|
Record |
Links |
|
Author |
Cavalcante, L.S.; Chaves, A.; da Costa, D.R.; Farias, G.A.; Peeters, F.M. |
|
|
Title |
All-strain based valley filter in graphene nanoribbons using snake states |
Type |
A1 Journal article |
|
Year |
2016 |
Publication |
Physical review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
94 |
Issue |
7 |
Pages |
075432 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
A pseudomagnetic field kink can be realized along a graphene nanoribbon using strain engineering. Electron transport along this kink is governed by snake states that are characterized by a single propagation direction. Those pseudomagnetic fields point towards opposite directions in the K and K' valleys, leading to valley polarized snake states. In a graphene nanoribbon with armchair edges this effect results in a valley filter that is based only on strain engineering. We discuss how to maximize this valley filtering by adjusting the parameters that define the stress distribution along the graphene ribbon. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
American Physical Society |
Place of Publication |
New York, N.Y |
Editor |
|
|
|
Language |
|
Wos |
000381889300002 |
Publication Date |
2016-08-23 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
29 |
Open Access |
|
|
|
Notes |
; Discussions with R. Grassi are gratefully acknowledged. This work was supported by the Brazilian Council for Research (CNPq), under the PRONEX/FUNCAP and Science Without Borders (SWB) programs, CAPES, the Lemann Foundation, and the Flemish Science Foundation (FWO-Vl). ; |
Approved |
Most recent IF: 3.836 |
|
|
Call Number |
UA @ lucian @ c:irua:144667 |
Serial |
4639 |
|
Permanent link to this record |