toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Volders, J.; Elen, K.; Raes, A.; Ninakanti, R.; Kelchtermans, A.-S.; Sastre, F.; Hardy, A.; Cool, P.; Verbruggen, S.W.; Buskens, P.; Van Bael, M.K. url  doi
openurl 
  Title Sunlight-powered reverse water gas shift reaction catalysed by plasmonic Au/TiO₂ nanocatalysts : effects of Au particle size on the activity and selectivity Type A1 Journal article
  Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 12 Issue 23 Pages 4153-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study reports the low temperature and low pressure conversion (up to 160 °C, p = 3.5 bar) of CO2 and H2 to CO using plasmonic Au/TiO2 nanocatalysts and mildly concentrated artificial sunlight as the sole energy source (up to 13.9 kW·m-2 = 13.9 suns). To distinguish between photothermal and non-thermal contributors, we investigated the impact of the Au nanoparticle size and light intensity on the activity and selectivity of the catalyst. A comparative study between P25 TiO2-supported Au nanocatalysts of a size of 6 nm and 16 nm displayed a 15 times higher activity for the smaller particles, which can only partially be attributed to the higher Au surface area. Other factors that may play a role are e.g., the electronic contact between Au and TiO2 and the ratio between plasmonic absorption and scattering. Both catalysts displayed ≥84% selectivity for CO (side product is CH4). Furthermore, we demonstrated that the catalytic activity of Au/TiO2 increases exponentially with increasing light intensity, which indicated the presence of a photothermal contributor. In dark, however, both Au/TiO2 catalysts solely produced CH4 at the same catalyst bed temperature (160 °C). We propose that the difference in selectivity is caused by the promotion of CO desorption through charge transfer of plasmon generated charges (as a non-thermal contributor).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000896093900001 Publication Date 2022-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.3  
  Call Number UA @ admin @ c:irua:191843 Serial 7341  
Permanent link to this record
 

 
Author Dingenen, F.; Blommaerts, N.; Van Hal, M.; Borah, R.; Arenas-Esteban, D.; Lenaerts, S.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title Layer-by-Layer-Stabilized Plasmonic Gold-Silver Nanoparticles on TiO2: Towards Stable Solar Active Photocatalysts Type A1 Journal article
  Year 2021 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 11 Issue 10 Pages 2624  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract To broaden the activity window of TiO2, a broadband plasmonic photocatalyst has been designed and optimized. This plasmonic ‘rainbow’ photocatalyst consists of TiO2 modified with gold–silver composite nanoparticles of various sizes and compositions, thus inducing a broadband interaction with polychromatic solar light. However, these nanoparticles are inherently unstable, especially due to the use of silver. Hence, in this study the application of the layer-by-layer technique is introduced to create a protective polymer shell around the metal cores with a very high degree of control. Various TiO2 species (pure anatase, PC500, and P25) were loaded with different plasmonic metal loadings (0–2 wt %) in order to identify the most solar active composite materials. The prepared plasmonic photocatalysts were tested towards stearic acid degradation under simulated sunlight. From all materials tested, P25 + 2 wt % of plasmonic ‘rainbow’ nanoparticles proved to be the most promising (56% more efficient compared to pristine P25) and was also identified as the most cost-effective. Further, 2 wt % of layer-by-layer-stabilized ‘rainbow’ nanoparticles were loaded on P25. These layer-by-layer-stabilized metals showed superior stability under a heated oxidative atmosphere, as well as in a salt solution. Finally, the activity of the composite was almost completely retained after 1 month of aging, while the nonstabilized equivalent lost 34% of its initial activity. This work shows for the first time the synergetic application of a plasmonic ‘rainbow’ concept and the layer-by-layer stabilization technique, resulting in a promising solar active, and long-term stable photocatalyst.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000712759800001 Publication Date 2021-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 7 Open Access OpenAccess  
  Notes Research was funded by Research Foundation—Flanders (FWO), FN 700300001— Aspirant F. Dingenen. Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:183281 Serial 6812  
Permanent link to this record
 

 
Author Peeters, H.; Lenaerts, S.; Verbruggen, S.W. url  doi
openurl 
  Title Benchmarking the photocatalytic self-cleaning activity of industrial and experimental materials with ISO 27448:2009 Type A1 Journal article
  Year 2023 Publication Materials Abbreviated Journal Materials  
  Volume 16 Issue 3 Pages 1119-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Various industrial surface materials are tested for their photocatalytic self-cleaning activity by performing the ISO 27448:2009 method. The samples are pre-activated by UV irradiation, fouled with oleic acid and irradiated by UV light. The degradation of oleic acid over time is monitored by taking water contact angle measurements using a contact angle goniometer. The foulant, oleic acid, is an organic acid that makes the surface more hydrophobic. The water contact angle will thus decrease over time as the photocatalytic material degrades the oleic acid. In this study, we argue that the use of this method is strongly limited to specific types of surface materials, i.e., only those that are hydrophilic and smooth in nature. For more hydrophobic materials, the difference in the water contact angles of a clean surface and a fouled surface is not measurable. Therefore, the photocatalytic self-cleaning activity cannot be established experimentally. Another type of material that cannot be tested by this standard are rough surfaces. For rough surfaces, the water contact angle cannot be measured accurately using a contact angle goniometer as prescribed by the standard. Because of these limitations, many potentially interesting industrial substrates cannot be evaluated. Smooth samples that were treated with an in-house developed hydrophilic titania thin film (PCT/EP2018/079983) showed a great photocatalytic self-cleaning performance according to the ISO standard. Apart from discussing the pros and cons of the current ISO standard, we also stress how to carefully interpret the results and suggest alternative testing solutions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000930734100001 Publication Date 2023-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4; 2023 IF: 2.654  
  Call Number UA @ admin @ c:irua:193337 Serial 7284  
Permanent link to this record
 

 
Author Dingenen, F.; Borah, R.; Ninakanti, R.; Verbruggen, S.W. url  doi
openurl 
  Title Probing oxygen activation on plasmonic photocatalysts Type A1 Journal article
  Year 2022 Publication Frontiers in Chemistry Abbreviated Journal Front Chem  
  Volume 10 Issue Pages 988542-10  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work we present an assay to probe the oxygen activation rate on plasmonic nanoparticles under visible light. Using a superoxide-specific XTT molecular probe, the oxygen activation rate on bimetallic gold-silver “rainbow” nanoparticles with a broadband visible light (> 420 nm) response, is determined at different light intensities by measuring its conversion into the colored XTT-formazan derivate. A kinetic model is applied to enable a quantitative estimation of the rate constant, and is shown to match almost perfectly with the experimental data. Next, the broadband visible light driven oxygen activation capacity of this plasmonic rainbow system, supported on nano-sized SiO 2 , is demonstrated towards the oxidation of aniline to azobenzene in DMSO. To conclude, a brief theoretical discussion is devoted to the possible mechanisms behind such plasmon-driven reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000860818400001 Publication Date 2022-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.5  
  Call Number UA @ admin @ c:irua:190868 Serial 7197  
Permanent link to this record
 

 
Author Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. url  doi
openurl 
  Title Challenges in the use of hydrogen for maritime applications Type A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications
  Year 2021 Publication Energy & Environmental Science Abbreviated Journal Energ Environ Sci  
  Volume Issue Pages  
  Keywords A1 Journal Article;Review article, Hydrogen Production, Hydrogen Storage, Maritime Applications; Sustainable energy, air and water technology (DuEL)  
  Abstract Maritime shipping is a key factor that enables the global economy, however the pressure it exerts on the environment is increasing rapidly. In order to reduce the emissions of harmful greenhouse gasses, the search is on for alternative fuels for the maritime shipping industry. In this work the usefulness of hydrogen and hydrogen carriers is being investigated as a fuel for sea going ships. Due to the low volumetric energy density of hydrogen under standard conditions, the need for efficient storage of this fuel is high. Key processes in the use of hydrogen are discussed, starting with the production of hydrogen from fossil and renewable sources. The focus of this review is different storage methods, and in this work we discuss the storage of hydrogen at high pressure, in liquefied form at cryogenic temperatures and bound to liquid or solid-state carriers. In this work a theoretical introduction to different hydrogen storage methods precedes an analysis of the energy-efficiency and practical storage density of the carriers. In the final section the major challenges and hurdles for the development of hydrogen storage for the maritime industry are discussed. The most likely challenges will be the development of a new bunkering infrastructure and suitable monitoring of the safety to ensure safe operation of these hydrogen carriers on board the ship.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000621101100009 Publication Date 2021-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.518 Times cited Open Access OpenAccess  
  Notes For the completion of this work we would like to thank, Compagnie Maritime Belge for initial funding 9 of the research into maritime hydrogen storage and the University of Antwerp for funding of the 10 Doctoral Project that allowed for the completion of this work. Approved Most recent IF: 29.518  
  Call Number DuEL @ duel @c:irua:174754 Serial 6668  
Permanent link to this record
 

 
Author Claes, N.; Asapu, R.; Blommaerts, N.; Verbruggen, S.W.; Lenaerts, S.; Bals, S. pdf  url
doi  openurl
  Title Characterization of silver-polymer core–shell nanoparticles using electron microscopy Type A1 Journal article
  Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 10 Issue 10 Pages 9186-9191  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Silver-polymer core–shell nanoparticles show interesting optical properties, making them widely applicable in the field of plasmonics. The uniformity, thickness and homogeneity of the polymer shell will affect the properties of the system which makes a thorough structural characterization of these core–shell silver-polymer nanoparticles of great importance. However, visualizing the shell and the particle simultaneously is far from straightforward due to the sensitivity of the polymer shell towards the electron beam. In this study, we use different 2D and 3D electron microscopy techniques to investigate different structural aspects of the polymer coating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437007700028 Publication Date 2018-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access OpenAccess  
  Notes N. C. and S. B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS) and from the FWO through project funding (G038116N). R. A. and S. L. acknowledge the Research Foundation Flanders (FWO) for financial support. (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 7.367  
  Call Number EMAT @ emat @c:irua:151290UA @ admin @ c:irua:151290 Serial 4959  
Permanent link to this record
 

 
Author Van Eynde, E.; Lenaerts, B.; Tytgat, T.; Verbruggen, S.W.; Hauchecorne, B.; Blust, R.; Lenaerts, S. url  doi
openurl 
  Title Effect of pretreatment and temperature on the properties of Pinnularia biosilica frustules Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 4 Issue Pages 56200-56206  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Diatoms are unicellular microalgae that self-assemble an intricate porous silica cell wall, called frustule. Diatom frustules possess a unique combination of physical and chemical properties (chemical inertness, high mechanical strength, large surface area, low density, good porosity and highly ordered features on the nano-to-micro scale) making diatom frustules suited for many nanotechnological applications. For most proposed applications the organic material covering the frustules needs to be removed. In this paper we investigate the effect of different frustule cleaning methods (drying, autoclavation, SDS/EDTA treatment, H2O2 treatment and HNO3 treatment) and subsequent heat treatment at different temperatures (105 °C, 350 °C, 550 °C and 750 °C) on the material characteristics of the diatom Pinnularia sp. Material characteristics under study are morphology, surface area, pore size, elemental composition and organic content. The cleaned Pinnularia frustules are subsequently investigated as adsorbents to remove methylene blue (MB) from aqueous solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344997800060 Publication Date 2014-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 3.108; 2014 IF: 3.840  
  Call Number UA @ admin @ c:irua:121377 Serial 5945  
Permanent link to this record
 

 
Author Borah, R.; Ninakanti, R.; Bals, S.; Verbruggen, S.W. url  doi
openurl 
  Title Plasmon resonance of gold and silver nanoparticle arrays in the Kretschmann (attenuated total reflectance) vs. direct incidence configuration Type A1 Journal article
  Year 2022 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 12 Issue 1 Pages 15738-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract While the behaviour of plasmonic solid thin films in the Kretschmann (also known as Attenuated Total Reflection, ATR) configuration is well-understood, the use of discrete nanoparticle arrays in this optical configuration is not thoroughly explored. It is important to do so, since close packed plasmonic nanoparticle arrays exhibit exceptionally strong light-matter interactions by plasmonic coupling. The present work elucidates the optical properties of plasmonic Au and Ag nanoparticle arrays in both the direct normal incidence and Kretschmann configuration by numerical models, that are validated experimentally. First, hexagonal close packed Au and Ag nanoparticle films/arrays are obtained by air–liquid interfacial assembly. The numerical models for the rigorous solution of the Maxwell’s equations are validated using experimental optical spectra of these films before systematically investigating various parameters. The individual far-field/near-field optical properties, as well as the plasmon relaxation mechanism of the nanoparticles, vary strongly as the packing density of the array increases. In the Kretschmann configuration, the evanescent fields arising from p – and s -polarized (or TM and TE polarized) incidence have different directional components. The local evanescent field intensity and direction depends on the polarization, angle of incidence and the wavelength of incidence. These factors in the Kretschmann configuration give rise to interesting far-field as well as near-field optical properties. Overall, it is shown that plasmonic nanoparticle arrays in the Kretschmann configuration facilitate strong broadband absorptance without transmission losses, and strong near-field enhancement. The results reported herein elucidate the optical properties of self-assembled nanoparticle films, pinpointing the ideal conditions under which the normal and the Kretschmann configuration can be exploited in multiple light-driven applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000858344700048 Publication Date 2022-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship (Grant FN541100001). Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:190864 Serial 7194  
Permanent link to this record
 

 
Author Kurttepeli, M.; Deng, S.; Verbruggen, S.W.; Guzzinati, G.; Cott, D.J.; Lenaerts, S.; Verbeeck, J.; Van Tendeloo, G.; Detavernier, C.; Bals, S. pdf  url
doi  openurl
  Title Synthesis and characterization of photoreactive TiO2carbon nanosheet composites Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 36 Pages 21031-21037  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract We report the atomic layer deposition of titanium dioxide on carbon nanosheet templates and investigate the effects of postdeposition annealing in a helium environment using different characterization techniques. The crystallization of the titanium dioxide coating upon annealing is observed using in situ X-ray diffraction. The (micro)structural characterization of the films is carried out by scanning electron microscopy and advanced transmission electron microscopy techniques. Our study shows that the annealing of the atomic layer deposition processed and carbon nanosheets templated titanium dioxide layers in helium environment resulting in the formation of a porous, nanocrystalline and photocatalytically active titanium dioxide-carbon nanosheet composite film. Such composites are suitable for photocatalysis and dye-sensitized solar cells applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000341619500034 Publication Date 2014-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 9 Open Access OpenAccess  
  Notes This research was funded by the Flemish research foundation FWO-Vlaanderen, by the European Research Council (Starting Grant No. 239865) and by the Special Research Fund BOF of Ghent University (GOA-01G01513). G.G, M.K., J.V., S.B., and G.V.T. acknowledge funding from the European Research Council under the seventh Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX and No. 335078 COLOURATOMS. ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:119085 Serial 3416  
Permanent link to this record
 

 
Author Asapu, R.; Claes, N.; Ciocarlan, R.-G.; Minjauw, M.; Detavernier, C.; Cool, P.; Bals, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Electron Transfer and Near-Field Mechanisms in Plasmonic Gold-Nanoparticle-Modified TiO2Photocatalytic Systems Type A1 Journal article
  Year 2019 Publication ACS applied nano materials Abbreviated Journal ACS Appl. Nano Mater.  
  Volume 2 Issue 2 Pages 4067-4074  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The major mechanism responsible for plasmonic enhancement of titanium dioxide photocatalysis using gold nanoparticles is still under contention. This work introduces an experimental strategy to disentangle the significance of the charge transfer and near-field mechanisms in plasmonic photocatalysis. By controlling the thickness and conductive nature of a nanoparticle shell that acts as a spacer layer separating the plasmonic metal core from the TiO2 surface, field enhancement or charge transfer effects can be selectively repressed or evoked. Layer-by-layer and in situ polymerization methods are used to synthesize gold core–polymer shell nanoparticles with shell thickness control up to the sub-nanometer level. Detailed optical and electrical characterization supported by near-field simulation models corroborate the trends in photocatalytic activity of the different systems. This approach mainly points at an important contribution of the enhanced near field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477917700006 Publication Date 2019-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 32 Open Access OpenAccess  
  Notes This work was supported by Research Foundation Flanders (FWO). P.C. and R-G.C. acknowledge financial support from FWO (Project No. G038215N). N.C. and S.B. acknowledge financial support from the European Research Council (ERC Starting Grant No. 335078-COLOURATOM). Approved Most recent IF: NA  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160579 Serial 5184  
Permanent link to this record
 

 
Author Borah, R.; Smets, J.; Ninakanti, R.; Tietze, M.L.; Ameloot, R.; Chigrin, D.N.; Bals, S.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Self-assembled ligand-capped plasmonic Au nanoparticle films in the Kretschmann configuration for sensing of volatile organic compounds Type A1 Journal article
  Year 2022 Publication ACS applied nano materials Abbreviated Journal  
  Volume 5 Issue 8 Pages acsanm.2c02524-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Films of close-packed Au nanoparticles are coupled electrodynamically through their collective plasmon resonances. This collective optical response results in enhanced light–matter interactions, which can be exploited in various applications. Here, we demonstrate their application in sensing volatile organic compounds, using methanol as a test case. Ordered films over several cm2 were obtained by interfacial self-assembly of colloidal Au nanoparticles (∼10 nm diameter) through controlled evaporation of the solvent. Even though isolated nanoparticles of this size are inherently nonscattering, when arranged in a close-packed film the plasmonic coupling results in a strong reflectance and absorbance. The in situ tracking of vapor phase methanol concentration through UV–vis transmission measurements of the nanoparticle film is first demonstrated. Next, in situ ellipsometry of the self-assembled films in the Kretschmann (also known as ATR) configuration is shown to yield enhanced sensitivity, especially with phase difference measurements, Δ. Our study shows the excellent agreement between theoretical models of the spectral response of self-assembled films with experimental in situ sensing experiments. At the same time, the theoretical framework provides the basis for the interpretation of the various observed experimental trends. Combining periodic nanoparticle films with ellipsometry in the Kretschmann configuration is a promising strategy toward highly sensitive and selective plasmonic thin-film devices based on colloidal fabrication methods for volatile organic compound (VOC) sensing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000834348300001 Publication Date 2022-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0970 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.9 Times cited 11 Open Access OpenAccess  
  Notes R.B. acknowledges financial support from the University of Antwerp Special Research Fund (BOF) for a DOCPRO4 doctoral scholarship. J.S. acknowledges financial support from the Research Foundation Flanders (FWO) by a Ph.D. fellowship (11H8121N) . M.L.T. acknowledges financial support from the Research Foundation Flanders (FWO) by a senior postdoctoral fellowship (12ZK720N) . Approved Most recent IF: 5.9  
  Call Number UA @ admin @ c:irua:189295 Serial 7095  
Permanent link to this record
 

 
Author Asapu, R.; Ciocarlan, R.-G.; Claes, N.; Blommaerts, N.; Minjauw, M.; Ahmad, T.; Dendooven, J.; Cool, P.; Bals, S.; Denys, S.; Detavernier, C.; Lenaerts, S.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Plasmonic Near-Field Localization of Silver Core–Shell Nanoparticle Assemblies via Wet Chemistry Nanogap Engineering Type A1 Journal article
  Year 2017 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 9 Issue 9 Pages 41577-41585  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Silver nanoparticles are widely used in the field of plasmonics because of their unique optical properties. The wavelength-dependent surface plasmon resonance gives rise to a strongly enhanced electromagnetic field, especially at so-called hot spots located in the nanogap in-between metal nanoparticle assemblies. Therefore, the interparticle distance is a decisive factor in plasmonic applications, such as surface-enhanced Raman spectroscopy (SERS). In this study, the aim is to engineer this interparticle distance for silver nanospheres using a convenient wet-chemical approach and to predict and quantify the corresponding enhancement factor using both theoretical and experimental tools. This was done by building a tunable ultrathin polymer shell around the nanoparticles using the layer-by-layer method, in which the polymer shell acts as the separating interparticle spacer layer. Comparison of different theoretical approaches and corroborating the results with SERS analytical experiments using silver and silver−polymer core−shell nanoparticle clusters as SERS substrates was also done. Herewith, an approach is provided to estimate the extent of plasmonic near-field enhancement both theoretically as well as experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000417005900057 Publication Date 2017-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 29 Open Access OpenAccess  
  Notes financial support through a research fellowship. C.D. wishes to thank the Hercules foundation for the financial support (SPINAL). P.C. and R.-G.C. acknowledge financial support by FWO Vlaanderen (project no. G038215N). N.C. and S.B. acknowledge the financial support from the European Research Council (ERC starting grant #335078-COLOURATOM). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); saraecas; ECAS_Sara; Approved Most recent IF: 7.504  
  Call Number EMAT @ emat @c:irua:147243 Serial 4804  
Permanent link to this record
 

 
Author Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S.W.; Ninakanti, R.; Emin, S. url  doi
openurl 
  Title Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 10 Pages 10618-10626  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Developing an efficient material as a counter electrode (CE) with excellent catalytic activity, intrinsic stability, and low cost is essential for the commercial application of dye-sensitized solar cells (DSSCs). Transition metal phosphides have been demonstrated as outstanding multifunctional catalysts in a broad range of energy conversion technologies. Here, we exploited different phases of iron phosphide as CEs in DSSCs with an I–/I3–-based electrolyte. Solvothermal synthesis using a triphenylphosphine precursor as a phosphorus source allows to grow a Fe2P phase at 300 °C and a FeP phase at 350 °C. The obtained iron phosphide catalysts were coated on fluorine-doped tin oxide substrates and heat-treated at 450 °C under an inert gas atmosphere. The solar-to-current conversion efficiency of the solar cells assembled with the Fe2P material reached 3.96 ± 0.06%, which is comparable to the device assembled with a platinum (Pt) CE. DFT calculations support the experimental observations and explain the fundamental origin behind the improved performance of Fe2P compared to FeP. These results indicate that the Fe2P catalyst exhibits excellent performance along with desired stability to be deployed as an efficient Pt-free alternative in DSSCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711236300022 Publication Date 2021-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181953 Serial 7853  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. url  doi
openurl 
  Title Coupled plasmon modes in 2D gold nanoparticle clusters and their effect on local temperature control Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 50 Pages 30594-30603  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Assemblies of closely separated gold nanoparticles exhibit a strong collective plasmonic response due to coupling of the plasmon modes of the individual nanostructures. In the context of self-assembly of nanoparticles, close-packed two-dimensional (2D) clusters of spherical nanoparticles present an important composite system that promises numerous applications. The present study probes the collective plasmonic characteristics and resulting photothermal behavior of close-packed 2D Au nanoparticle clusters to delineate the effects of the cluster size, interparticle distance, and particle size. Smaller nanoparticles (20 and 40 nm in diameter) that exhibit low individual scattering and high absorption were considered for their relevance to photothermal applications. In contrast to typical literature studies, the present study compares the optical response of clusters of different sizes ranging from a single nanoparticle up to large assemblies of 61 nanoparticles. Increasing the cluster size induces significant changes to the spectral position and optophysical characteristics. Based on the model outcome, an optimal cluster size for maximum absorption per nanoparticle is also determined for enhanced photothermal effects. The effect of the particle size and interparticle distance is investigated to elucidate the nature of interaction in terms of near-field and far-field coupling. The photothermal effect resulting from absorption is compared for different cluster sizes and interparticle distances considering a homogeneous water medium. A strong dependence of the steady-state temperature of the nanoparticles on the cluster size, particle position in the cluster, incident light polarization, and interparticle distance provides new physical insight into the local temperature control of plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000503919500061 Publication Date 2019-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:164530 Serial 5938  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6367  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Silver–Gold Bimetallic Alloy versus Core–Shell Nanoparticles: Implications for Plasmonic Enhancement and Photothermal Applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume Issue Pages acs.jpcc.0c02630  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bimetallic plasmonic nanoparticles enable tuning of the optical response and chemical stability by variation of the composition. The present numerical simulation study compares Ag–Au alloy, Ag@Au core–shell, and Au@Ag core–shell bimetallic plasmonic nanoparticles of both spherical and anisotropic (nanotriangle and nanorods) shapes. By studying both spherical and anisotropic (with LSPR in the near-infrared region) shapes, cases with and without interband transitions of Au can be decoupled. Explicit comparisons are facilitated by numerical models supported by careful validation and examination of optical constants of Au–Ag alloys reported in the literature. Although both Au–Ag core–shell and alloy nanoparticles exhibit an intermediary optical response between that of pure Ag and Au nanoparticles, there are noticeable differences in the spectral characteristics. Also, the effect of the bimetallic constitution in anisotropic nanoparticles is starkly different from that in spherical nanoparticles due to the absence of Au interband transitions in the former case. In general, the improved chemical stability of Ag nanoparticles by incorporation of Au comes with a cost of reduction in plasmonic enhancement, also applicable to anisotropic nanoparticles with a weaker effect. A photothermal heat transfer study confirms that increased absorption by the incorporation of Au in spherical Ag nanoparticles also results in an increased steady-state temperature. On the other hand, anisotropic nanoparticles are inherently better absorbers and hence better photothermal sources, and their photothermal properties are apparently not strongly affected by the incorporation of one metal in the other. This study of the optical/spectral and photothermal characteristics of bimetallic Au–Ag alloy versus core–shell nanoparticles provides detailed physical insight for development of new taylor-made plasmonic nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000538758700039 Publication Date 2020-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Universiteit Antwerpen, DOCPRO4 Rituraj Borah ; Approved Most recent IF: 3.7; 2020 IF: 4.536  
  Call Number DuEL @ duel @c:irua:169223 Serial 6368  
Permanent link to this record
 

 
Author Khan, S.U.; Trashin, S.; Beltran, V.; Korostei, Y.S.; Pelmus, M.; Gorun, S.M.; Dubinina, T., V.; Verbruggen, S.W.; De Wael, K. pdf  url
doi  openurl
  Title Photoelectrochemical behavior of phthalocyanine-sensitized TiO₂ in the presence of electron-shuttling mediators Type A1 Journal article
  Year 2022 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 94 Issue 37 Pages 12723-12731  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Dye-sensitized TiO(2 )has found many applications for dye sensitized solar cells (DSSC), solar-to-chemical energy conversion, water/air purification systems, and (electro)chemical sensors. We report an electrochemical system for testing dye-sensitized materials that can be utilized in photoelectrochemical (PEC) sensors and energy conversion. Unlike related systems, the reported system does not require a direct electron transfer from semiconductors to electrodes. Rather, it relies on electron shuttling by redox mediators. A range of model photocatalytic materials were prepared using three different TiO2 materials (P25, P90, and PC500) and three sterically hindered phthalocyanines (Pcs) with electron-rich tert-butyl substituents (t-Bu4PcZn, t-Bu4PcAlCl, and t-Bu4PcH2). The materials were compared with previously developed TiO(2 )modified by electron-deficient, also sterically hindered fluorinated phthalocyanine F64PcZn, a singlet oxygen (O-1(2)) producer, as well as its metal-free derivative, F64PcH2. The PEC activity depended on the redox mediator, as well as the type of TiO2 and Pc. By comparing the responses of one-electron shuttles, such as K4Fe(CN)(4), and O-1(2)-reactive electron shuttles, such as phenol, it is possible to reveal the action mechanism of the supported photosensitizers, while the overall activity can be assessed using hydroquinone. t-Bu4PcAlCl showed significantly lower blank responses and higher specific responses toward chlorophenols compared to t-Bu4PcZn due to the electron-withdrawing effect of the Al3+ metal center. The combination of reactivity insights and the need for only microgram amounts of sensing materials renders the reported system advantageous for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000855284300001 Publication Date 2022-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:190602 Serial 7190  
Permanent link to this record
 

 
Author Raes, A.; Ninakanti, R.; Van den Bergh, L.; Borah, R.; Van Doorslaer, S.; Verbruggen, S.W. url  doi
openurl 
  Title Black titania by sonochemistry : a critical evaluation of existing methods Type A1 Journal article
  Year 2023 Publication Ultrasonics sonochemistry Abbreviated Journal  
  Volume 100 Issue Pages 106601-106609  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Theory and Spectroscopy of Molecules and Materials (TSM²); Laboratory of adsorption and catalysis (LADCA)  
  Abstract In the field of photocatalysis, the fabrication of black titania is a booming topic, as it offers a system with improved solar light harvesting properties and increased overall efficiency. The darkening of white TiO2 powders can be ascribed to surface hydroxylation, oxygen vacancies, Ti3+ centres, or a combination thereof. A handful of studies suggests these defects can be conveniently introduced by acoustic cavitation, generated during sonochemical treatment of pristine TiO2 powders. In reproducing these studies, P25 TiO2 samples were ultrasonicated for various hours with a power density of 8000 W/L, resulting in powders that indeed became gradually darker with increasing sonication time. However, HAADF–STEM revealed that extensive erosion of the sonotrode tip took place and contaminated the samples, which appeared to be the primary reason for the observed colour change. This was confirmed by UV–Vis DRS and DRIFTS, that showed no significant alteration of the catalyst surface after sonication. EPR measurements showed that only an insignificant fraction of Ti3+ centres were produced, far less than in a TiO2 sample that was chemically reduced with NaBH4. No evidence of the presence oxygen vacancies could be found. The enhanced photocatalytic activities of ultrasonicated materials reported in literature can therefore not be ascribed to the synthesis of actual black (defected) TiO2, but rather to specific changes in morphology as a result of acoustic cavitation. Also, this study underlines the importance of considering probe erosion in sonochemical catalyst synthesis, which is an unavoidable side effect that can have an important impact on the catalyst appearance, properties and performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001084391500001 Publication Date 2023-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4177 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4; 2023 IF: 4.218  
  Call Number UA @ admin @ c:irua:198848 Serial 8838  
Permanent link to this record
 

 
Author Blommaerts, N.; Dingenen, F.; Middelkoop, V.; Savelkouls, J.; Goemans, M.; Tytgat, T.; Verbruggen, S.W.; Lenaerts, S. pdf  url
doi  openurl
  Title Ultrafast screening of commercial sorbent materials for VOC adsorption using real-time FTIR spectroscopy Type A1 Journal article
  Year 2018 Publication Separation and purification technology Abbreviated Journal Sep Purif Technol  
  Volume 207 Issue 207 Pages 284-290  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Recovery of valuable volatile organic compounds (VOCs) from waste streams is of great industrial importance. Adsorption on zeolites offers an economically and environmentally friendly alternative to conventional activated carbon. When evaluating the suitability of a given zeolite for a particular adsorption application, its adsorption capacity has to be determined. This is traditionally achieved using gas chromatography as an analysis tool, yielding only a few discrete sampling points that constitute the adsorption profile. Meanwhile, only low flow rates and low concentrations of volatile organics can be used, rendering the procedure troublesome and time consuming. Herein, we propose a tool for the fast screening of a large amount of zeolites using on-line and quasi real-time Fourier Transform Infrared Spectroscopy (FTIR). The technique was used to determine the adsorption capacity of three different commercial zeolites and two silica gels, for five industrially relevant VOCs: acetone; methanol; isohexane; isopentane; and toluene. A series of rapid measurements of the individual adsorption capacities were carried out to obtain a detailed overview of the versatility of the proposed method for the characterization of multi-component and multi-sorption bed systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445987500032 Publication Date 2018-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.359 Times cited 5 Open Access  
  Notes ; We would like to thank Vlaams Agenschap Innoveren & Ondernemen (VLAIO) for financial support. The authors would also like to thank Kureha GmbH, Germany for kindly supplying us with their BAC (R) (bead-shaped activated carbon) samples. ; Approved Most recent IF: 3.359  
  Call Number UA @ admin @ c:irua:154694 Serial 6000  
Permanent link to this record
 

 
Author Dingenen, F.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Tapping hydrogen fuel from the ocean : a review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater Type A1 Journal article
  Year 2021 Publication Renewable & Sustainable Energy Reviews Abbreviated Journal Renew Sust Energ Rev  
  Volume 142 Issue Pages 110866  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Direct splitting of earth-abundant seawater provides an eco-friendly route for the production of clean H2, but is hampered by selectivity and stability issues. Direct seawater electrolysis is the most established technology, attaining high current densities in the order of 1–2 A cm−2. Alternatively, light-driven processes such as photocatalytic and photoelectrochemical seawater splitting are particularly promising as well, as they rely on renewable solar power. Solar-to-Hydrogen efficiencies have increased over the past decade from negligible values to about 2%. Especially the absence of large local pH changes (in the order of several tenths of a pH unit compared to up to 9 pH units for electrolysis) is a strong asset for pure photocatalysis. This may lead to less adverse side-reactions such as Cl2 and ClO− formation, (acid or base induced) corrosion and scaling. Besides, additional requirements for electrolytic cells, e.g. membranes and electricity input, are not needed in pure photocatalysis systems. In this review, the state-of-the-art technologies in light-driven seawater splitting are compared to electrochemical approaches with a focus on sustainability and stability. Promising advances are identified at the level of the catalyst as well as the process, and insight is provided in solutions crossing different fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632316600003 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.05 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.05  
  Call Number UA @ admin @ c:irua:175701 Serial 8642  
Permanent link to this record
 

 
Author Verbruggen, S.W. pdf  url
doi  openurl
  Title TiO2 photocatalysis for the degradation of pollutants in gas phase : from morphological design to plasmonic enhancement Type A1 Journal article
  Year 2015 Publication Journal of photochemistry and photobiology: C: photochemistry reviews Abbreviated Journal J Photoch Photobio C  
  Volume 24 Issue Pages 64-82  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract TiO2-based photocatalysis has become a viable technology in various application fields such as (waste)water purification, photovoltaics/artificial photosynthesis, environmentally friendly organic synthesis and remediation of air pollution. Because of the increasing impact of bad air quality worldwide, this review focuses on the use and optimization of TiO2-based photocatalysts for gas phase applications. Over the past years various specific aspects of TiO2 photocatalysis have been reviewed individually. The intent of this review is to offer a broad tutorial on (recent) trends in TiO2 photocatalyst modification for the intensification of photocatalytic air treatment. After briefly introducing the fundamentals of photocatalysis, TiO2 photocatalyst modification is discussed both on a morphological and an electronic level from the perspective of gas phase applications. The main focus is laid on recent developments, but also possible opportunities to the field. This review is intended as a solid introduction for researchers new to the field, as well as a summarizing update for established investigators. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000360420600004 Publication Date 2015-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-5567 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.317 Times cited 121 Open Access  
  Notes ; The author wishes to thank the Research Foundation Flanders (FWO) for the financial support and postdoctoral fellowship. ; Approved Most recent IF: 12.317; 2015 IF: 16.091  
  Call Number UA @ admin @ c:irua:127801 Serial 5997  
Permanent link to this record
 

 
Author Keulemans, M.; Verbruggen, S.W.; Hauchecorne, B.; Martens, J.A.; Lenaerts, S. pdf  url
doi  openurl
  Title Activity versus selectivity in photocatalysis : morphological or electronic properties tipping the scale Type A1 Journal article
  Year 2016 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 344 Issue Pages 221-228  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this paper a structure-activity and structure-selectivity relation is established for three commercial TiO2 sources (P25, P90, and PC500). Morphological and electronic parameters of the photocatalysts are determined using widely applicable and inexpensive characterization procedures. More specifically, the electronic properties are rigorously characterized using an electron titration method yielding quantitative information on the amount of defect sites present in the catalyst. Surface photovoltage measurements on the other hand provide complementary information on the charge carrier recombination process. As model reaction, the degradation of a solid layer of stearic acid is studied using an in situ FTIR reaction cell that enables to investigate the catalyst surface and possible formation of reaction intermediates while the reactions are ongoing. We show that the order of photocatalytic conversion is PC500 > P90 > P25, matching the order of favorable morphological properties. In terms of selectivity to CO2 formation (complete mineralization), however, this trend is reversed: P25 > P90 > PC500, now matching the order of advantageous electronic properties, i.e. low charge carrier recombination and high charge carrier generation. With this we intend to provide new mechanistic insights using a wide variety of physical, (wet) chemical and operando analysis methods that aid the development of performant (self-cleaning) photocatalytic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000390182800022 Publication Date 2016-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 10 Open Access  
  Notes ; M.K. acknowledges Flemish Agency for Innovation & Entrepreneurship for the doctoral scholarship. S.W.V. acknowledges the Fonds Wetenschappelijk Onderzoek (FWO) for a post-doctoral fellowship. J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem). ; Approved Most recent IF: 6.844  
  Call Number UA @ admin @ c:irua:136339 Serial 5926  
Permanent link to this record
 

 
Author Van Hoecke, L.; Kummamuru, N.B.; Pourfallah, H.; Verbruggen, S.W.; Perreault, P. pdf  url
doi  openurl
  Title Intensified swirling reactor for the dehydrogenation of LOHC Type A1 Journal article
  Year 2023 Publication International journal of hydrogen energy Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In the recent advances towards more sustainable global energy supply, H2 is a possible alternative for large scale energy storage. In this view, Liquid Organic Hydrogen Carriers (LOHC) are a class of molecules that allow for easier long term energy storage compared to conventional H2 technologies. CFD simulations were used to showcase the hydrodynamics of the dehydrogenation of a LOHC in a new reactor unit, via a cold flow mock-up study. This reactor was designed to allow for a swirling motion of the liquid carrier material, favouring the removal of H2 gas from the flow and forcing the equilibrium of the reaction towards dehydrogenation, as well as to keep the catalyst particles in motion. The CFD simulations were validated qualitatively with experimental operation of the reactor, in a system with identical dimensionless numbers (Reynolds and Stokes), in order to use less costly products during the prototyping phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139598200001 Publication Date 2023-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.2 Times cited Open Access Not_Open_Access: Available from 01.03.2024  
  Notes Approved Most recent IF: 7.2; 2023 IF: 3.582  
  Call Number UA @ admin @ c:irua:198534 Serial 8889  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Watson, G.; Ciocarlan, R.-G.; Verbruggen, S.W.; Cool, P.; Van Der Voort, P.; Perreault, P. pdf  url
doi  openurl
  Title Accelerated methane storage in clathrate hydrates using mesoporous (Organo-) silica materials Type A1 Journal article
  Year 2023 Publication Fuel Abbreviated Journal  
  Volume 354 Issue Pages 129403-129418  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Methane (CH4) clathrate hydrates have gained much attention in the ever-growing search for novel energy storage methods; however, they are currently limited due to their poor water-to-hydrate conversions and slow formation kinetics. To surmount these bottlenecks, significant research has been centered on the design of novel methods (porous media). In this vein, the present work explores two hydrophobic mesoporous solids, an alkyl-grafted mesoporous silica (SBA-15 C8) and a periodic mesoporous organosilica (Ring-PMO), in their ability to promote CH4 clathrates. Both materials have shown to facilitate CH4 clathrate formation at mild operating conditions (6 MPa and 269–276 K). The study revealed that the maximal CH4 storage capacities are strongly linked to the critical/optimal quantity of water in the system which was determined to be at 130% and 200% of the pore volume for SBA-15 C8 and Ring-PMO, respectively. Up to 90% and 95% of the maximum water-to-hydrate conversions were achieved in 90 min at the lowest experimental temperature and critical water content for SBA-15 C8 and Ring-PMO, respectively. At these conditions, SBA-15 C8 and Ring-PMO showed a maximum gas uptake of 98.2 and 101.2 mmol CH4/mol H2O, respectively. Both the materials exhibited no chemical or morphological changes post-clathrate formations (characterized using FT-IR, N2 sorption, XRD, and TEM), inferring their viability as clathrate promoters for multiple cycles. An integrated multistep model was considered adequate for representing the hydrate crystallization kinetics and fits well with the experimental kinetic data with a low average absolute deviation in water-to-hydrate conversions among the three distinct kinetic models analyzed. Overall, the results from this study demonstrate hydrophobic porous materials as effective promoters of CH4 clathrates, which could make clathrate-based CH4 storage and transport technology industrially viable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001059413200001 Publication Date 2023-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access Not_Open_Access: Available from 07.02.2024  
  Notes Approved Most recent IF: 7.4; 2023 IF: 4.601  
  Call Number UA @ admin @ c:irua:197987 Serial 8829  
Permanent link to this record
 

 
Author Kummamuru, N.B.; Verbruggen, S.W.; Lenaerts, S.; Perreault, P. pdf  url
doi  openurl
  Title Experimental investigation of methane hydrate formation in the presence of metallic packing Type A1 Journal article
  Year 2022 Publication Fuel Abbreviated Journal Fuel  
  Volume 323 Issue Pages 124269-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Clathrate hydrates gained significant attention as a viable option for large-scale storage of natural gas, primarily methane (CH4). Unlike employing the nanoconfinement for enhancing the nucleation sites and hydrate growth as in the porous materials, whose synthesis is often associated with high costs and poor batch reproducibility, a new approach for promoting CH4 hydrates using pure water (H2O) in an unstirred reactor packed with stainless steel beads (SSB) was proposed in this fundamental work, where the interstitial space between the beads was exploited for enhanced hydrate growth. SSB of two diameters, 5 mm and 2 mm, were used as. a packed bed to investigate their effects on CH4 hydrate formation at 273.65 K, 275.65 K, and 277.65 K with an initial pressure of 6 MPa. The thermal conductivity of SSB packing potentially aided hydrate growth by expelling the hydration heat, while, the results also revealed that driving force has a substantial impact on the rate of CH4 hydrate formation and gas uptake. The experiments conducted in both 5 mm and 2 mm SSB packed bed reactors showed a maximum gas uptake of 0.147 mol CH4/mol H2O at 273.65 K with water to hydrate conversion of 84.42% with no significant variation. The results established the promotion effect on the kinetics of CH4 hydrate formation in the unstirred reactor packed with 2 mm SSB due to the availability of more interstitial space offering multiple nucleation sites for CH4 hydrate by providing a larger specific surface area for H2O-CH4 reaction. Experiments with varying H2O content were also performed and the results showed that the water to hydrate conversion and rate of hydrate formation could be enhanced at a lower H2O content in a packed bed reactor. This study demonstrates that the use of costly or intricate porous materials can be made redundant, by exploiting the interstitial voids in packing of cheap and widely available SSB as a promising alternative material for enhancing the kinetics of artificial CH4 hydrate synthesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000799165400007 Publication Date 2022-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-2361 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.4  
  Call Number UA @ admin @ c:irua:187830 Serial 7159  
Permanent link to this record
 

 
Author Mendonça, C.D.; Khan, S.U.; Rahemi, V.; Verbruggen, S.W.; Machado, S.A.S.; De Wael, K. pdf  url
doi  openurl
  Title Surface plasmon resonance-induced visible light photocatalytic TiO₂ modified with AuNPs for the quantification of hydroquinone Type A1 Journal article
  Year 2021 Publication Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 389 Issue Pages 138734  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The impregnation of size-controlled gold nanoparticles (AuNPs) on an anatase TiO2 structure (AuNPs@TiO2) was studied for the photoelectrochemical detection of hydroquinone (HQ) under visible light illumination integrated into a flow injection analysis (FIA) setup. The crystalline form of TiO2 was preserved during synthesis and the homogeneous distribution of AuNPs over the TiO2 structure was confirmed. Its photoelectrocatalytic activity was improved due to the presence of AuNPs, preventing charge recombination in TiO2 and improving its light absorption ability by the surface plasmon resonance effect (SPR). The FIA system was used in order to significantly reduce the electrode fouling during electroanalysis through periodic washing steps of the electrode surface. During the amperometric detection process, reactive oxygen species (ROS), generated by visible light illumination of AuNPs@TiO2, participate in the oxidation process of HQ. The reduction of the oxidized form of HQ, i.e. benzoquinone (BQ) occurs by applying a negative potential and the measurable amperometric response will be proportional to the initial HQ concentration. The influencing parameters on the response of the amperometric photocurrent such as applied potential, flow rate and pH were investigated. The linear correlation between the amperometric response and the concentration of HQ was recorded (range 0.0125 – 1.0 µM) with a limit of detection (LOD) of 33.8 nM and sensitivity of 0.22 A M−1 cm−2. In this study, we illustrated for the first time that the impregnation of AuNPs in TiO2 allows the sensitive detection of phenolic substances under green laser illumination by using a photoelectrochemical flow system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687283100018 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:178908 Serial 8626  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles Type A1 Journal article
  Year 2022 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal Colloid Surface A  
  Volume 640 Issue Pages 128521  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract It is a generally accepted idea that the particle size distribution strongly affects the optical spectra of colloidal plasmonic nanoparticles. It is often quoted as one of the main reasons while explaining the mismatch between the theoretical and experimental optical spectra of such nanoparticles. In this work, these aspects are critically analyzed by means of a bottom up statistical approach that considers variables such as mean, standard deviation and skewness of the nanoparticle size distribution independently from one another. By assuming normal and log-normal distributions of the particle size, the effect of the statistical parameters on the Mie analytical optical spectra of colloidal nanoparticles was studied. The effect of morphology was also studied numerically in order to understand to what extent it can play a role. It is our finding that the particle polydispersity, skewness and surface morphology in fact only weakly impact the optical spectra. While, the selection of suitable optical constants with regard to the crystallinity of the nanoparticles is a far more influential factor for correctly predicting both the plasmon band position and the plasmon bandwidth in theoretical simulations of the optical spectra. It is shown that the mean particle size can be correctly estimated directly from the plasmon band position, as it is the mean that determines the resonance wavelength. The standard deviation can on the other hand be estimated from the intensity distribution data obtained from dynamic light scattering experiments. The results reported herein clear the ambiguity around particle size distribution and optical response of colloidal plasmonic nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Elservier Place of Publication Editor  
  Language Wos 000765946900002 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number DuEL @ duel @c:irua:185704 Serial 6908  
Permanent link to this record
 

 
Author Zhang, K.; Wang, J.; Ninakanti, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Solvothermal synthesis of mesoporous TiO2 with tunable surface area, crystal size and surface hydroxylation for efficient photocatalytic acetaldehyde degradation Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 474 Issue Pages 145188-14  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic acetaldehyde degradation exhibits satisfactory performance only at relatively low acetaldehyde flow rates, predominately below 10 × 10-3 mL/min, leaving ample room for improvement. Therefore, it is necessary to prepare more efficient photocatalysts for acetaldehyde degradation. Moreover, the impact of the interaction strength between the titania surface and surface water on the photocatalytic acetaldehyde efficiency is poorly understood. To address these issues, in this work a series of (0 0 1)-faceted anatase titania samples with various surface properties and structures were synthesized via a solvothermal method and tested at high acetaldehyde flow rates under UV light irradiation. With increasing solvothermal time, the pore volume, surface area, and the abundance of surface OH groups all increased, while the crystallite size decreased. These were all identified to be beneficial to promote the degradation performance. When the solvothermal temperature was 180 ℃ and the reaction time was 5 h, the prepared sample displayed the most efficient performance at 19.25× 10-3 mL/min of acetaldehyde (conversion of (74 ± 1)% versus (29 ± 1)% for P25), and achieved a 100 % conversion at 16 × 10-3 mL/min. A weaker interaction strength between surface water and the titania surface was found to improve the acetaldehyde adsorption capacity, thereby promoting the acetaldehyde degradation efficiency. The stability of the best performing sample was tested over 48 h, demonstrating a highly stable performance with no signs of deactivation. Even at a relative humidity of 30 %, the acetaldehyde conversion retains 82% of its efficiency in a dry atmosphere, highlighting its potential in practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 06.02.2024  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:198652 Serial 8933  
Permanent link to this record
 

 
Author Ag, K.R.; Minja, A.C.; Ninakanti, R.; Van Hal, M.; Dingenen, F.; Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Impact of soot deposits on waste gas-to-electricity conversion in a TiO₂/WO₃-based photofuel cell Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 470 Issue Pages 144390-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract An unbiased photo-fuel cell (PFC) is a device that integrates the functions of a photoanode and a cathode to achieve simultaneous light-driven oxidation and dark reduction reactions. As such, it generates electricity while degrading pollutants like volatile organic compounds (VOCs). The photoanode is excited by light to generate electron-hole pairs, which give rise to a photocurrent, and are utilized to oxidise organic pollutants simultaneously. Here we have systematically studied various TiO2/WO3 photoanodes towards their photocatalytic soot degradation performance, PFC performance in the presence of VOCs, and the combination of both. The latter thus mimics an urban environment where VOCs and soot are present simultaneously. The formation of a type-II heterojunction after the addition of a thin TiO2 top layer over a dense WO3 bottom layer, improved both soot oxidation efficiency as well as photocurrent generation, thus paving the way towards low-cost PFC technology for energy recovery from real polluted air.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001030456200001 Publication Date 2023-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 29.12.2023  
  Notes Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number UA @ admin @ c:irua:197222 Serial 8882  
Permanent link to this record
 

 
Author Blommaerts, N.; Hoeven, N.; Arenas Esteban, D.; Campos, R.; Mertens, M.; Borah, R.; Glisenti, A.; De Wael, K.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.; Cool, P. url  doi
openurl 
  Title Tuning the turnover frequency and selectivity of photocatalytic CO2 reduction to CO and methane using platinum and palladium nanoparticles on Ti-Beta zeolites Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 410 Issue Pages 128234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A Ti-Beta zeolite was used in gas phase photocatalytic CO2 reduction to reduce the charge recombination rate and increase the surface area compared to P25 as commercial benchmark, reaching 607 m2 g-1. By adding Pt nanoparticles, the selectivity can be tuned toward CO, reaching a value of 92% and a turnover frequency (TOF) of 96 µmol.gcat-1.h-1, nearly an order of magnitude higher in comparison with P25. By adding Pd nanoparticles the selectivity can be shifted from CO (70% for a bare Ti-Beta zeolite), toward CH4 as the prevalent species (60%). In this way, the selectivity toward CO or CH4 can be tuned by either using Pt or Pd. The TOF values obtained in this work outperform reported state-of-the-art values in similar research. The improved activity by adding the nanoparticles was attributed to an improved charge separation efficiency, together with a plasmonic contribution of the metal nanoparticles under the applied experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623394200004 Publication Date 2021-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 15 Open Access OpenAccess  
  Notes N.B., S.L., S.W.V. and P.C. wish to thank the Flemish government and Catalisti for financial support and coordination in terms of a sprint SBO in the context of the moonshot project D2M. N.H. thanks the Flanders Innovation and Entrepreneurship (VLAIO) for the financial support. The Systemic Physiological and Ecotoxicological Research (SPHERE) group, R. Blust, University of Antwerp is acknowledged for the ICP-MS measurements. Approved Most recent IF: 6.216  
  Call Number EMAT @ emat @c:irua:174591 Serial 6662  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: