toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Arsoski, V.V.; Tadić, M.Z.; Peeters, F.M. url  doi
openurl 
  Title Strain and band-mixing effects on the excitonic Aharonov-Bohm effect in In(Ga)As/GaAs ringlike quantum dots Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085314-14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Neutral excitons in strained axially symmetric In(Ga)As/GaAs quantum dots with a ringlike shape are investigated. Similar to experimental self-assembled quantum rings, the analyzed quantum dots have volcano-like shapes. The continuum mechanical model is employed to determine the strain distribution, and the single-band envelope function approach is adopted to compute the electron states. The hole states are determined by the axially symmetric multiband Luttinger-Kohn Hamiltonian, and the exciton states are obtained from an exact diagonalization. We found that the presence of the inner layer covering the ring opening enhances the excitonic Aharonov-Bohm (AB) oscillations. The reason is that the hole becomes mainly localized in the inner part of the quantum dot due to strain, whereas the electron resides mainly inside the ring-shaped rim. Interestingly, larger AB oscillations are found in the analyzed quantum dot than in a fully opened quantum ring of the same width. Comparison with the unstrained ringlike quantum dot shows that the amplitude of the excitonic Aharonov-Bohm oscillations are almost doubled in the presence of strain. The computed oscillations of the exciton energy levels are comparable in magnitude to the oscillations measured in recent experiments. DOI: 10.1103/PhysRevB.87.085314  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000315278000003 Publication Date 2013-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 18 Open Access  
  Notes ; This work was supported by the EU NoE: SANDiE, the Ministry of Education, Science, and Technological Development of Serbia, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107656 Serial 3165  
Permanent link to this record
 

 
Author Saniz, R.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Confinement effects on electron and phonon degrees of freedom in nanofilm superconductors : a Green function approach Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 6 Pages 064510-64513  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Green function approach to the Bardeen-Cooper-Schrieffer theory of superconductivity is used to study nanofilms. We go beyond previous models and include effects of confinement on the strength of the electron-phonon coupling as well as on the electronic spectrum and on the phonon modes. Within our approach, we find that in ultrathin films, confinement effects on the electronic screening become very important. Indeed, contrary to what has been advanced in recent years, the sudden increases of the density of states when new bands start to be occupied as the film thickness increases, tend to suppress the critical temperature rather than to enhance it. On the other hand, the increase of the number of phonon modes with increasing number of monolayers in the film leads to an increase in the critical temperature. As a consequence, the superconducting critical parameters in such nanofilms are determined by these two competing effects. Furthermore, in sufficiently thin films, the condensate consists of well-defined subcondensates associated with the occupied bands, each with a distinct coherence length. The subcondensates can interfere constructively or destructively giving rise to an interference pattern in the Cooper pair probability density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000315374100009 Publication Date 2013-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). R.S. thanks M. R. Norman, B. Soree, and L. Komendova for useful comments. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107072 Serial 487  
Permanent link to this record
 

 
Author Zhang, S.H.; Xu, W.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 7 Pages 075443-75445  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the mobility of Dirac fermions in monolayer graphene on a GaAs substrate, limited by the combined action of the extrinsic potential of piezoelectric surface acoustical phonons of GaAs (PA) and of the intrinsic deformation potential of acoustical phonons in graphene (DA). In the high-temperature (T) regime, the momentum relaxation rate exhibits the same linear dependence on T but different dependencies on the carrier density n, corresponding to the mobility mu proportional to 1 root n and 1/n, respectively for the PA and DA scattering mechanisms. In the low-T Bloch-Gruneisen regime, the mobility shows the same square-root density dependence mu proportional to root n, but different temperature dependencies mu proportional to T-3 and T-4, respectively for PA and DA phonon scattering. DOI: 10.1103/PhysRevB.87.075443  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000315375200008 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; This work was supported by the ESF-Eurocores program EuroGRAPHENE (CONGRAN project) and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107655 Serial 2622  
Permanent link to this record
 

 
Author Neek-Amal, M.; Beheshtian, J.; Shayeganfar, F.; Singh, S.K.; Los, J.H.; Peeters, F.M. url  doi
openurl 
  Title Spiral graphone and one-sided fluorographene nanoribbons Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 7 Pages 075448-8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The instability of a free-standing one-sided hydrogenated/fluorinated graphene nanoribbon, i.e., graphone/fluorographene, is studied using ab initio, semiempirical, and large-scale molecular dynamics simulations. Free-standing semi-infinite armchairlike hydrogenated/fluorinated graphene (AC-GH/AC-GF) and boatlike hydrogenated/fluorinated graphene (B-GH/B-GF) (nanoribbons which are periodic along the zigzag direction) are unstable and spontaneously transform into spiral structures. We find that rolled, spiral B-GH and B-GF are energetically more favorable than spiral AC-GH and AC-GF which is opposite to the double-sided flat hydrogenated/fluorinated graphene, i.e., graphane/fluorographene. We found that the packed, spiral structures exhibit an unexpected localized highest occupied molecular orbital and lowest occupied molecular orbital at the edges with increasing energy gap during rolling. These rolled hydrocarbon structures are stable beyond room temperature up to at least T = 1000 K within our simulation time of 1 ns. DOI: 10.1103/PhysRevB.87.075448  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000315481800005 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; We thank A. Sadeghi, M. R. Ejtehadi, and J. Amini for their useful comments. This work is supported by the ESF EuroGRAPHENE project CONGRAN and the Flemish Science Foundation (FWO-Vl). M.N.-A. is supported by a EU-Marie Curie IIF fellowship program Grant No. 299855. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107654 Serial 3106  
Permanent link to this record
 

 
Author Sivek, J.; Sahin, H.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene : stability and electronic and phonon properties Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 8 Pages 085444-85448  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ab initio calculations within the density-functional theory formalism are performed to investigate the chemical functionalization of a graphene-like monolayer of siliconsilicenewith B, N, Al, or P atoms. The structural, electronic, magnetic, and vibrational properties are reported. The most preferable adsorption sites are found to be valley, bridge, valley and hill sites for B, N, Al, and P adatoms, respectively. All the relaxed systems with adsorbed/substituted atoms exhibit metallic behavior with strongly bonded B, N, Al, and P atoms accompanied by an appreciable electron transfer from silicene to the B, N, and P adatom/substituent. The Al atoms exhibit opposite charge transfer, with n-type doping of silicene and weaker bonding. The adatoms/substituents induce characteristic branches in the phonon spectrum of silicene, which can be probed by Raman measurements. Using molecular dynamics, we found that the systems under study are stable up to at least T=500 K. Our results demonstrate that silicene has a very reactive and functionalizable surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000315482900007 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 169 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107071 Serial 60  
Permanent link to this record
 

 
Author De Beule, C.; Partoens, B. url  doi
openurl 
  Title Gapless interface states at the junction between two topological insulators Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 11 Pages 115113-115116  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider a junction between two topological insulators and calculate the properties of the interface states with an effective low-energy Hamiltonian for topological insulators with a single cone on the surface. This system bears a close resemblance to bilayer graphene, as both result from the hybridization of Dirac cones. We find gapless interface states not only when the helicity directions of the topological surface states are oppositely oriented, but they can also exist if they are equally oriented. Furthermore, we find that the existence of the interface states can be understood from the closing of the bulk gap when the helicity changes orientation. Recently superluminal tachyonic excitations were also claimed to exist at the interface between topological insulators. However, here we show that these interface states do not exist. DOI: 10.1103/PhysRevB.87.115113  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000316101100002 Publication Date 2013-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes ; The authors would like to thank Dr. O. Leenaerts for the helpful discussions. This work was supported by the Research Foundation Flanders (FWO). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108282 Serial 1316  
Permanent link to this record
 

 
Author Horzum, S.; Sahin, H.; Cahangirov, S.; Cudazzo, P.; Rubio, A.; Serin, T.; Peeters, F.M. url  doi
openurl 
  Title Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 12 Pages 125415-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by recent experimental observations of Tongay et al. [Nano Lett. 12, 5576 (2012)] we show how the electronic properties and Raman characteristics of single layer MoSe2 are affected by elastic biaxial strain. We found that with increasing strain: (1) the E' and E '' Raman peaks (E-2g and E-1g in bulk) exhibit significant redshifts (up to similar to 30 cm(-1)), (2) the position of the A'(1) peak remains at similar to 180 cm(-1) (A(1g) in bulk) and does not change considerably with further strain, (3) the dispersion of low energy flexural phonons crosses over from quadratic to linear, and (4) the electronic band structure undergoes a direct to indirect band gap crossover under similar to 3% biaxial tensile strain. Thus the application of strain appears to be a promising approach for a rapid and reversible tuning of the electronic, vibrational, and optical properties of single layer MoSe2 and similar MX2 dichalcogenides. DOI:10.1103/PhysRevB.87.125415  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000316383700006 Publication Date 2013-03-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 171 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. is supported by a FWO Pegasus Marie Curie Long Fellowship. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108277 Serial 2605  
Permanent link to this record
 

 
Author Singh, S.K.; Srinivasan, S.G.; Neek-Amal, M.; Costamagna, S.; van Duin, A.C.T.; Peeters, F.M. url  doi
openurl 
  Title Thermal properties of fluorinated graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 10 Pages 104114-104116  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Large-scale atomistic simulations using the reactive force field approach are implemented to investigate the thermomechanical properties of fluorinated graphene (FG). A set of parameters for the reactive force field potential optimized to reproduce key quantum mechanical properties of relevant carbon-fluorine cluster systems are presented. Molecular dynamics simulations are used to investigate the thermal rippling behavior of FG and its mechanical properties and compare them with graphene, graphane and a sheet of boron nitride. The mean square value of the height fluctuations < h(2)> and the height-height correlation function H(q) for different system sizes and temperatures show that FG is an unrippled system in contrast to the thermal rippling behavior of graphene. The effective Young's modulus of a flake of fluorinated graphene is obtained to be 273 N/m and 250 N/m for a flake of FG under uniaxial strain along armchair and zigzag directions, respectively. DOI: 10.1103/PhysRevB.87.104114  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000316933500002 Publication Date 2013-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes ; M.N.-A. is supported by the EU-Marie Curie IIF postdoc Fellowship/299855. This work is supported by the ESF-Eurographene project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. S. G. S. and A.C.T.vD. acknowledge support by the Air Force Office of Scientific Research (AFOSR) under Grant No. FA9550-10-1-0563. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108495 Serial 3629  
Permanent link to this record
 

 
Author Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F.M. url  doi
openurl 
  Title Anomalous Raman spectra and thickness-dependent electronic properties of WSe2 Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 16 Pages 165409-6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Typical Raman spectra of transition-metal dichalcogenides (TMDs) display two prominent peaks, E-2g and A(1g), that are well separated from each other. We find that these modes are degenerate in bulk WSe2 yielding one single Raman peak in contrast to other TMDs. As the dimensionality is lowered, the observed peak splits in two. In contrast, our ab initio calculations predict that the degeneracy is retained even for WSe2 monolayers. Interestingly, for minuscule biaxial strain, the degeneracy is preserved, but once the crystal symmetry is broken by a small uniaxial strain, the degeneracy is lifted. Our calculated phonon dispersion for uniaxially strained WSe2 shows a good match to the measured Raman spectrum, which suggests that uniaxial strain exists in WSe2 flakes, possibly induced during the sample preparation and/or as a result of the interaction between WSe2 and the substrate. Furthermore, we find that WSe2 undergoes an indirect-to-direct band-gap transition from bulk to monolayers, which is ubiquitous for semiconducting TMDs. These results not only allow us to understand the vibrational and electronic properties of WSe2, but also point to effects of the interaction between the monolayer TMDs and the substrate on the vibrational and electronic properties. DOI: 10.1103/PhysRevB.87.165409  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000317195400007 Publication Date 2013-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 365 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were partially provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. S. is supported by the FWO Pegasus Marie Curie Long Fellowship program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108471 Serial 134  
Permanent link to this record
 

 
Author Muñoz, W.A.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding description of intrinsic superconducting correlations in multilayer graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134509-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using highly efficient GPU-based simulations of the tight-binding Bogoliubov-de Gennes equations we solve self-consistently for the pair correlation in rhombohedral (ABC) and Bernal (ABA) multilayer graphene by considering a finite intrinsic s-wave pairing potential. We find that the two different stacking configurations have opposite bulk/surface behavior for the order parameter. Surface superconductivity is robust for ABC stacked multilayer graphene even at very low pairing potentials for which the bulk order parameter vanishes, in agreement with a recent analytical approach. In contrast, for Bernal stacked multilayer graphene, we find that the order parameter is always suppressed at the surface and that there exists a critical value for the pairing potential below which no superconducting order is achieved. We considered different doping scenarios and find that homogeneous doping strongly suppresses surface superconductivity while nonhomogeneous field-induced doping has a much weaker effect on the superconducting order parameter. For multilayer structures with hybrid stacking (ABC and ABA) we find that when the thickness of each region is small (few layers), high-temperature surface superconductivity survives throughout the bulk due to the proximity effect between ABC/ABA interfaces where the order parameter is enhanced. DOI: 10.1103/PhysRevB.87.134509  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000317390000006 Publication Date 2013-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108469 Serial 3660  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Melting of graphene clusters Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134103-134109  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nanoclusters C-N with N = 2-55. The minimum-energy configurations for different clusters are used as starting configurations for the study of the temperature effects on the bond breaking and rotation in carbon lines (N < 6), carbon rings (5 < N < 19), and graphene nanoflakes. The larger the rings (graphene nanoflakes) the higher the transition temperature (melting point) with ring-to-line (perfect-to-defective) transition structures. The melting point was obtained by using the bond energy, the Lindemann criteria, and the specific heat. We found that hydrogen-passivated graphene nanoflakes (CNHM) have a larger melting temperature with a much smaller dependence on size. The edges in the graphene nanoflakes exhibit several different metastable configurations (isomers) during heating before melting occurs. DOI: 10.1103/PhysRevB.87.134103  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000317390700001 Publication Date 2013-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes ; This work was supported by the EU-Marie Curie IIF Postdoctoral Fellowship No. 299855 (for M.N.-A.), the ESF-EuroGRAPHENE Project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108467 Serial 1987  
Permanent link to this record
 

 
Author Orlova, N.V.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.; Vagov, A.V.; Axt, V.M. url  doi
openurl 
  Title Ginzburg-Landau theory for multiband superconductors : microscopic derivation Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 13 Pages 134510-134518  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A procedure to derive the Ginzburg-Landau (GL) theory from the multiband BCS Hamiltonian is developed in a general case with an arbitrary number of bands and arbitrary interaction matrix. It combines the standard Gor'kov truncation and a subsequent reconstruction in order to match accuracies of the obtained terms. This reconstruction recovers the phenomenological GL theory as obtained from the Landau model of phase transitions but offers explicit microscopic expressions for the relevant parameters. Detailed calculations are presented for a three-band system treated as a prototype multiband superconductor. It is demonstrated that the symmetry in the coupling matrix may lead to the chiral ground state with the phase frustration, typical for systems with broken time-reversal symmetry. DOI: 10.1103/PhysRevB.87.134510  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000317586700002 Publication Date 2013-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 57 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). A.A.S. acknowledges useful discussions with D. Neilson. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108464 Serial 1344  
Permanent link to this record
 

 
Author Barba-Ortega, J.; Sardella, E.; Aguiar, J.A.; Peeters, F.M. pdf  doi
openurl 
  Title Non-conventional vortex configurations in a mesoscopic flat disk Type A1 Journal article
  Year 2013 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 487 Issue Pages 47-55  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The influence of superficial defects on the vortex configurations of a thin superconducting disk is investigated within the time dependent Ginzburg-Landau formalism. The free energy, magnetization, vorticity, and the Cooper pair density are calculated for both metastable and stable vortex configurations and different number of defects on its surface in the presence of an external magnetic field applied perpendicular to the disk area. We show that the competition between the confinement geometry and the geometric position of the defects leads to non-conventional vortex configurations which are not compatible with the symmetry of the sample geometry. Crown Copyright (C) 2013 Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000317743300009 Publication Date 2013-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 17 Open Access  
  Notes ; This work was partially supported by the Brazilian agencies CNPq, CAPES, FACEPE (APQ 0589-105/08), FAPESP, CNPq-FWO bilateral project, and Colombian Agencies Colciencias and DIB. ; Approved Most recent IF: 1.404; 2013 IF: 1.110  
  Call Number UA @ lucian @ c:irua:108486 Serial 2344  
Permanent link to this record
 

 
Author Van Holsbeke, C.; Vos, W.; van Hoorenbeeck, K.; Boudewyns, A.; Salgado, R.; Verdonck, P.R.; Ramet, J.; de Backer, J.; De Backer, W.; Verhulst, S.L. pdf  doi
openurl 
  Title Functional respiratory imaging as a tool to assess upper airway patency in children with obstructive sleep apnea Type A1 Journal article
  Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 14 Issue 5 Pages 433-439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract Objective: We aim to investigate if anatomical and functional properties of the upper airway using computerized 3D models derived from computed tomography (CT) scans better predict obstructive sleep apnea (OSA) severity than standard clinical markers. Methods: Consecutive children with suspected OSA underwent polysomnography, clinical assessment of upper airway patency, and a CT scan while awake. A three-dimensional (3D) reconstruction of the pharyngeal airway was built from these images, and computational fluid dynamics modeling of low inspiratory flow was performed using open-source software. Results: Thirty-three children were included (23 boys; mean age, was 6.0 +/- 3.2 y). OSA was diagnosed in 23 patients. Children with OSA had a significantly lower volume of the overlap region between tonsils and the adenoids (median volume, 1408 mm compared to 2173 mm; p = 0.04), a lower mean cross-sectional area at this location (median volume, 69.3 mm(2) compared to 114.3 mm(2); p = 0.04), and a lower minimal cross-sectional area (median volume, 17.9 mm(2) compared to 25.9 mm(2); p = 0.05). Various significant correlations were found between several imaging parameters and the severity of OSA, most pronounced for upper airway conductance (r = -0.46) (p < 0.01) for correlation between upper airway conductance and the apnea-hypopnea index. No differences or significant correlations were observed with clinical parameters of upper airway patency. Preliminary data after treatment showed that none of the patients with residual OSA had their smallest cross-sectional area located in segment 3, and this frequency was significantly lower than in their peers whose sleep study normalized (64%; p = 0.05). Conclusion: Functional imaging parameters are highly correlated with OSA severity and are a more powerful correlate than clinical scores of upper airway patency. Preliminary data also showed that we could identify differences in the upper airway of those subjects who did not benefit from a local upper airway treatment. (c) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000318612100009 Publication Date 2013-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.391 Times cited 18 Open Access  
  Notes ; ; Approved Most recent IF: 3.391; 2013 IF: 3.100  
  Call Number UA @ lucian @ c:irua:109015 Serial 1302  
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B. url  doi
openurl 
  Title First-principles study of possible shallow donors in ZnAl2O4 spinel Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 17 Pages 174101-174107  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract ZnAl2O4 (gahnite) is a ceramic which is considered a possible transparent conducting oxide (TCO) due to its wide band gap and transparency for UV. Defects play an important role in controlling the conductivity of a TCO material along with the dopant, which is the main source of conductivity in an otherwise insulating oxide. A comprehensive first-principles density functional theory study for point defects in ZnAl2O4 spinel is presented using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) to overcome the band gap problem. We have investigated the formation energies of intrinsic defects which include the Zn, Al, and O vacancy and the antisite defects: Zn at the Al site (ZnAl) and Al at the Zn site (AlZn). The antisite defect AlZn has the lowest formation energy and acts as a shallow donor, indicating possible n-type conductivity in ZnAl2O4 spinel by Al doping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000318653300001 Publication Date 2013-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 50 Open Access  
  Notes Iwt; Fwo Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108769 Serial 1219  
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F.M. url  doi
openurl 
  Title Thermomechanical properties of a single hexagonal boron nitride sheet Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 18 Pages 184106-184107  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using atomistic simulations we investigate the thermodynamical properties of a single atomic layer of hexagonal boron nitride (h-BN). The thermal induced ripples, heat capacity, and thermal lattice expansion of large scale h-BN sheets are determined and compared to those found for graphene (GE) for temperatures up to 1000 K. By analyzing the mean-square height fluctuations < h(2)> and the height-height correlation function H(q) we found that the h-BN sheet is a less stiff material as compared to graphene. The bending rigidity of h-BN (i) is about 16% smaller than the one of GE at room temperature (300 K), and (ii) increases with temperature as in GE. The difference in stiffness between h-BN and GE results in unequal responses to external uniaxial and shear stress and different buckling transitions. In contrast to a GE sheet, the buckling transition of a h-BN sheet depends strongly on the direction of the applied compression. The molar heat capacity, thermal-expansion coefficient, and Gruneisen parameter are estimated to be 25.2 J mol(-1) K-1, 7.2 x 10(-6) K-1, and 0.89, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000318653800001 Publication Date 2013-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 80 Open Access  
  Notes ; We thank K. H. Michel and D. A. Kirilenko for their useful comments on the manuscript. M. N.-A. was supported by EU-Marie Curie IIF Postdoctorate Fellowship No. 299855. S. Costamagna was supported by the Belgian Science Foundation (BELSPO). This work was supported by the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem program of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109010 Serial 3638  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Doria, M.M.; de Romaguera, A.R.C.; Milošević, M.V.; Brandt, E.H.; Peeters, F.M. url  doi
openurl 
  Title Current-induced cutting and recombination of magnetic superconducting vortex loops in mesoscopic superconductor-ferromagnet heterostructures Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 18 Pages 184508-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vortex loops are generated by the inhomogeneous stray field of a magnetic dipole on top of a current-carrying mesoscopic superconductor. Cutting and recombination processes unfold under the applied drive, resulting in periodic voltage oscillations across the sample. We show that a direct and detectable consequence of the cutting and recombination of these vortex loops in the present setup is the onset of vortices at surfaces where they were absent prior to the application of the external current. The nonlinear dynamics of vortex loops is studied within the time-dependent Ginzburg-Landau theory to describe the profound three-dimensional features of their time evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000319252000008 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the bilateral programme between Flanders and Brazil. G.R.B. acknowledges support from FWO-VI. A.R. de C.R. acknowledges CNPq for financial support. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109648 Serial 593  
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Pawlowski, J.; Partoens, B. url  doi
openurl 
  Title All-electrical control of quantum gates for single heavy-hole spin qubits Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 19 Pages 195307-195312  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper several nanodevices which realize basic single heavy-hole qubit operations are proposed and supported by time-dependent self-consistent Poisson-Schrodinger calculations using a four band heavy-hole-light-hole model. In particular we propose a set of nanodevices which can act as Pauli X, Y, Z quantum gates and as a gate that acts similar to a Hadamard gate (i.e., it creates a balanced superposition of basis states but with an additional phase factor) on the heavy-hole spin qubit. We also present the design and simulation of a gated semiconductor nanodevice which can realize an arbitrary sequence of all these proposed single quantum logic gates. The proposed devices exploit the self-focusing effect of the hole wave function which allows for guiding the hole along a given path in the form of a stable solitonlike wave packet. Thanks to the presence of the Dresselhaus spin-orbit coupling, the motion of the hole along a certain direction is equivalent to the application of an effective magnetic field which induces in turn a coherent rotation of the heavy-hole spin. The hole motion and consequently the quantum logic operation is initialized only by weak static voltages applied to the electrodes which cover the nanodevice. The proposed gates allow for an all electric and ultrafast (tens of picoseconds) heavy-hole spin manipulation and give the possibility to implement a scalable architecture of heavy-hole spin qubits for quantum computation applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000319252200003 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; This work was supported by the Polish National Science Center (Grant No. DEC-2011/03/N/ST3/02963), as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme, co-financed by the European Regional Development Fund. This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109002 Serial 88  
Permanent link to this record
 

 
Author Van Duppen, B.; Sena, S.H.R.; Peeters, F.M. pdf  doi
openurl 
  Title Multiband tunneling in trilayer graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 19 Pages 195439-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic tunneling properties of the two stable forms of trilayer graphene (TLG), rhombohedral ABC and Bernal ABA, are examined for p-n and p-n-p junctions as realized by using a single gate (SG) or a double gate (DG). For the rhombohedral form, due to the chirality of the electrons, the Klein paradox is found at normal incidence for SG devices, while at high-energy interband scattering between additional propagation modes can occur. The electrons in Bernal ABA TLG can have a monolayer- or bilayer-like character when incident on a SG device. Using a DG, however, both propagation modes will couple by breaking the mirror symmetry of the system, which induces intermode scattering and resonances that depend on the width of the DG p-n-p junction. For ABC TLG the DG opens up a band gap which suppresses Klein tunneling. The DG induces also an unexpected asymmetry in the tunneling angle for single-valley electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000319281700004 Publication Date 2013-05-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-VI) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:108998 Serial 2216  
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Four-band tunneling in bilayer graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 20 Pages 205427-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The conductance, the transmission, and the reflection probabilities through rectangular potential barriers and p-n junctions are obtained for bilayer graphene taking into account the four bands of the energy spectrum. We have evaluated the importance of the skew hopping parameters gamma(3) and gamma(4) to these properties and show that for energies E > gamma(1)/100 their effect is negligible. For high energies two modes of propagation exist and we investigate scattering between these modes. For perpendicular incidence both propagation modes are decoupled, and scattering between them is forbidden. This extends the concept of pseudospin as defined within the two-band approximation to a four-band model and corresponds to the (anti) symmetry of the wave functions under in-plane mirroring. New transmission resonances are found that appear as sharp peaks in the conductance which are absent in the two-band approximation. The application of an interlayer bias to the system (1) breaks the pseudospin structure, (2) opens a band gap that results in a distinct feature of suppressed transmission in the conductance, and (3) breaks the angular symmetry with respect to normal incidence in the transmission and reflection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000319282000002 Publication Date 2013-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 37 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109001 Serial 1269  
Permanent link to this record
 

 
Author Carrillo-Nuñez, H.; Magnus, W.; Vandenberghe, W.G.; Sorée, B.; Peeters, F.M. doi  openurl
  Title Phonon-assisted Zener tunneling in a cylindrical nanowire transistor Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 18 Pages 184507-184508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The tunneling current has been computed for a cylindrical nanowire tunneling field-effect transistor (TFET) with an all-round gate that covers the source region. Being the underlying mechanism, band-to-band tunneling, mediated by electron-phonon interaction, is pronouncedly affected by carrier confinement in the radial direction and, therefore, involves the self-consistent solution of the Schrodinger and Poisson equations. The latter has been accomplished by exploiting a non-linear variational principle within the framework of the modified local density approximation taking into account the nonparabolicity of both the valence band and conduction band in relatively thick wires. Moreover, while the effective-mass approximation might still provide a reasonable description of the conduction band in relatively thick wires, we have found that the nonparabolicity of the valence band needs to be included. As a major conclusion, it is observed that confinement effects in nanowire tunneling field-effect transistors have a stronger impact on the onset voltage of the tunneling current in comparison with planar TFETs. On the other hand, the value of the onset voltage is found to be overestimated when the valence band nonparabolicity is ignored. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000319294100093 Publication Date 2013-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. ; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109651 Serial 2599  
Permanent link to this record
 

 
Author Milovanovic, S.P.; Masir, M.R.; Peeters, F.M. pdf  doi
openurl 
  Title Graphene hall bar with an asymmetric pn-junction Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 19 Pages 193701-193708  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigated the magnetic field dependence of the Hall and the bend resistances in the ballistic regime for a single layer graphene Hall bar structure containing a pn-junction. When both regions are n-type the Hall resistance dominates and Hall type of plateaus are formed. These plateaus occur as a consequence of the restriction on the angle imposed by Snell's law allowing only electrons with a certain initial angles to transmit though the potential step. The size of the plateau and its position is determined by the position of the potential interface as well as the value of the applied potential. When the second region is p-type, the bend resistance dominates, which is asymmetric in field due to the presence of snake states. Changing the position of the pn-interface in the Hall bar strongly affects these states and therefore the bend resistance is also changed. Changing the applied potential, we observe that the bend resistance exhibits a peak around the charge-neutrality point (CNP), which is independent of the position of the pn-interface, while the Hall resistance shows a sign reversal when the CNP is crossed, which is in very good agreement with a recent experiment [J. R. Williams and C. M. Marcus, Phys. Rev. Lett. 107, 046602 (2011)].  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000319295200022 Publication Date 2013-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. We acknowledge fruitful discussions with M. Barbier. Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:108999 Serial 1371  
Permanent link to this record
 

 
Author Van Duppen, B.; Peeters, F.M. pdf  doi
openurl 
  Title Klein paradox for a pn junction in multilayer graphene Type A1 Journal article
  Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 2 Pages 27001-27005  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Charge carriers in single and multilayered graphene systems behave as chiral particles due to the particular lattice symmetry of the crystal. We show that the interplay between the meta-material properties of graphene multilayers and the pseudospinorial properties of the charge carriers result in the occurrence of Klein and anti-Klein tunneling for rhombohedral stacked multilayers. We derive an algebraic formula predicting the angles at which these phenomena occur and support this with numerical calculations for systems up to four layers. We present a decomposition of an arbitrarily stacked multilayer into pseudospin doublets that have the same properties as rhombohedral systems with a lower number of layers. Copyright (C) EPLA, 2013  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos (up) 000319617700017 Publication Date 2013-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 17 Open Access  
  Notes ; We thank S. GILLIS for valuable discussions. This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109665 Serial 1763  
Permanent link to this record
 

 
Author Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. pdf  doi
openurl 
  Title Nanofilms as quantum-engineered multiband superconductors : the Ginzburg-Landau theory Type A1 Journal article
  Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 2 Pages 27003-27006  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently fabricated single-crystalline atomically flat metallic nanofilms are in fact quantum-engineered multiband superconductors. Here the multiband structure is dictated by the nanofilm thickness through the size quantization of the electron motion perpendicular to the nanofilm. This opens the unique possibility to explore superconductivity in well-controlled multi-band systems. However, a serious obstacle is the absence of a convenient and manageable theoretical tool to access new physical phenomena in such quasi-two-dimensional systems, including interplay of quantum confinement and fluctuations. Here we cover this gap and construct the appropriate multiband Ginzburg-Landau functional for nano-thin superconductors. Copyright (C) EPLA, 2013  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos (up) 000319617700019 Publication Date 2013-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 8 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109859 Serial 2257  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Savel'ev, S.E.; Milošević, M.V.; Kusmartsev, F.V.; Peeters, F.M. url  doi
openurl 
  Title Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions under both dc and ac bias currents Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 18 Pages 184510-184519  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative-a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos (up) 000319653400007 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109643 Serial 3406  
Permanent link to this record
 

 
Author Pathangi, H.; Cherman, V.; Khaled, A.; Sorée, B.; Groeseneken, G.; Witvrouw, A. doi  openurl
  Title Towards CMOS-compatible single-walled carbon nanotube resonators Type A1 Journal article
  Year 2013 Publication Microelectronic engineering Abbreviated Journal Microelectron Eng  
  Volume 107 Issue Pages 219-222  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report a totally CMOS-compatible fabrication technique to assemble horizontally suspended single-walled carbon nanotube (SWCNT) resonators. Individual SWCNTs are assembled in parallel at multiple sites by a technique called dielectrophoresis. The mechanical resonance frequencies of the suspended SWCNTs are in the range of 2035 MHz as determined from the piezoresistive response of the resonators during electrostatic actuation. The resistance of the suspended SWCNT either remains unchanged or increases or decreases significantly as a function of the actuation frequency. This can be explained by the effect the nanotube chirality has on the piezoresistive gauge factor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos (up) 000319855800040 Publication Date 2012-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.806 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 1.806; 2013 IF: 1.338  
  Call Number UA @ lucian @ c:irua:109260 Serial 3685  
Permanent link to this record
 

 
Author Masir, M.R.; Peeters, F.M. doi  openurl
  Title Scattering of Dirac electrons by a random array of magnetic flux tubes Type A1 Journal article
  Year 2013 Publication Journal of computational electronics Abbreviated Journal J Comput Electron  
  Volume 12 Issue 2 Pages 115-122  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The scattering of two-dimensional (2D) massless electrons as presented in graphene in the presence of a random array of circular magnetic flux tubes is investigated. The momentum relaxation time and the Hall factor are obtained using optical theorem techniques for scattering. Electrons with energy close to those of the Landau levels of the flux tubes exhibit resonant scattering and have a long life-time to reside inside the magnetic flux tube. These resonances appear as sharp structures in the Hall factor and the magneto-resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos (up) 000320044900007 Publication Date 2013-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-8025;1572-8137; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.526 Times cited 2 Open Access  
  Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN and the Flemish Science Foundation (FWO-Vl). We acknowledge fruitful discussions with A. Matulis. ; Approved Most recent IF: 1.526; 2013 IF: 1.372  
  Call Number UA @ lucian @ c:irua:109615 Serial 2950  
Permanent link to this record
 

 
Author Pogosov, W.V.; Lin, N.; Misko, V.R. doi  openurl
  Title Electron-hole symmetry and solutions of Richardson pairing model Type A1 Journal article
  Year 2013 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 86 Issue 5 Pages 235-236  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Richardson approach provides an exact solution of the pairing Hamiltonian. This Hamiltonian is characterized by the electron-hole pairing symmetry, which is however hidden in Richardson equations. By analyzing this symmetry and using an additional conjecture, fulfilled in solvable limits, we suggest a simple expression of the ground state energy for an equally-spaced energy-level model, which is applicable along the whole crossover from the superconducting state to the pairing fluctuation regime. Solving Richardson equations numerically, we demonstrate a good accuracy of our expression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos (up) 000320286200044 Publication Date 2013-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 6 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). W.V.P. acknowledges useful discussions with Monique Combescot and the support from the Dynasty Foundation, the RFBR (project No. 12-02-00339), and RFBR-CNRS programme (project No. 12-02-91055). ; Approved Most recent IF: 1.461; 2013 IF: 1.463  
  Call Number UA @ lucian @ c:irua:109657 Serial 935  
Permanent link to this record
 

 
Author Zhao, C.X.; Xu, W.; Peeters, F.M. doi  openurl
  Title Cerenkov emission of terahertz acoustic-phonons from graphene Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue 22 Pages 222101-222104  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study of the electrical generation of acoustic-phonon emission from graphene at room temperature. The drift velocity (v(x)) and temperature of electrons driven by dc electric field (F-x) are determined by solving self-consistently the momentum-and energy-balance equations derived from the Boltzmann equation. We find that in the presence of impurity, acoustic-and optic-phonon scattering, v(x) can be much larger than the longitudinal (v(l)) and transverse (v(t)) sound velocities in graphene even within the linear response regime. As a result, although the acoustic Cerenkov effect cannot be obviously seen in the analytical formulas, the enhanced acoustic-phonon emission can be observed with increasing F-x when v(x) > v(l) and v > v(t). The frequency of acoustic-phonon emission from graphene can be above 10 THz, which is much higher than that generated from conventional semiconductor systems. This study is pertinent to the application of graphene as hypersonic devices such as terahertz sound sources. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000320621600034 Publication Date 2013-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 25 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 10974206), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:109607 Serial 305  
Permanent link to this record
 

 
Author Lindell, L.; Çakir, D.; Brocks, G.; Fahlman, M.; Braun, S. url  doi
openurl 
  Title Role of intrinsic molecular dipole in energy level alignment at organic interfaces Type A1 Journal article
  Year 2013 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett  
  Volume 102 Issue 22 Pages 223301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The energy level alignment in metal-organic and organic-organic junctions of the widely used materials tris-(8-hydroxyquinoline) aluminum (Alq(3)) and 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA) is investigated. The measured alignment schemes for single and bilayer films of Alq(3) and NTCDA are interpreted with the integer charge transfer (ICT) model. Single layer films of Alq(3) feature a constant vacuum level shift of similar to 0.2-0.4 eV in the absence of charge transfer across the interface. This finding is attributed to the intrinsic dipole of the Alq(3) molecule and (partial) ordering of the molecules at the interfaces. The vacuum level shift changes the onset of Fermi level pinning, as it changes the energy needed for equilibrium charge transfer across the interface. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos (up) 000320621600081 Publication Date 2013-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 22 Open Access  
  Notes ; We acknowledge funding from the European Community's Framework Programme under Grant No. FP7-NMP-228424 of the MINOTOR project as well as a project grant from the Swedish Energy Agency, STEM. ; Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:128323 Serial 4605  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: