toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gul, A.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Tomak, A.; Zareie, H.M.; Sahin, H. doi  openurl
  Title Theoretical and experimental investigation of conjugation of 1,6-hexanedithiol on MoS2 Type A1 Journal article
  Year 2018 Publication Materials Research Express Abbreviated Journal Mater Res Express  
  Volume 5 Issue 3 Pages 036415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report an experimental and theoretical investigation of conjugation of 1,6-Hexaneditihiol (HDT) on MoS2 which is prepared by mixing MoS2 structure and HDT molecules in proper solvent. Raman spectra and the calculated phonon bands reveal that the HDT molecules bind covalently to MoS2. Surface morphology of MoS2/HDTstructure is changed upon conjugation ofHDTon MoS2 and characterized by using Scanning Electron Microscope (SEM). Density Functional Theory (DFT) based calculations show that HOMO-LUMO band gap of HDT is altered after the conjugation and two-S binding (handle-like) configuration is energetically most favorable among three different structures. This study displays that the facile thiol functionalization process of MoS2 is promising strategy for obtaining solution processable MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000428781400003 Publication Date 2018-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.068 Times cited 2 Open Access  
  Notes (up) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 116C073. HS acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 1.068  
  Call Number UA @ lucian @ c:irua:154607UA @ admin @ c:irua:154607 Serial 5133  
Permanent link to this record
 

 
Author Ozcan, M.; Ozen, S.; Yagmurcukardes, M.; Sahin, H. pdf  doi
openurl 
  Title Structural, electronic and vibrational properties of ultra-thin octahedrally coordinated structure of EuO2 Type A1 Journal article
  Year 2020 Publication Journal Of Magnetism And Magnetic Materials Abbreviated Journal J Magn Magn Mater  
  Volume 493 Issue 493 Pages 165668  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Novel stable ultra-thin phases of europium oxide are investigated by means of state-of-the-art first principles calculations. Total energy calculations show that single layers of EuO2 and Eu(OH)(2) can be stabilized in an octahedrally coordinated (1T) atomic structure. However, phonon calculations reveal that although both structures are energetically feasible, only the 1T-EuO2 phase has dynamical stability. The phonon spectrum of 1T-EuO2 displays three Raman active modes; a non-degenerate out-of-plane A(1g) mode at 353.5 cm(-1) and two doubly-degenerate in-plane E-g modes at 304.3 cm(-1). Furthermore, magnetic ground state and electronic band dispersion calculations show that the single layer EuO2 is a metal with net magnetic moment of 5(mu B) per unitcell resulting in a half-metallic ferrimagnetic behavior. Moreover, robustness of the half-metallic ferrimagnetic characteristics of EuO2 is confirmed by the application of electric field and charging. Single layer 1T-EuO2, with its stable ultra-thin structure and half-metallic ferrimagnetic feature, is a promising novel material for nanoscale electronic and spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486397800003 Publication Date 2019-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 1 Open Access  
  Notes (up) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 117F095. MY is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; Approved Most recent IF: 2.7; 2020 IF: 2.63  
  Call Number UA @ admin @ c:irua:162755 Serial 6323  
Permanent link to this record
 

 
Author Yagmurcukardes, M. url  doi
openurl 
  Title Monolayer fluoro-InSe : formation of a thin monolayer via fluorination of InSe Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 100 Issue 2 Pages 024108  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By performing density functional theory-based first-principles calculations, the formation of a thin monolayer structure, namely InSeF, via fluorination of monolayer InSe is predicted. It is shown that strong interaction of F and In atoms leads to the detachment of In-Se layers in monolayer InSe and 1T-like monolayer InSeF structure is formed. Monolayer InSeF is found to be dynamically stable in terms of its phonon band dispersions. In addition, its Raman spectrum is shown to exhibit totally distinctive features as compared to monolayer InSe. The electronic band dispersions reveal that monolayer InSeF is a direct gap semiconductor whose valence and conduction band edges reside at the Gamma point. Moreover, the orientation-dependent linear elastic properties of monolayer InSeF are investigated in terms of the in-plane stiffness and Poisson ratio. It is found that monolayer InSeF displays strong in-plane anisotropy in elastic constants and it is slightly softer material as compared to monolayer InSe. Overall, it is proposed that a thin, direct gap semiconducting monolayer InSeF can be formed by full fluorination of monolayer InSe as a new member of the two-dimensional family.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477885700003 Publication Date 2019-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes (up) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161891 Serial 5423  
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title Electronic, vibrational, elastic, and piezoelectric properties of monolayer Janus MoSTe phases: A first-principles study Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 100 Issue 4 Pages 045415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By performing density functional theory based first-principles calculations, the electronic, vibrational, elastic, and piezoelectric properties of two dynamically stable crystal phases of monolayer Janus MoSTe, namely 1H-MoSTe and 1T'-MoSTe, are investigated. Vibrational frequency analysis reveals that the other possible crystal structure, 1T-MoSTe, of this Janus monolayer does not exhibit dynamical stability. The 1H-MoSTe phase is found to be an indirect band-gap semiconductor while 1T'-MoSTe is predicted as small-gap semiconductor. Notably, in contrast to the direct band-gap nature of monolayers 1H-MoS2 and 1H-MoTe2, 1H-MoSTe is found to be an indirect gap semiconductor driven by the induced surface strains on each side of the structure. The calculated Raman spectrum of each structure shows unique character enabling us to clearly distinguish the stable crystal phases via Raman measurements. The systematic piezoelectric stress and strain coefficient analysis reveals that out-of-plane piezoelectricity appears in 1H-MoSTe and the noncentral symmetric 1T'-MoSTe has large piezoelectric coefficients. Static total-energy calculations show clearly that the formation of 1T'-MoSTe is feasible by using 1T'-MoTe2 as a basis monolayer. Therefore, we propose that the Janus MoSTe structure can be fabricated in two dynamically stable phases which possess unique electronic, dynamical, and piezoelectric properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476687800003 Publication Date 2019-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 91 Open Access  
  Notes (up) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161899 Serial 5411  
Permanent link to this record
 

 
Author Sozen, Y.; Eren, I.; Ozen, S.; Yagmurcukardes, M.; Sahin, H. pdf  url
doi  openurl
  Title Interaction of Ge with single layer GaAs : from Ge-island nucleation to formation of novel stable monolayers Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 505 Issue Pages 144218-7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, reactivity of single-layer GaAs against Ge atoms is studied by means of ab initio density functional theory calculations. Firstly, it is shown that Ge atoms interact quite strongly with the GaAs layer which allows the formation of Ge islands while it hinders the growth of detached germanene monolayers. It is also predicted that adsorption of Ge atoms on GaAs single-layer lead to formation of two novel stable single-layer crystal structures, namely 1H-GaGeAs and 1H(A)-GaGeAs. Both the total energy optimizations and the calculated vibrational spectra indicate the dynamical stability of both single layer structures. Moreover, although both structures crystallize in 1H phase, 1H-GaGeAs and 1H(A)-GaGeAs exhibit distinctive vibrational features in their Raman spectra which is quite important for distinguishing the structures. In contrast to the semiconducting nature of single-layer GaAs, both polytypes of GaGeAs exhibit metallic behavior confirmed by the electronic band dispersions. Furthermore, the linear-elastic constants, in-plane stiffness and Poisson ratio, reveal the ultrasoft nature of the GaAs and GaGeAs structures and the rigidity of GaAs is found to be slightly enhanced via Ge adsorption. With their stable, ultra-thin and metallic properties, predicted single-layer GaGeAs structures can be promising candidates for nanoscale electronic and mechanical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510846500026 Publication Date 2019-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.7 Times cited Open Access  
  Notes (up) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under the project number 117F095. H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:167733 Serial 6548  
Permanent link to this record
 

 
Author Kahraman, Z.; Baskurt, M.; Yagmurcukardes, M.; Chaves, A.; Sahin, H. pdf  doi
openurl 
  Title Stable Janus TaSe₂ single-layers via surface functionalization Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 538 Issue Pages 148064  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First-principles calculations are performed in order to investigate the formation of Janus structures of single layer TaSe2. The structural optimizations and phonon band dispersions reveal that the formation and stability of hydrogenated (HTaSe2), fluorinated (FTaSe2), and the one-side hydrogenated and one-side fluorinated (Janus-HTaSe2F) single-layers are feasible in terms of their phonon band dispersions. It is shown that bare metallic single-layer TaSe2 can be turned into a semiconductor as only one of its surface is functionalized while it remains as a metal via its two surfaces functionalization. In addition, the semiconducting nature of single-layers HTaSe2 and FTaSe2 and the metallic behavior of Janus TaSe2 are found to be robust under applied uniaxal strains. Further analysis on piezoelectric properties of the predicted single-layers reveal the enhanced in-plane and out of-plane piezoelectricity via formed Janus-HTaSe2F. Our study indicates that single-layer TaSe2 is a suitable host material for surface functionalization via fluorination and hydrogenation which exhibit distinctive electronic and vibrational properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000595860900001 Publication Date 2020-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited Open Access Not_Open_Access  
  Notes (up) ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). HS acknowledges support from Turkiye Bilimler Akademisi -Turkish Academy of Sciences under the GEBIP program. This work was supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174964 Serial 6699  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Sorée, B.; Collaert, N.; Mocuta, A.; Thean, A.; Groeseneken, G. doi  openurl
  Title Improved source design for p-type tunnel field-effect transistors : towards truly complementary logic Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 105 Issue 24 Pages 243506  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Complementary logic based on tunnel field-effect transistors (TFETs) would drastically reduce power consumption thanks to the TFET's potential to obtain a sub-60 mV/dec subthreshold swing (SS). However, p-type TFETs typically do not meet the performance of n-TFETs for direct bandgap III-V configurations. The p-TFET SS stays well above 60 mV/dec, due to the low density of states in the conduction band. We therefore propose a source configuration in which a highly doped region is maintained only near the tunnel junction. In the remaining part of the source, the hot carriers in the exponential tail of the Fermi-Dirac distribution are blocked by reducing the doping degeneracy, either with a source section with a lower doping concentration or with a heterostructure. We apply this concept to n-p-i-p configurations consisting of In0.53Ga0.47As and an InP-InAs heterostructure. 15-band quantum mechanical simulations predict that the configurations with our source design can obtain sub-60 mV/dec SS, with an on-current comparable to the conventional source design. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000346643600076 Publication Date 2014-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 10 Open Access  
  Notes (up) ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:122798 Serial 1568  
Permanent link to this record
 

 
Author Verreck, D.; Van de Put, M.; Sorée, B.; Verhulst, A.S.; Magnus, W.; Vandenberghe, W.G.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Quantum mechanical solver for confined heterostructure tunnel field-effect transistors Type A1 Journal article
  Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 115 Issue 5 Pages 053706-53708  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Heterostructure tunnel field-effect transistors (HTFET) are promising candidates for low-power applications in future technology nodes, as they are predicted to offer high on-currents, combined with a sub-60 mV/dec subthreshold swing. However, the effects of important quantum mechanical phenomena like size confinement at the heterojunction are not well understood, due to the theoretical and computational difficulties in modeling realistic heterostructures. We therefore present a ballistic quantum transport formalism, combining a novel envelope function approach for semiconductor heterostructures with the multiband quantum transmitting boundary method, which we extend to 2D potentials. We demonstrate an implementation of a 2-band version of the formalism and apply it to study confinement in realistic heterostructure diodes and p-n-i-n HTFETs. For the diodes, both transmission probabilities and current densities are found to decrease with stronger confinement. For the p-n-i-n HTFETs, the improved gate control is found to counteract the deterioration due to confinement. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000331645900040 Publication Date 2014-02-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes (up) ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183  
  Call Number UA @ lucian @ c:irua:115825 Serial 2780  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.; Sorée, B.; Magnus, W.; Mocuta, A.; Collaert, N.; Thean, A.; Groeseneken, G. doi  openurl
  Title Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 118 Issue 118 Pages 134502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In0.53Ga0.47As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000362668400025 Publication Date 2015-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 9 Open Access  
  Notes (up) ; D. Verreck acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number UA @ lucian @ c:irua:128765 Serial 4183  
Permanent link to this record
 

 
Author Chaves, A.; Azadani, J.G.; Alsalman, H.; da Costa, D.R.; Frisenda, R.; Chaves, A.J.; Song, S.H.; Kim, Y.D.; He, D.; Zhou, J.; Castellanos-Gomez, A.; Peeters, F.M.; Liu, Z.; Hinkle, C.L.; Oh, S.-H.; Ye, P.D.; Koester, S.J.; Lee, Y.H.; Avouris, P.; Wang, X.; Low, T. url  doi
openurl 
  Title Bandgap engineering of two-dimensional semiconductor materials Type A1 Journal article
  Year 2020 Publication npj 2D Materials and Applications Abbreviated Journal  
  Volume 4 Issue 1 Pages 29-21  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Semiconductors are the basis of many vital technologies such as electronics, computing, communications, optoelectronics, and sensing. Modern semiconductor technology can trace its origins to the invention of the point contact transistor in 1947. This demonstration paved the way for the development of discrete and integrated semiconductor devices and circuits that has helped to build a modern society where semiconductors are ubiquitous components of everyday life. A key property that determines the semiconductor electrical and optical properties is the bandgap. Beyond graphene, recently discovered two-dimensional (2D) materials possess semiconducting bandgaps ranging from the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides, to the ultraviolet in hexagonal boron nitride. In particular, these 2D materials were demonstrated to exhibit highly tunable bandgaps, achieved via the control of layers number, heterostructuring, strain engineering, chemical doping, alloying, intercalation, substrate engineering, as well as an external electric field. We provide a review of the basic physical principles of these various techniques on the engineering of quasi-particle and optical bandgaps, their bandgap tunability, potentials and limitations in practical realization in future 2D device technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565588500001 Publication Date 2020-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7132 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 329 Open Access  
  Notes (up) ; Discussions and interactions with D.R. Reichman, F. Tavazza, N.M.R. Peres, and K. Choudhary are gratefully acknowledged. A.C. acknowledges financial support by CNPq, through the PRONEX/FUNCAP and PQ programs. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No. 755655, ERCStG 2017 project 2D-TOPSENSE). Computational support from the Minnesota Supercomputing Institute (MSI) and EU Graphene Flagship funding (Grant Graphene Core 2, 785219) is acknowledged. R.F. acknowledges support from the Netherlands Organization for Scientific Research (NWO) through the research program Rubicon with project number 680-50-1515. D.H., J.Z., and X.W. acknowledge support by National Natural Science Foundation of China 61734003, 61521001, 61704073, 51861145202, and 61851401, and National Key Basic Research Program of China 2015CB921600 and 2018YFB2200500. J.Z. and Z.L. acknowledge support by RG7/18, MOE2017-T2-2-136, MOE2018-T3-1-002, and A*Star QTE program. S.H.S. and Y.H.L. acknowledge the support from IBS-R011-D1. Y.D.K. is supported by Samsung Research and Incubation Funding Center of Samsung Electronics under Project Number SRFC-TB1803-04. S.J.K acknowledges financial support by the National Science Foundation (NSF), under award DMR-1921629. T.L. and J.G.A. acknowledge funding support from NSF/DMREF under Grant Agreement No. 1921629. S.-H.O. acknowledges support from the U.S. National Science Foundation (NSF ECCS 1809723) and Samsung Global Research Outreach (GRO) project. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:172069 Serial 6459  
Permanent link to this record
 

 
Author Rakhimov, K.Y.; Chaves, A.; Farias, G.A.; Peeters, F.M. pdf  doi
openurl 
  Title Wavepacket scattering of Dirac and Schrödinger particles on potential and magnetic barriers Type A1 Journal article
  Year 2011 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 23 Issue 27 Pages 275801,1-275801,16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the dynamics of a charged particle moving in a graphene layer and in a two-dimensional electron gas, where it obeys the Dirac and the Schrödinger equations, respectively. The charge carriers are described as Gaussian wavepackets. The dynamics of the wavepackets is studied numerically by solving both quantum-mechanical and relativistic equations of motion. The scattering of such wavepackets by step-like magnetic and potential barriers is analysed for different values of wavepacket energy and width. We find: (1) that the average position of the wavepacket does not coincide with the classical trajectory, and (2) that, for slanted incidence, the path of the centre of mass of the wavepacket does not have to penetrate the barrier during the scattering process. Trembling motion of the charged particle in graphene is observed in the absence of an external magnetic field and can be enhanced by a substrate-induced mass term.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000291993600009 Publication Date 2011-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 32 Open Access  
  Notes (up) ; Discussions with A Matulis are gratefully acknowledged. KR is beneficiary of a mobility grant from the Belgian Federal Science Policy Office, co-funded by the European Commission and was supported in part by a grant of the Third World Academy of Sciences (ref. 09-188 RG/PHYS/AS-I). In addition, this work was financially supported by CNPq, under contract NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, the joint project CNPq-FWO, the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.649; 2011 IF: 2.546  
  Call Number UA @ lucian @ c:irua:90880 Serial 3908  
Permanent link to this record
 

 
Author Chaves, A.; Komendová, L.; Milošević, M.V.; Andrade, J.S.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Conditions for nonmonotonic vortex interaction in two-band superconductors Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214523-214523,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We describe a semianalytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain-superconductor interface energy, in analogy with the conventional differentiation between type I and type II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ*, different from the standard κ of a bulk superconductor. This opens the possibility for nonmonotonic vortex-vortex interaction, which is temperature dependent, and can be further tuned by alterations of the material on the microscopic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292252300009 Publication Date 2011-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes (up) ; Discussions with A. Moreira, A. Shanenko, R. Prozorov, and A. Golubov are gratefully acknowledged. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral project FWO-CNPq, CAPES, and PRONEX/CNPq/FUNCAP. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90922 Serial 477  
Permanent link to this record
 

 
Author Scuracchio, P.; Dobry, A.; Costamagna, S.; Peeters, F.M. pdf  doi
openurl 
  Title Tuning the polarized quantum phonon transmission in graphene nanoribbons Type A1 Journal article
  Year 2015 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 26 Issue 26 Pages 305401  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We propose systems that allow a tuning of the phonon transmission function T(omega) in graphene nanoribbons by using C-13 isotope barriers, antidot structures, and distinct boundary conditions. Phonon modes are obtained by an interatomic fifth-nearest neighbor force-constant model (5NNFCM) and T(omega) is calculated using the non-equilibrium Green's function formalism. We show that by imposing partial fixed boundary conditions it is possible to restrict contributions of the in-plane phonon modes to T(omega) at low energy. On the contrary, the transmission functions of out-of-plane phonon modes can be diminished by proper antidot or isotope arrangements. In particular, we show that a periodic array of them leads to sharp dips in the transmission function at certain frequencies omega(nu) which can be pre-defined as desired by controlling their relative distance and size. With this, we demonstrated that by adequate engineering it is possible to govern the magnitude of the ballistic transmission functions T(omega) in graphene nanoribbons. We discuss the implications of these results in the design of controlled thermal transport at the nanoscale as well as in the enhancement of thermo-electric features of graphene-based materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000358675900010 Publication Date 2015-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 5 Open Access  
  Notes (up) ; Discussions with C E Repetto, C R Stia and K H Michel are gratefully acknowledged. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and PIP 11220090100392 of CONICET (Argentina). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.44; 2015 IF: 3.821  
  Call Number c:irua:127186 Serial 3759  
Permanent link to this record
 

 
Author Lavor, I.R.; da Costa, D.R.; Chaves, A.; Sena, S.H.R.; Farias, G.A.; Van Duppen, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Effect of zitterbewegung on the propagation of wave packets in ABC-stacked multilayer graphene : an analytical and computational approach Type A1 Journal article
  Year 2021 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 33 Issue 9 Pages 095503  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The time evolution of a low-energy two-dimensional Gaussian wave packet in ABC-stacked n-layer graphene (ABC-NLG) is investigated. Expectation values of the position (x, y) of center-of-mass and the total probability densities of the wave packet are calculated analytically using the Green's function method. These results are confirmed using an alternative numerical method based on the split-operator technique within the Dirac approach for ABC-NLG, which additionally allows to include external fields and potentials. The main features of the zitterbewegung (trembling motion) of wave packets in graphene are demonstrated and are found to depend not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Moreover, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599465000001 Publication Date 2020-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 3 Open Access OpenAccess  
  Notes (up) ; Discussions with D J P de Sousa and J M Pereira Jr are gratefully acknowledged. This work was financially supported by the Brazilian Council for Research (CNPq), under the PQ and PRONEX/FUNCAP programs, and by CAPES. One of us (BVD) is supported by the FWO-Vl. DRC is supported by CNPq Grant Nos. 310019/2018-4 and 437067/2018-1. ; Approved Most recent IF: 2.649  
  Call Number UA @ admin @ c:irua:174953 Serial 6687  
Permanent link to this record
 

 
Author Nakhaee, M.; Ketabi, S.A.; Peeters, F.M. url  doi
openurl 
  Title Tight-binding model for borophene and borophane Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 97 Issue 12 Pages 125424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Starting from the simplified linear combination of atomic orbitals method in combination with first-principles calculations, we construct a tight-binding (TB) model in the two-centre approximation for borophene and hydrogenated borophene (borophane). The Slater and Koster approach is applied to calculate the TB Hamiltonian of these systems. We obtain expressions for the Hamiltonian and overlap matrix elements between different orbitals for the different atoms and present the SK coefficients in a nonorthogonal basis set. An anisotropic Dirac cone is found in the band structure of borophane. We derive a Dirac low-energy Hamiltonian and compare the Fermi velocities with that of graphene.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000427983700004 Publication Date 2018-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 45 Open Access  
  Notes (up) ; Discussions with Dr. Vahid Derakhshan and M. A. M. Keshtan are gratefully acknowledged. This paper is supported by the Methusalem program of the Flemish government and the FLAT-ERA Project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:150836UA @ admin @ c:irua:150836 Serial 4987  
Permanent link to this record
 

 
Author da Costa, D.R.; Chaves, A.; Farias, G.A.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Wave-packet scattering on graphene edges in the presence of a pseudomagnetic field Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 86 Issue 11 Pages 115434  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The scattering of a Gaussian wave packet in armchair and zigzag graphene edges is theoretically investigated by numerically solving the time-dependent Schrodinger equation for the tight-binding model Hamiltonian. Our theory allows us to investigate scattering in reciprocal space, and depending on the type of graphene edge we observe scattering within the same valley, or between different valleys. In the presence of an external magnetic field, the well-known skipping orbits are observed. However, our results demonstrate that in the case of a pseudomagnetic field, induced by nonuniform strain, the scattering by an armchair edge results in a nonpropagating edge state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000309174100005 Publication Date 2012-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes (up) ; Discussions with E. B. Barros are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq), the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE (project CONGRAN), and the bilateral program between Flanders and Brazil. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101833 Serial 3907  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. pdf  doi
openurl 
  Title Theory of phonon dispersions and piezoelectricity in multilayers of hexagonal boron-nitride Type A1 Journal article
  Year 2011 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B  
  Volume 248 Issue 11 Pages 2720-2723  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Taking into account covalent, Coulomb and van der Waals interactions, we construct the dynamical matrix and calculate the phonon dispersion relations for multilayer crystals of hexagonal boron-nitride. Coulomb interactions account for a strong overbending of optical phonons. Applying and extending Born's long-wave theory to the case of multilayer crystals, we calculate the piezoelectric stress constant equation image as a function of the number of layers equation image. In agreement with group theory, we find that equation image for equation image even; for an uneven number equation image of layers we obtain equation image, i.e. the piezoelectric constant decreases as equation image.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000297517100069 Publication Date 2011-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.674 Times cited 13 Open Access  
  Notes (up) ; Discussions with G. Heger, B. Partoens and F. M. Peeters are gratefully acknowledged. This work has been supported by the Flemish Science Foundation (FWO-Vl) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved Most recent IF: 1.674; 2011 IF: 1.316  
  Call Number UA @ lucian @ c:irua:94034 Serial 3618  
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B. url  doi
openurl 
  Title Phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages 115328-115328,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A unified theory of phonon dispersions and piezoelectricity in bulk and multilayers of hexagonal boron nitride (h-BN) is derived. The dynamical matrix is calculated on the basis of an empirical force constant model of intralayer valence and interlayer van der Waals interactions. Coulomb interactions are calculated by Ewalds method, adapted for the three-dimensional (3D) and the multilayer case. The deformation of the ionic charge distribution with long-wave lattice displacements is taken into account. Special attention is devoted to the nonanalytic long-range Coulomb contribution to the dynamical matrix which is different for the 3D crystal and the multilayer case. Consequently there is a splitting of the transverse optical (TO) and longitudinal optical (LO) phonon branches of E1u symmetry and a discontinuity of the A2u branch at the Γ point in 3D h-BN. No such splitting and discontinuity at Γ are present in multilayer crystals with a finite number N of layers. There a diverging bundle of N overbending optical phonon branches emerges from Γ. Borns long-wave theory is applied and extended for the study of piezoelectricity in layered crystals. While 3D h-BN and h-BN multilayers with an even number of layers (symmetry D6h) are not piezoelectric, multilayers with an uneven number of Nu layers (symmetry D3h) are piezoelectric; the piezoelectric coefficient e1,11 is inversely proportional to Nu.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288783700005 Publication Date 2011-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 82 Open Access  
  Notes (up) ; Discussions with G. Heger, B. Partoens, and F. M. Peeters are gratefully acknowledged. This work has been supported by the Flemish Science Foundation (FWO-V1) and the Bijzonder Onderzoeksfonds, Universiteit Antwerpen (BOF-UA). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:89602 Serial 2603  
Permanent link to this record
 

 
Author Chaves, A.; Low, T.; Avouris, P.; Çakir, D.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic exciton Stark shift in black phosphorus Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 91 Issue 91 Pages 155311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the excitonic spectrum of few-layer black phosphorus by direct diagonalization of the effective mass Hamiltonian in the presence of an applied in-plane electric field. The strong attractive interaction between electrons and holes in this system allows one to investigate the Stark effect up to very high ionizing fields, including also the excited states. Our results show that the band anisotropy in black phosphorus becomes evident in the direction-dependent field-induced polarizability of the exciton.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000353459200005 Publication Date 2015-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 88 Open Access  
  Notes (up) ; Discussions with J. M. Pereira Jr. and J. S. de Souza are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq) through the PQ and Science Without Borders programs, the Flemish Science Foundation (FWO-Vl), the Methusalem programme of the Flemish government, and the Bilateral program (CNPq-FWO) between Flanders and Brazil. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132506 Serial 4141  
Permanent link to this record
 

 
Author Chaves, A.; Peeters, F.M.; Farias, G.A.; Milošević, M.V. url  doi
openurl 
  Title Vortex-vortex interaction in bulk superconductors : Ginzburg-Landau theory Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 5 Pages 054516-054516,14  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vortex-vortex interaction potential in bulk superconductors is calculated within the Ginzburg-Landau (GL) theory and is obtained from a numerical solution of a set of two coupled nonlinear GL differential equations for the vector potential and the superconducting order parameter, where the merger of vortices into a giant vortex is allowed. Further, the interaction potentials between a vortex and a giant vortex and between a vortex and an antivortex are obtained for both type-I and type-II superconductors. Our numerical results agree asymptotically with the analytical expressions for large intervortex separations that are available in the literature. We propose empirical expressions valid over the full interaction range, which are fitted to our numerical data for different values of the GL parameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000287712100009 Publication Date 2011-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 31 Open Access  
  Notes (up) ; Discussions with J. S. Andrade Jr. and A. A. Moreira are gratefully acknowledged. This work was financially supported by CNPq, under Contract No. NanoBioEstruturas 555183/2005-0, PRONEX/FUNCAP, CAPES, the Bilateral programme between Flanders and Brazil, the collaborative project CNPq-FWO-Vl, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:88805 Serial 3899  
Permanent link to this record
 

 
Author Cavalcante, L.S.; Chaves, A.; da Costa, D.R.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title All-strain based valley filter in graphene nanoribbons using snake states Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 7 Pages 075432  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A pseudomagnetic field kink can be realized along a graphene nanoribbon using strain engineering. Electron transport along this kink is governed by snake states that are characterized by a single propagation direction. Those pseudomagnetic fields point towards opposite directions in the K and K' valleys, leading to valley polarized snake states. In a graphene nanoribbon with armchair edges this effect results in a valley filter that is based only on strain engineering. We discuss how to maximize this valley filtering by adjusting the parameters that define the stress distribution along the graphene ribbon.  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication New York, N.Y Editor  
  Language Wos 000381889300002 Publication Date 2016-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 29 Open Access  
  Notes (up) ; Discussions with R. Grassi are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq), under the PRONEX/FUNCAP and Science Without Borders (SWB) programs, CAPES, the Lemann Foundation, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:144667 Serial 4639  
Permanent link to this record
 

 
Author Scuracchio, P.; Costamagna; Peeters, F.M.; Dobry, A. url  doi
openurl 
  Title Role of atomic vacancies and boundary conditions on ballistic thermal transport in graphene nanoribbons Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 3 Pages 035429  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum thermal transport in armchair and zigzag graphene nanoribbons is investigated in the presence of single atomic vacancies and subject to different boundary conditions. We start with a full comparison of the phonon polarizations and energy dispersions as given by a fifth-nearest-neighbor force-constant model (5NNFCM) and by elasticity theory of continuum membranes (ETCM). For free-edge ribbons, we discuss the behavior of an additional acoustic edge-localized flexural mode, known as fourth acoustic branch (4ZA), which has a small gap when it is obtained by the 5NNFCM. Then, we show that ribbons with supported edges have a sample-size dependent energy gap in the phonon spectrum which is particularly large for in-plane modes. Irrespective to the calculation method and the boundary condition, the dependence of the energy gap for the low-energy optical phonon modes against the ribbon width W is found to be proportional to 1/W for in-plane, and 1/W-2 for out-of-plane phonon modes. Using the 5NNFCM, the ballistic thermal conductance and its contributions from every single phonon mode are then obtained by the nonequilibrium Green's function technique. We found that, while edge and central localized single atomic vacancies do not affect the low-energy transmission function of in-plane phonon modes, they reduce considerably the contributions of the flexural modes. On the other hand, in-plane modes contributions are strongly dependent on the boundary conditions and at low temperatures can be highly reduced in supported-edge samples. These findings could open a route to engineer graphene based devices where it is possible to discriminate the relative contribution of polarized phonons and to tune the thermal transport on the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339443800009 Publication Date 2014-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 20 Open Access  
  Notes (up) ; Discussions with S. D. Dalosto and K. H. Michel are gratefully acknowledged. This work was partially supported by PIP 11220090100392 of CONICET (Argentina) and the Flemish Science Foundation (FWO-VI). We acknowledge funding from the FWO (Belgium)-MINCyT (Argentina) collaborative research project. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:118698 Serial 2911  
Permanent link to this record
 

 
Author Lundeberg, M.B.; Gao, Y.; Asgari, R.; Tan, C.; Van Duppen, B.; Autore, M.; Alonso-Gonzalez, P.; Woessner, A.; Watanabe, K.; Taniguchi, T.; Hillenbrand, R.; Hone, J.; Polini, M.; Koppens, F.H.L. pdf  doi
openurl 
  Title Tuning quantum nonlocal effects in graphene plasmonics Type A1 Journal article
  Year 2017 Publication Science Abbreviated Journal Science  
  Volume 357 Issue 6347 Pages 187-190  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The response of electron systems to electrodynamic fields that change rapidly in space is endowed by unique features, including an exquisite spatial nonlocality. This can reveal much about the materials' electronic structure that is invisible in standard probes that use gradually varying fields. Here, we use graphene plasmons, propagating at extremely slow velocities close to the electron Fermi velocity, to probe the nonlocal response of the graphene electron liquid. The near-field imaging experiments reveal a parameter-free match with the full quantum description of the massless Dirac electron gas, which involves three types of nonlocal quantum effects: single-particle velocity matching, interaction-enhanced Fermi velocity, and interaction-reduced compressibility. Our experimental approach can determine the full spatiotemporal response of an electron system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000405391700042 Publication Date 2017-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075; 1095-9203 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.205 Times cited 87 Open Access  
  Notes (up) ; F.H.L.K., M.P., and R.H. acknowledge support by the European Union Seventh Framework Programme under grant agreement no. 696656 Graphene Flagship. M. P. acknowledges support by Fondazione Istituto Italiano di Tecnologia. F. H. L. K. acknowledges financial support from the European Union Seventh Framework Programme under the ERC starting grant (307806, CarbonLight) and project GRASP (FP7-ICT-2013-613024-GRASP). F. H. L. K. acknowledges support from the Spanish Ministry of Economy and Competitiveness, through the “ Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0522), support by Fundacio Cellex Barcelona, CERCA Programme/Generalitat de Catalunya, the Mineco grants Ramon y Cajal (RYC-2012-12281), Plan Nacional (FIS2013-47161-P and FIS2014-59639-JIN), and support from the Government of Catalonia through the SGR grant (2014-SGR-1535). R. H. acknowledges support from the Spanish Ministry of Economy and Competitiveness (national project MAT-2015-65525-R). P. A-G. acknowledges financial support from the national project FIS2014-60195-JIN and the ERC starting grant 715496, 2DNANOPTICA. K. W. and T. T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, and JSPS KAKENHI grant numbers JP26248061, JP15K21722, and JP25106006. Y. G., C. T., and J. H. acknowledge support from the U. S. Office of Naval Research N00014-13-1-0662. C. T. was supported under contract FA9550-11-C-0028 and awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a. This research used resources of the Center for Functional Nanomaterials, which is a U. S. Department of Energy Office of Science Facility at Brookhaven National Laboratory under contract no. DE-SC0012704. B. V. D. acknowledges support from the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. M. P. is extremely grateful for the financial support granted by ICFO during a visit in August 2016. This work used open source software (www. python. org, www. matplotlib. org, and www. blender. org). R. H. is cofounder of Neaspec GmbH, a company producing scattering-type scanning near-field optical microscope systems such as the ones used in this study. All other authors declare no competing financial interests. ; Approved Most recent IF: 37.205  
  Call Number UA @ lucian @ c:irua:144833 Serial 4730  
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Schoelz, J.K.; Ackerman, M.L.; Barber, S.D.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M. doi  openurl
  Title Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 5 Issue Pages 4962  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Knowledge of and control over the curvature of ripples in freestanding graphene are desirable for fabricating and designing flexible electronic devices, and recent progress in these pursuits has been achieved using several advanced techniques such as scanning tunnelling microscopy. The electrostatic forces induced through a bias voltage (or gate voltage) were used to manipulate the interaction of freestanding graphene with a tip (substrate). Such forces can cause large movements and sudden changes in curvature through mirror buckling. Here we explore an alternative mechanism, thermal load, to control the curvature of graphene. We demonstrate thermal mirror buckling of graphene by scanning tunnelling microscopy and large-scale molecular dynamic simulations. The negative thermal expansion coefficient of graphene is an essential ingredient in explaining the observed effects. This new control mechanism represents a fundamental advance in understanding the influence of temperature gradients on the dynamics of freestanding graphene and future applications with electro-thermal-mechanical nanodevices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342984800018 Publication Date 2014-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 36 Open Access  
  Notes (up) ; Financial support for this study was provided, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. has also been supported partially by BOF project of University of Antwerp number 28033. ; Approved Most recent IF: 12.124; 2014 IF: 11.470  
  Call Number UA @ lucian @ c:irua:121121 Serial 3628  
Permanent link to this record
 

 
Author Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W. url  doi
openurl 
  Title Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3) Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 104 Issue 20 Pages 207401,1-207401,4  
  Keywords A1 Journal article; Particle Physics Group; Nanostructured and organic optical and electronic materials (NANOrOPT); Condensed Matter Theory (CMT)  
  Abstract Single-file transport of water into carbon nanotubes is experimentally demonstrated for the first time through the splitting of the radial breathing mode (RBM) vibration in Raman spectra of bile salt solubilized tubes when both empty (closed) and water-filled (open-ended) tubes are present. D2O filling is observed for a wide range of diameters, d, down to very thin tubes [e.g., (5,3) tube, d=0.548  nm] for which only a single water molecule fits in the cross section of the internal nanotube channel. The shift in RBM frequency upon filling is found to display a very complex dependence on nanotube diameter and chirality, in support of a different yet well-defined ordering and orientation of water molecules at room temperature. Large shifts of the electronic transitions are also observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000277945900051 Publication Date 2010-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 140 Open Access  
  Notes (up) ; Financial support from the Fund for Scientific Research Flanders, Belgium (FWO-Vlaanderen) (Project No. G.0129.07), is gratefully acknowledged. ; Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:83383 Serial 1141  
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S. pdf  doi
openurl 
  Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
  Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 14 Issue 4 Pages 1463-1467  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000298754500018 Publication Date 2011-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 67 Open Access  
  Notes (up) ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.123; 2012 IF: 3.829  
  Call Number UA @ lucian @ c:irua:96266 Serial 3578  
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Linear reduction of stiffness and vibration frequencies in defected circular monolayer graphene Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 23 Pages 11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000279336000001 Publication Date 2010-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 44 Open Access  
  Notes (up) ; Financial support was provided by the Hungarian Research Foundation (Contracts No. OTKA K68312, No. K77771, No. K73361, and No. F68726). ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83857 Serial 1820  
Permanent link to this record
 

 
Author Mao, J.; Jiang, Y.; Moldovan, D.; Li, G.; Watanabe, K.; Taniguchi, T.; Masir, M.R.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Realization of a tunable artificial atom at a supercritically charged vacancy in graphene Type A1 Journal article
  Year 2016 Publication Nature physics Abbreviated Journal Nat Phys  
  Volume 12 Issue 12 Pages 545-549  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Graphene’s remarkable electronic properties have fuelled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor graphene’s electronic properties and to control its charge carriers. Here we show that a single-atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunnelling microscope. The response of the conduction electrons in graphene to the local charge is monitored with scanning tunnelling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states within a disc centred on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a mechanism to control and guide electrons in graphene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000377475700011 Publication Date 2016-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-2473 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 22.806 Times cited 93 Open Access  
  Notes (up) ; Funding was provided by DOE-FG02-99ER45742 (STM/STS), NSF DMR 1207108 (fabrication and characterization). Theoretical work supported by ESF-EUROCORES-EuroGRAPHENE, FWO-VI and Methusalem programme of the Flemish government. We thank V. F. Libisch, M. Pereira and E. Rossi for useful discussions. ; Approved Most recent IF: 22.806  
  Call Number c:irua:134210 Serial 4011  
Permanent link to this record
 

 
Author Duarte-Neto, P.; Stosic, B.; Stosic, T.; Lessa, R.; Milošević, M.V.; Stanley, H.E. url  doi
openurl 
  Title Multifractal properties of a closed contour : a peek beyond the shape analysis Type A1 Journal article
  Year 2014 Publication PLoS ONE Abbreviated Journal Plos One  
  Volume 9 Issue 12 Pages e115262  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In recent decades multifractal analysis has been successfully applied to characterize the complex temporal and spatial organization of such diverse natural phenomena as heartbeat dynamics, the dendritic shape of neurons, retinal vessels, rock fractures, and intricately shaped volcanic ash particles. The characterization of multifractal properties of closed contours has remained elusive because applying traditional methods to their quasi-one-dimensional nature yields ambiguous answers. Here we show that multifractal analysis can reveal meaningful and sometimes unexpected information about natural structures with a perimeter well-defined by a closed contour. To this end, we demonstrate how to apply multifractal detrended fluctuation analysis, originally developed for the analysis of time series, to an arbitrary shape of a given study object. In particular, we show the application of the method to fish otoliths, calcareous concretions located in fish's inner ear. Frequently referred to as the fish's “black box”, they contain a wealth of information about the fish's life history and thus have recently attracted increasing attention. As an illustrative example, we show that a multifractal approach can uncover unexpected relationships between otolith contours and size and age of fish at maturity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000347239900030 Publication Date 2014-12-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.806 Times cited 6 Open Access  
  Notes (up) ; Funding: This work was supported by CNPq, Brazil (Projects No. 201506/2011-4, No. 303251/2010-7, and No. 306719/2012-6). MVM acknowledges support from Flemish Science Foundation (FWO-Vlaanderen) and CAPES PVE action No. BEX1392/ 11-5. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ; Approved Most recent IF: 2.806; 2014 IF: 3.234  
  Call Number UA @ lucian @ c:irua:123770 Serial 2218  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Bahlouli, H.; Peeters, F.M. url  doi
openurl 
  Title Theoretical study of electronic transport properties of a graphene-silicene bilayer Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 117 Issue 117 Pages 225101  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable. (C) 2015 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000356176100040 Publication Date 2015-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 10 Open Access  
  Notes (up) ; H. B. and F. M. P. acknowledge support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under the RG1329-1 and RG1329-2 DSR Projects. ; Approved Most recent IF: 2.068; 2015 IF: 2.183  
  Call Number c:irua:127075 Serial 3611  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: