal article
  Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 100 Issue 6 Pages 063103,1-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Glass ceramic composites were prepared by bulk crystallization of NaNbO3 in sodium niobium borate glasses. A homogeneous bulk crystallization of the NaNbO3 phase takes place during heat treatments that produces visible-near infrared transparent materials with similar to 30 nm NaNbO3 nanocrystallites. Upon thermal poling, a strong Na+ depleted nonlinear optical thin layer is observed at the anode side that should induce a large internal static electric field. In addition, the chi((2)) response of the poled glass ceramic composites increases from 0.2 up to 1.9 pm/V with the rate of crystallization. Two mechanisms may be considered: a pure structural chi((2)) process connected with the occurrence of a spontaneous ferroelectric polarization or an increase of the chi((3)) response of the nanocrystallites that enhances the electric field induced second harmonic generation process. (c) 2006 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000240876600003 Publication Date 2006-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.068; 2006 IF: 2.316  
  Call Number UA @ lucian @ c:irua:61005 Serial 1063  
Permanent link to this record
 

 
Author Jembrih-Simbürger, D.; Neelmeijer, C.; Schalm, O.; Fredrickx, P.; Schreiner, M.; De Vis, K.; Mäder, M.; Schryvers, D.; Caen, J. pdf  doi
openurl 
  Title The colour of silver stained glass : analytical investigations carried out with XRF, SEM/EDX, TEM and IBA Type A1 Journal article
  Year 2002 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 17 Issue Pages 321-328  
  Keywords A1 Journal article; Art; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Glass treated on its surface with silver compounds and an aluminosilicate, such as ochre or clay, at higher temperatures (between 550 and 650 °C) accepts a wide variety of a yellow colour. It is the aim of this study to investigate the parameters of the manufacturing process affecting the final colour of silver stained glass and to correlate them with the final colour and colour intensity. Therefore, defined mixtures of ochre and a silver compound (AgCl, AgNO3, Ag2SO4, Ag3PO4, Ag2O) were prepared and applied on soda-lime glass. The firing process was modified within the range from 563 to 630 °C and glass samples were analysed after treatment with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy (SEM/EDX), transmission electron microscopy (TEM), as well as ion beam analysis (IBA) with an external beam. Within the scope of IBA simultaneous measurements using particle-induced X-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), and Rutherford backscattering spectrometry (RBS) were carried out in order to obtain the thickness of the Ag-rich surface layer and the depth distribution of Ag. By means of TEM the microstructure of the silver particles was visualised. XRF results show that the lowest amount of Ag could be detected on glass samples treated with silver stain mixtures containing AgCl and Ag2O. A low kiln temperature (e.g. 563 °C) results in a higher silver concentration at the surface and lower penetration depths. Furthermore, the results obtained with SEM/EDX at cross-sections of the glass samples could be confirmed by PIXE, PIGE, RBS, and TEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000175158900001 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 42 Open Access  
  Notes Approved Most recent IF: 3.379; 2002 IF: 4.250  
  Call Number UA @ lucian @ c:irua:48775 Serial 395  
Permanent link to this record
 

 
Author Matthai, C.C.; March, N.H.; Lamoen, D. pdf  doi
openurl 
  Title Supercooled molecular liquids and the glassy phases of chemically bonded N, P, As, Si and Ge Type A1 Journal article
  Year 2009 Publication Physics and chemistry of liquids Abbreviated Journal Phys Chem Liq  
  Volume 47 Issue 6 Pages 607-613  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Glassy phases which have insulating character exist for a variety of monatomic species. By contrast, until recently, it has been possible to make bulk metallic glasses (BMG) by vitrification only for multicomponent systems. After a relatively brief summary on supercooling of a few molecular liquids, we review some of the recently reported results on molecular assemblies of the series N, P, As and amorphous Si and Ge. Based on these results, we suggest that the transition metals with their directional bonding might be suitable candidates for the production of BMG by vitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000273047400003 Publication Date 2009-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9104;1029-0451; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.145 Times cited 1 Open Access  
  Notes BoF Approved Most recent IF: 1.145; 2009 IF: 0.580  
  Call Number UA @ lucian @ c:irua:80653 Serial 3376  
Permanent link to this record
 

 
Author Zhao, H.; Li, C.-F.; Hu, Z.-Y.; Liu, J.; Li, Y.; Hu, J.; Van Tendeloo, G.; Chen, L.-H.; Su, B.-L. pdf  doi
openurl 
  Title Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production Type A1 Journal article
  Year 2021 Publication Journal Of Colloid And Interface Science Abbreviated Journal J Colloid Interf Sci  
  Volume 604 Issue Pages 131-139  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Gold nanoparticles (Au NPs) with surface plasmonic resonance (SPR) effect and excellent internal electron transfer ability have widely been combined with semiconductors for photocatalysis. However, the in-depth effects of Au NPs in multicomponent photocatalysts have not been completely understood. Herein, ternary titanium oxide-gold-cadmium sulfide (TiO2-Au-CdS, TAC) photocatalysts, based on hierarchical TiO2 inverse opal photonic crystal structure with different Au NPs sizes have been designed to reveal the SPR effect and internal electron transfer of Au NPs in the presence of slow photon effect. It appears that the SPR effect and internal electron transfer ability of Au NPs, depending on their sizes, play a synergistic effect on the photocatalytic enhancement. The ternary TAC-10 photocatalyst with – 10 nm Au NPs demonstrates an unprecedented hydrogen evolution rate of 47.6 mmolh-1g 1 under visible-light, demonstrating- 48% enhancement comparing to the sample without slow photon effect. In particular, a 9.83% apparent quantum yield under 450 nm monochromatic light is achieved for TAC-10. A model is proposed and finite-difference time-domain (FDTD) simulations reveal the size influence of Au NPs in ternary TAC photocatalysts. This work suggests that the rational design of bifunctional Au NPs coupling with slow photon effect could largely promote hydrogen production from visible-light driven water splitting. (c) 2021 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704428600004 Publication Date 2021-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.233  
  Call Number UA @ admin @ c:irua:182531 Serial 6886  
Permanent link to this record
 

 
Author Bladt, E.; Pelt, D.M.; Bals, S.; Batenburg, K.J. pdf  url
doi  openurl
  Title Electron tomography based on highly limited data using a neural network reconstruction technique Type A1 Journal article
  Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 158 Issue 158 Pages 81-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract (up) Gold nanoparticles are studied extensively due to their unique optical and catalytical properties. Their exact shape determines the properties and thereby the possible applications. Electron tomography is therefore often used to examine the three-dimensional (3D) shape of nanoparticles. However, since the acquisition of the experimental tilt series and the 3D reconstructions are very time consuming, it is difficult to obtain statistical results concerning the 3D shape of nanoparticles. Here, we propose a new approach for electron tomography that is based on artificial neural networks. The use of a new reconstruction approach enables us to reduce the number of projection images with a factor of 5 or more. The decrease in acquisition time of the tilt series and use of an efficient reconstruction algorithm allows us to examine a large amount of nanoparticles in order to retrieve statistical results concerning the 3D shape.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000361574800011 Publication Date 2015-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 25 Open Access OpenAccess  
  Notes 335078 COLOURATOM; FWO; COST Action MP1207; 312483 ESTEEM2; esteem2jra4; ECASSara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 2.843; 2015 IF: 2.436  
  Call Number c:irua:126675 c:irua:126675 Serial 988  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: