|
Record |
Links |
|
Author |
Ozcan, M.; Ozen, S.; Yagmurcukardes, M.; Sahin, H. |
|
|
Title |
Structural, electronic and vibrational properties of ultra-thin octahedrally coordinated structure of EuO2 |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Journal Of Magnetism And Magnetic Materials |
Abbreviated Journal |
J Magn Magn Mater |
|
|
Volume |
493 |
Issue |
493 |
Pages |
165668 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Novel stable ultra-thin phases of europium oxide are investigated by means of state-of-the-art first principles calculations. Total energy calculations show that single layers of EuO2 and Eu(OH)(2) can be stabilized in an octahedrally coordinated (1T) atomic structure. However, phonon calculations reveal that although both structures are energetically feasible, only the 1T-EuO2 phase has dynamical stability. The phonon spectrum of 1T-EuO2 displays three Raman active modes; a non-degenerate out-of-plane A(1g) mode at 353.5 cm(-1) and two doubly-degenerate in-plane E-g modes at 304.3 cm(-1). Furthermore, magnetic ground state and electronic band dispersion calculations show that the single layer EuO2 is a metal with net magnetic moment of 5(mu B) per unitcell resulting in a half-metallic ferrimagnetic behavior. Moreover, robustness of the half-metallic ferrimagnetic characteristics of EuO2 is confirmed by the application of electric field and charging. Single layer 1T-EuO2, with its stable ultra-thin structure and half-metallic ferrimagnetic feature, is a promising novel material for nanoscale electronic and spintronic applications. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000486397800003 |
Publication Date |
2019-08-03 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0304-8853 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
2.7 |
Times cited |
1 |
Open Access |
|
|
|
Notes |
; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 117F095. MY is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. ; |
Approved |
Most recent IF: 2.7; 2020 IF: 2.63 |
|
|
Call Number |
UA @ admin @ c:irua:162755 |
Serial |
6323 |
|
Permanent link to this record |