|
Record |
Links |
|
Author |
Mao, J.; Jiang, Y.; Moldovan, D.; Li, G.; Watanabe, K.; Taniguchi, T.; Masir, M.R.; Peeters, F.M.; Andrei, E.Y. |
|
|
Title |
Realization of a tunable artificial atom at a supercritically charged vacancy in graphene |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Nature physics |
Abbreviated Journal |
Nat Phys |
|
|
Volume |
12 |
Issue |
12 |
Pages |
545-549 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Graphene’s remarkable electronic properties have fuelled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor graphene’s electronic properties and to control its charge carriers. Here we show that a single-atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunnelling microscope. The response of the conduction electrons in graphene to the local charge is monitored with scanning tunnelling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states within a disc centred on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a mechanism to control and guide electrons in graphene. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000377475700011 |
Publication Date |
2016-02-22 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1745-2473 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
22.806 |
Times cited |
93 |
Open Access |
|
|
|
Notes |
; Funding was provided by DOE-FG02-99ER45742 (STM/STS), NSF DMR 1207108 (fabrication and characterization). Theoretical work supported by ESF-EUROCORES-EuroGRAPHENE, FWO-VI and Methusalem programme of the Flemish government. We thank V. F. Libisch, M. Pereira and E. Rossi for useful discussions. ; |
Approved |
Most recent IF: 22.806 |
|
|
Call Number |
c:irua:134210 |
Serial |
4011 |
|
Permanent link to this record |