toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ludu, A.; Van Deun, J.; Milošević, M.V.; Cuyt, A.; Peeters, F.M. pdf  doi
openurl 
  Title Analytic treatment of vortex states in cylindrical superconductors in applied axial magnetic field Type A1 Journal article
  Year 2010 Publication Journal of mathematical physics Abbreviated Journal J Math Phys  
  Volume 51 Issue 8 Pages 082903,1-082903,29  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We solve the linear GinzburgLandau (GL) equation in the presence of a uniform magnetic field with cylindrical symmetry and we find analytic expressions for the eigenfunctions in terms of the confluent hypergeometric functions. The discrete spectrum results from an implicit equation associated to the boundary conditions and it is resolved in analytic form using the continued fractions formalism. We study the dependence of the spectrum and the eigenfunctions on the sample size and the surface conditions for solid and hollow cylindrical superconductors. Finally, the solutions of the nonlinear GL formalism are constructed as expansions in the linear GL eigenfunction basis and selected by minimization of the free energy. We present examples of vortex states and their energies for different samples in enhancing/suppressing superconductivity surroundings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000281905000026 Publication Date 2010-08-23  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.077 Times cited 10 Open Access  
  Notes ; ; Approved Most recent IF: 1.077; 2010 IF: 1.291  
  Call Number UA @ lucian @ c:irua:84880 Serial 106  
Permanent link to this record
 

 
Author Karapetrov, G.; Belkin, A.; Iavarone, M.; Fedor, J.; Novosad, V.; Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Anisotropic superconductivity and vortex dynamics in magnetically coupled F/S and F/S/F hybrids Type A1 Journal article
  Year 2011 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 24 Issue 1/2 Pages 905-910  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magnetically coupled superconductorferromagnet hybrids offer advanced routes for nanoscale control of superconductivity. Magnetotransport characteristics and scanning tunneling microscopy images of vortex structures in superconductorferromagnet hybrids reveal rich superconducting phase diagrams. Focusing on a particular combination of a ferromagnet with a well-ordered periodic magnetic domain structure with alternating out-of-plane component of magnetization, and a small coherence length superconductor, we find directed nucleation of superconductivity above the domain wall boundaries. We show that near the superconductor-normal state phase boundary the superconductivity is localized in narrow mesoscopic channels. In order to explore the Abrikosov flux line ordering in F/S hybrids, we use a combination of scanning tunneling microscopy and GinzburgLandau simulations. The magnetic stripe domain structure induces periodic local magnetic induction in the superconductor, creating a series of pinninganti-pinning channels for externally added magnetic flux quanta. Such laterally confined Abrikosov vortices form quasi-1D arrays (chains). The transitions between multichain states occur through propagation of kinks at the intermediate fields. At high fields we show that the system becomes nonlinear due to a change in both the number of vortices and the confining potential. In F/S/F hybrids we demonstrate the evolution of the anisotropic conductivity in the superconductor that is magnetically coupled with two adjacent ferromagnetic layers. Stripe magnetic domain structures in both F-layers are aligned under each other, resulting in a directional superconducting order parameter in the superconducting layer. The conductance anisotropy strongly depends on the period of the magnetic domains and the strength of the local magnetization. The anisotropic conductivity of up to three orders of magnitude can be achieved with a spatial critical temperature modulation of 5% of T c. Induced anisotropic properties in the F/S and F/S/F hybrids have a potential for future application in switching and nonvolatile memory elements operating at low temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000289855700150 Publication Date 2010-10-01  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939;1557-1947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.18 Times cited 2 Open Access  
  Notes ; This work as well as the use of the Center for Nanoscale Materials and the Electron Microscopy Center at Argonne National Laboratory were supported by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. This work was also supported by the Ministry of Education, Agency for Structural Funds of the European Union, Research and Development Program, under agreement 262 401 200 19. M.V.M. and F. M. P. acknowledge support from the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, the JSPS/ESF-NES program, the ESF-AQDJJ network, and the Vlaanderen-USA bilateral program. ; Approved Most recent IF: 1.18; 2011 IF: 0.650  
  Call Number UA @ lucian @ c:irua:89930 Serial 130  
Permanent link to this record
 

 
Author Dantas, D.S.; Lima, A.R.P.; Chaves, A.; Almeida, C.A.S.; Farias, G.A.; Milošević, M.V. url  doi
openurl 
  Title Bound vortex states and exotic lattices in multicomponent Bose-Einstein condensates : the role of vortex-vortex interaction Type A1 Journal article
  Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A  
  Volume 91 Issue 91 Pages 023630  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We numerically study the vortex-vortex interaction in multicomponent homogeneous Bose-Einstein condensates within the realm of the Gross-Pitaevskii theory. We provide strong evidence that pairwise vortex interaction captures the underlying mechanisms which determine the geometric configuration of the vortices, such as different lattices in many-vortex states, as well as the bound vortex states with two (dimer) or three (trimer) vortices. Specifically, we discuss and apply our theoretical approach to investigate intra- and intercomponent vortex-vortex interactions in two- and three-component Bose-Einstein condensates, thereby shedding light on the formation of the exotic vortex configurations. These results correlate with current experimental efforts in multicomponent Bose-Einstein condensates and the understanding of the role of vortex interactions in multiband superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000350255200014 Publication Date 2015-02-27  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.925 Times cited 12 Open Access  
  Notes ; This work was supported by the National Council for Scientific and Technological Development (CNPq-Brazil), the Coordination for the Improvement of Higher Education Personnel (CAPES-Brazil), Research Foundation Flanders (FWO), and the bilateral FWO-CNPq program between Flanders and Brazil. M.V.M. acknowledges support from the CAPES-PVE program (Grant No. BEX1392/11-5). ; Approved Most recent IF: 2.925; 2015 IF: 2.808  
  Call Number c:irua:124907 Serial 252  
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Calorimetric properties of mesoscopic superconducting disks, rings, and cylinders Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 81 Issue 6 Pages 064501,1-064501,10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The thermal signatures of superconductivity in mesoscopic disks, rings and cylinders are calculated within the Ginzburg-Landau theory. In an applied perpendicular magnetic field H the heat capacity of mesoscopic samples shows a strong dependence on the realized vortex state; discontinuities are found at the critical field for different vorticities, as well as at the superconducting-to-normal state transition. The same applies to the intermediate state of type-I superconductors. Even the subtle changes in the fluxoid distribution inside the sample leave clear signatures on heat capacity, which is particularly useful for fully three-dimensional samples whose interior is often inaccessible by magnetometry. The heat-capacity jump ΔC(H) at the critical temperature exhibits quasiperiodic modulations as a function of magnetic field. In mesoscopic superconducting rings, these oscillations provide calorimetric verification of the Little-Parks effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000274998100091 Publication Date 2010-02-01  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes ; We are grateful to O. Bourgeois for useful discussions. This work was supported by the Flemish Science Foundation (FWO-VI), the Interuniversity Attraction Poles (IAP) Program-Belgian State-Belgian Science Policy, ESF-JSPS NES program and the ESF-AQDJJ network. ; Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:81766 Serial 271  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. doi  openurl
  Title Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots Type A1 Journal article
  Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 404 Issue Pages 246-250  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000221211500045 Publication Date 2004-02-28  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 6 Open Access  
  Notes Approved Most recent IF: 1.404; 2004 IF: 1.072  
  Call Number UA @ lucian @ c:irua:44979 Serial 407  
Permanent link to this record
 

 
Author Bending, S.; Neal, J.S.; Milošević, M.V.; Potenza, A.; Emeterio, L.S.; Marrows, C.H. doi  openurl
  Title Competing symmetries in superconducting vortex-antivortex “molecular crystals” Type A1 Journal article
  Year 2008 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 468 Issue 7-10 Pages 518-522  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000257355300006 Publication Date 2008-03-13  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 2 Open Access  
  Notes Approved Most recent IF: 1.404; 2008 IF: 0.740  
  Call Number UA @ lucian @ c:irua:70069 Serial 436  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Composite vortex ordering in superconducting films with arrays of blind holes Type A1 Journal article
  Year 2009 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 11 Issue Pages 013025,1-013025,20  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The pinning properties of a superconducting thin film with a square array of blind holes are studied using the nonlinear GinzburgLandau theory. Although blind holes provide a weaker pinning potential than holes (also called antidots), several novel vortex structures are predicted for different size and thickness of the blind holes. Orientational dimer and trimer vortex states as well as concentric vortex shells can nucleate in the blind holes. In addition, we predict the stabilization of giant vortices that may be located both in the pinning centers and/or at the interstitial sites, as well as the combination of giant vortices with sets of individual vortices. For large blind holes, local vortex shell structures inside the blind holes may transfer their symmetry to interstitial vortices as well. The subtle interplay of shell formation and traditional Abrikosov vortex lattices inside the blind holes is also studied for different numbers of trapped vortices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000262932600002 Publication Date 2009-01-21  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 33 Open Access  
  Notes Approved Most recent IF: 3.786; 2009 IF: 3.312  
  Call Number UA @ lucian @ c:irua:75987 Serial 441  
Permanent link to this record
 

 
Author Chaves, A.; Komendová, L.; Milošević, M.V.; Andrade, J.S.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Conditions for nonmonotonic vortex interaction in two-band superconductors Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 21 Pages 214523-214523,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We describe a semianalytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain-superconductor interface energy, in analogy with the conventional differentiation between type I and type II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ*, different from the standard κ of a bulk superconductor. This opens the possibility for nonmonotonic vortex-vortex interaction, which is temperature dependent, and can be further tuned by alterations of the material on the microscopic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292252300009 Publication Date 2011-06-30  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 46 Open Access  
  Notes ; Discussions with A. Moreira, A. Shanenko, R. Prozorov, and A. Golubov are gratefully acknowledged. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral project FWO-CNPq, CAPES, and PRONEX/CNPq/FUNCAP. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90922 Serial 477  
Permanent link to this record
 

 
Author Connolly, M.R.; Bemding, S.J.; Milošević, M.V.; Clem, J.R.; Tamegai, T. doi  openurl
  Title Continuum versus discrete flux behaviour in large mesoscopic Bi2Sr2CaCu2O8+\delta disks Type A1 Journal article
  Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 470 Issue S:1 Pages S896-S897  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have used scanning Hall probe and local Hall magnetometry measurements to map flux profiles in superconducting Bi2Sr2CaCu2O8+δ disks whose diameters span the crossover between the bulk and mesoscopic vortex regimes. The behaviour of large disks (greater-or-equal, slanted20 μm diameter) is well described by analytic models that assume a continuous distribution of flux in the sample. Small disks (less-than-or-equals, slant10 μm diameter), on the other hand, exhibit clear signatures of the underlying discrete vortex structure as well as competition between triangular Abrikosov ordering and the formation of shell structures driven by interactions with circulating edge currents. At low fields we are able to directly observe the characteristic mesoscopic compression of vortex clusters which is linked to oscillations in the diameter of the vortex dome in increasing magnetic fields. At higher fields, where single vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on local magnetisation curves. Our observations are in excellent agreement with molecular-dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviour in our system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000286075700384 Publication Date 2009-11-20  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.404 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415  
  Call Number UA @ lucian @ c:irua:88069 Serial 494  
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Clem, J.R.; Tamegai, T. doi  openurl
  Title Continuum vs. discrete flux behaviour in large mesoscopic Bi2Sr2CaCu2O8+\delta disks Type A1 Journal article
  Year 2009 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 85 Issue 1 Pages 17008,1-17008,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Scanning Hall probe and local Hall magnetometry measurements have been used to investigate flux distributions in large mesoscopic superconducting disks with sizes that lie near the crossover between the bulk and mesoscopic vortex regimes. Results obtained by directly mapping the magnetic induction profiles of the disks at different applied fields can be quite successfully fitted to analytic models which assume a continuous distribution of flux in the sample. At low fields, however, we do observe clear signatures of the underlying discrete vortex structure and can resolve the characteristic mesoscopic compression of vortex clusters in increasing magnetic fields. Even at higher fields, where single-vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on “local” magnetisation curves as a function of the applied field. Our observations are in excellent agreement with molecular-dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviours in our system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000263692500029 Publication Date 2009-01-20  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 17 Open Access  
  Notes Approved Most recent IF: 1.957; 2009 IF: 2.893  
  Call Number UA @ lucian @ c:irua:76306 Serial 495  
Permanent link to this record
 

 
Author Grimaldi, G.; Leo, A.; Nigro, A.; Silhanek, A.V.; Verellen, N.; Moshchalkov, V.V.; Milošević, M.V.; Casaburi, A.; Cristiano, R.; Pace, S. doi  openurl
  Title Controlling flux flow dissipation by changing flux pinning in superconducting films Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 20 Pages 202601-202601,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the flux flow state in superconducting materials characterized by rather strong intrinsic pinning, such as Nb, NbN, and nanostructured Al thin films, in which we drag the superconducting dissipative state into the normal state by current biasing. We modify the vortex pinning strength either by ion irradiation, by tuning the measuring temperature or by including artificial pinning centers. We measure critical flux flow voltages for all materials and the same effect is observed: switching to low flux flow dissipations at low fields for an intermediate pinning regime. This mechanism offers a way to additionally promote the stability of the superconducting state. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718309]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000304265000051 Publication Date 2012-05-14  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 33 Open Access  
  Notes ; ; Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:98946 Serial 504  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Doria, M.M.; de Romaguera, A.R.C.; Milošević, M.V.; Brandt, E.H.; Peeters, F.M. url  doi
openurl 
  Title Current-induced cutting and recombination of magnetic superconducting vortex loops in mesoscopic superconductor-ferromagnet heterostructures Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 18 Pages 184508-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vortex loops are generated by the inhomogeneous stray field of a magnetic dipole on top of a current-carrying mesoscopic superconductor. Cutting and recombination processes unfold under the applied drive, resulting in periodic voltage oscillations across the sample. We show that a direct and detectable consequence of the cutting and recombination of these vortex loops in the present setup is the onset of vortices at surfaces where they were absent prior to the application of the external current. The nonlinear dynamics of vortex loops is studied within the time-dependent Ginzburg-Landau theory to describe the profound three-dimensional features of their time evolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000319252000008 Publication Date 2013-05-21  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the bilateral programme between Flanders and Brazil. G.R.B. acknowledges support from FWO-VI. A.R. de C.R. acknowledges CNPq for financial support. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:109648 Serial 593  
Permanent link to this record
 

 
Author Komendová, L.; Milošević, M.V.; Shanenko, A.A.; Peeters, F.M. url  doi
openurl 
  Title Different length scales for order parameters in two-gap superconductors : extended Ginzburg-Landau theory Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 6 Pages 064522-064522,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the Ginzburg-Landau theory extended to the next-to-leading order, we determine numerically the healing lengths of the two order parameters at the two-gap superconductor/normal metal interface. We demonstrate on several examples that those can be different even in the strict domain of applicability of the Ginzburg-Landau theory. This justifies the use of this theory to describe relevant physics of two-gap superconductors, distinguishing them from their single-gap counterparts. The calculational degree of complexity increases only slightly with respect to the conventional Ginzburg-Landau expansion, thus the extended Ginzburg-Landau model remains numerically far less demanding compared to the full microscopic approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000294226000013 Publication Date 2011-08-25  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 56 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:92414 Serial 695  
Permanent link to this record
 

 
Author da Silva, R.M.; Milošević, M.V.; Dominguez, D.; Peeters, F.M.; Albino Aguiar, J. doi  openurl
  Title Distinct magnetic signatures of fractional vortex configurations in multiband superconductors Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 105 Issue 23 Pages 232601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000346266000066 Publication Date 2014-12-09  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 22 Open Access  
  Notes ; This work was supported by the Brazilian science agencies CAPES (Grant No. PNPD 223038.003145/2011-00), CNPq (Grant Nos. 307552/2012-8, 141911/2012-3, and APV-4 02937/2013-9), and FACEPE (Grant Nos. APQ-0202-1.05/10 and BCT-0278-1.05/ 11), the Research Foundation Flanders (FWO-Vlaanderen), and by the CNPq-FWO cooperation programme (CNPq Grant No. 490297/2009-9). D.D. acknowledges support from CONICET, CNEA, and ANPCyT-PICT2011-1537. The authors thank A. A. Shanenko for extensive discussions on the topic. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:122775 Serial 742  
Permanent link to this record
 

 
Author Doria, M.M.; de Romaguera, A.R.C.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Domain coexistence of magnetism and superconductivity : appearance of confined vortex loops Type P1 Proceeding
  Year 2008 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 97 Issue Pages 012070-012070,4  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract A magnetic moment inside an extreme type II superconductor can have three, but not one or two, confined vortex loops near to the core. For a sub-micron superconducting particle the confined vortex loops eventually break up and reach the surface turning into external vortex pairs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000276054100070 Publication Date 2008-03-20  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99232 Serial 747  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; de Romaguera, A.R.C.; Milošević, M.V.; Doria, M.M.; Covaci, L.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamic and static phases of vortices under an applied drive in a superconducting stripe with an array of weak links Type A1 Journal article
  Year 2012 Publication European physical journal : B : condensed matter and complex systems Abbreviated Journal Eur Phys J B  
  Volume 85 Issue 4 Pages 130-130,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Static and dynamic properties of superconducting vortices in a superconducting stripe with a periodic array of weakly-superconducting (or normal metal) regions are studied in the presence of external magnetic and electric fields. The time-dependent Ginzburg-Landau theory is used to describe the electronic transport, where the anisotropy is included through the spatially-dependent critical temperature T-c. Superconducting vortices penetrating into the weak-superconducting region with smaller T-c are more mobile than the ones in the strong superconducting regions. We observe periodic entrance and exit of vortices which reside in the weak link for some short interval. The mobility of the weakly-pinned vortices can be reduced by increasing the uniform applied magnetic field leading to distinct features in the voltage vs. magnetic field response of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000303545400013 Publication Date 2012-04-20  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6028;1434-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.461 Times cited 32 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral programme between Flanders and Brazil. G.R.B. and L.C. acknowledge individual support from FWO-Vl. A.R.de C.R. acknowledges CNPq and FACEPE for financial support. ; Approved Most recent IF: 1.461; 2012 IF: 1.282  
  Call Number UA @ lucian @ c:irua:98267 Serial 761  
Permanent link to this record
 

 
Author de Aquino, B.R.C.H.T.; Cabral, L.R.E.; de Souza Silva, C.C.; Albino Aguiar, J.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamic phases of vortex-antivortex molecules in a Corbino disk with magnetic dipole on top Type A1 Journal article
  Year 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 479 Issue Pages 115-118  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We performed a molecular dynamics study of vortex-antivortex motion in a superconducting disk with a magnetic dot on top, in the Corbino disk geometry. In this system, vortices and antivortices are forced to move in opposite azimuthal directions by a radially applied current. The dot is magnetized out of plane in order to stabilize composite vortex-antivortex configurations, with vortices closer to the center of the disk and antivortices near to the disk edge. We observe that the interplay between the spatially inhomogeneous current distribution, the screening currents induced by the dipole, and the attractive vortex-antivortex (v-av) interaction result in different dynamical phases. At low current values, antivortices which are distributed at outer rings – remain bounded to vortices at inner rings and the whole configuration rotates rigidly. Above a threshold current, vortices and antivortices unbind and move at different angular velocities in a highly correlated way. Finally, at very strong drive, vortex-antivortex attraction is overhelmed by the external current Lorentz force, causing them to move in opposite directions. (C) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited Open Access  
  Notes Approved Most recent IF: 1.404; 2012 IF: 0.718  
  Call Number UA @ lucian @ c:irua:101870 Serial 764  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Dynamics of kinematic vortices in a mesoscopic superconducting loop Type A1 Journal article
  Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 470 Issue 19 Pages 946-948  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the time-dependent GinzburgLandau formalism, we study the dynamic properties of a submicron superconducting loop in applied current and in presence of a perpendicular magnetic field. The resistive state of the sample is caused by the motion of kinematic vortexantivortex pairs. Vortices and antivortices move in opposite directions to each other, perpendicularly to the applied drive, and the periodic creation and annihilation of such pairs results in periodic oscillations of the voltage across the sample. The dynamics of these kinematic pairs is strongly influenced by the applied magnetic field, which for high fields leads to the flow of just vortices. Kinematic vortices can be temporarily pinned inside the loop with observable trace in the voltage vs. time characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000282454400061 Publication Date 2010-03-08  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 9 Open Access  
  Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415  
  Call Number UA @ lucian @ c:irua:85039 Serial 777  
Permanent link to this record
 

 
Author Geurts, R.; Milošević, M.V.; Albino Aguiar, J.; Peeters, F.M. url  doi
openurl 
  Title Enhanced stability of vortex-antivortex states in two-component mesoscopic superconductors Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 87 Issue 2 Pages 024501-24508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the Ginzburg-Landau (GL) theory, we calculate the stability of sample symmetry-induced vortex-antivortex molecules in a mesoscopic superconducting bilayer exposed to a homogeneous magnetic field. We demonstrate the conditions under which the two condensates cooperatively broaden the field-temperature stability range of the composite (joint) vortex-antivortex state. In cases when such broadening is not achieved, a reentrance of the vortex-antivortex state is found at lower temperatures. In a large portion of the phase diagram noncomposite states are possible, in which the antivortex is present in only one of the layers. In this case, we demonstrate that the vortex-antivortex molecule in one of the layers can be pinned and enlarged by interaction with a vortex molecule in the other. Using analogies in the respective GL formalisms, we map our findings for the bilayer onto mesoscopic two-band superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000313029800003 Publication Date 2013-01-04  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 25 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen), the Brazilian science agencies FACEPE/CNPq under Grant No. APQ-0589-1.05/08 and CNPq under Grant No. 309832/2007-1, and the CNPq-FWO cooperation program under Grant No. 490681/2010-7. M.V.M. acknowledges support from the CAPES-PVE program. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:105925 Serial 1058  
Permanent link to this record
 

 
Author Shanenko, A.A.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Extended Ginzburg-Landau formalism for two-band superconductors Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 106 Issue 4 Pages 047005-047005,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recent observation of unusual vortex patterns in MgB2 single crystals raised speculations about possible type-1.5 superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bandsand does not support the type-1.5 behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/Tc parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→Tc. The extended version of the two-band GL formalism improves the validity of GL theory below Tc and suggests revisiting the earlier calculations based on the standard model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000286734100010 Publication Date 2011-01-27  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 84 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. Discussions with M. D. Croitoru are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:88038 Serial 1154  
Permanent link to this record
 

 
Author Vagov, A.V.; Shanenko, A.A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. url  doi
openurl 
  Title Extended Ginzburg-Landau formalism : systematic expansion in small deviation from the critical temperature Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 1 Pages 014502-014502,17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Based on the Gor'kov formalism for a clean s-wave superconductor, we develop an extended version of the single-band Ginzburg-Landau (GL) theory by means of a systematic expansion in the deviation from the critical temperature T(c), i.e., tau = 1 – T/T(c). We calculate different contributions to the order parameter and the magnetic field: the leading contributions (proportional to tau(1/2) in the order parameter and. t in the magnetic field) are controlled by the standard GL theory, while the next-to-leading terms (proportional to tau(3/2) in the gap and proportional to tau(2) in the magnetic field) constitute the extended GL (EGL) approach. We derive the free-energy functional for the extended formalism and the corresponding expression for the current density. To illustrate the usefulness of our formalism, we calculate, in a semianalytical form, the temperature-dependent correction to the GL parameter at which the surface energy becomes zero, and analytically, the temperature dependence of the thermodynamic critical field. We demonstrate that the EGL formalism is not just a mathematical extension to the theory: variations of both the gap and the thermodynamic critical field with temperature calculated within the EGL theory are found in very good agreement with the full BCS results down to low temperatures, which dramatically improves the applicability of the formalism compared to its standard predecessor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298985100002 Publication Date 2012-01-10  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 36 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). A. V. V. is grateful to V. Zalipaev for important comments. A. A. S. thanks W. Pogosov for helpful notes. Discussions with E. H. Brandt and A. Perali are appreciated. ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:96232 Serial 1155  
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Field-enhanced critical parameters in magnetically nanostructured superconductors Type A1 Journal article
  Year 2005 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 70 Issue 5 Pages 670-676  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000229819000016 Publication Date 2005-04-28  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited 40 Open Access  
  Notes Approved Most recent IF: 1.957; 2005 IF: 2.237  
  Call Number UA @ lucian @ c:irua:57247 Serial 1191  
Permanent link to this record
 

 
Author Berger, J.; Milošević, M.V. url  doi
openurl 
  Title Fluctuations in superconducting rings with two order parameters Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 84 Issue 21 Pages 214515-214515,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by two-band superconductivity in, e.g., borides and pnictides, starting from the two-band Ginzburg-Landau energy functional, we discuss how the presence of two order parameters and the coupling between them influence a superconducting ring in the fluctuative regime. Our method is an extension of the von OppenRiedel formalism for rings; it is exact, but requires numerical implementation. We also study approximations for which analytic expressions can be obtained, and check their ranges of validity. We provide estimates for the temperature ranges where fluctuations are important, calculate the persistent current in MgB2 rings as a function of temperature and enclosed flux, and point out its additional dependence on the cross-section area of the wire from which the ring is made. We find temperature regions in which fluctuations enhance the persistent currents and regions where they inhibit the persistent current. The presence of two order parameters that can fluctuate independently always leads to larger averages of the order parameters at Tc, but yields larger persistent current only for appropriate parameters. In cases of very different material parameters for the two coupled condensates, the persistent current is inhibited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000297932500004 Publication Date 2011-12-12  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This research was supported by the Israel Science Foundation, Grant No. 249/10, the Flemish Science Foundation (FWO-Vl), and the ESF network INSTANS. We are grateful to Andrei Varlamov and Felix von Oppen for their answers to our enquiries. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:93957 Serial 1226  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernández-Nieves, A.D.; Milošević, M.V.; Peeters, F.M.; Dominguez, D. url  doi
openurl 
  Title Flux-quantum-discretized dynamics of magnetic flux entry, exit, and annihilation in current-driven mesoscopic type-I superconductors Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 9 Pages 092502-092502,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study nonlinear flux dynamics in a current-carrying type-I superconductor. The stray magnetic field of the current induces the intermediate state, where nucleation of flux domains is discretized to a single fluxoid at a time, while their final shape (tubular or laminar), size, and nucleation rate depend on applied current and edge conditions. The current induces opposite flux domains on opposite sides of the sample, and subsequently drives them to annihilation-which is also discretized, as a sequence of vortex-antivortex pairs. The discretization of both nucleation and annihilation leaves measurable traces in the voltage across the sample and in locally probed magnetization. The reported dynamic phenomena thus provide an unambiguous proof of a flux quantum being the smallest building block of the intermediate state in type-I superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000301183000002 Publication Date 2012-03-07  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 14 Open Access  
  Notes ; This work was supported by the Belgian Science Policy (IAP), the Flemish Science Foundation (FWO-Vl), and the collaborative project FWO-MINCyT (Project No. FW/08/01). G. R. B. and A. D. H acknowledge support from FWO-Vl. A. D. H. and D. D. acknowledge support from CONICET, CNEA, and ANPCyT (Grant No. PICT07-824). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:97180 Serial 1243  
Permanent link to this record
 

 
Author Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Fluxonic cellular automata Type A1 Journal article
  Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 91 Issue 21 Pages 212501,1-3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000251105500023 Publication Date 2007-11-19  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 45 Open Access  
  Notes Approved Most recent IF: 3.411; 2007 IF: 3.596  
  Call Number UA @ lucian @ c:irua:67176 Serial 1245  
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Lin, S.-H.; Peeters, F.M.; Jankó, B. url  doi
openurl 
  Title Formation of multiple-flux-quantum vortices in mesoscopic superconductors from simulations of calorimetric, magnetic, and transport properties Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 107 Issue 5 Pages 057002,1-057002,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Because of strong flux confinement in mesoscopic superconductors, a giant vortex may appear in the ground state of the system in an applied magnetic field. This multiquanta vortex can then split into individual vortices (and vice versa) as a function of, e.g., applied current, magnetic field, or temperature. Here we show that such transitions can be identified by calorimetry, as the formation or splitting of a giant vortex results in a clear jump in measured heat capacity versus external drive. We attribute this phenomenon to an abrupt change in the density of states of the quasiparticle excitations in the vortex core(s), and further link it to a sharp change of the magnetic susceptibility at the transitionproving that the formation of a giant vortex can also be detected by magnetometry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000293333100006 Publication Date 2011-07-29  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 26 Open Access  
  Notes ; We thank O. Bourgeois, T. Yokoyama, M. Eschrig, and M. Ichioka for discussions. This work was supported by FWO-Vlaanderen, the Belgian Science Policy (IAP), the bilateral project Flanders-USA, NSF NIRT, ECS-0609249, and Institute of Theoretical Sciences, Notre Dame. ; Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:91237 Serial 1263  
Permanent link to this record
 

 
Author Silhanek, A.V.; Milošević, M.V.; Kramer, R.B.G.; Berdiyorov, G.R.; Vondel van de, J.; Luccas, R.F.; Puig, T.; Peeters, F.M.; Moshchalkov, V.V. url  doi
openurl 
  Title Formation of stripelike flux patterns obtained by freezing kinematic vortices in a superconducting Pb film Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 104 Issue 1 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate experimentally and theoretically that the dissipative state of superconducting samples with a periodic array of holes at high current densities consists of flux rivers resulting from a short-range attractive interaction between vortices. This dynamically induced vortex-vortex attraction results from the migration of quasiparticles out of the vortex core (kinematic vortices). We have directly visualized the formation of vortex chains by scanning Hall probe microscopy after freezing the dynamic state by a field cooling procedure at a constant bias current. Similar experiments carried out in a sample without holes show no hint of flux river formation. We shed light on this nonequilibrium phenomena modeled by time-dependent Ginzburg-Landau simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000273881900033 Publication Date 2010-01-07  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 60 Open Access  
  Notes ; This work was supported by Methusalem funding by the Flemish government, the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, and the ESF NES network. A. V. S., G. R. B., and J. V. d. V. acknowledge support from FWO-VI R. F. L. acknowledges support from I3P CSIC program and MAT2008-01022. ; Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:81009 Serial 1265  
Permanent link to this record
 

 
Author Silhanek, A.V.; Kramer, R.G.B.; van de Vondel, J.; Moshchalkov, V.V.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.; Luccas, R.F.; Puig, T. doi  openurl
  Title Freezing vortex rivers Type A1 Journal article
  Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 470 Issue 19 Pages 726-729  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We demonstrate experimentally and theoretically that the dissipative state at high current densities of superconducting samples with a periodic array of holes consist of flux rivers resulting from a short range attractive interaction between vortices. This dynamically induced vortexvortex attraction results from the migration of quasiparticles out of the vortex core. We have directly visualized the formation of vortex chains by scanning Hall microscopy after freezing the dynamic state by a field cooling procedure at constant bias current. Similar experiments carried out in a sample without holes show no hint of flux river formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000282454400004 Publication Date 2010-03-08  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415  
  Call Number UA @ lucian @ c:irua:85032 Serial 1278  
Permanent link to this record
 

 
Author Engbarth, M.A.; Bending, S.J.; Milošević, M.V. url  doi
openurl 
  Title Geometry-driven vortex states in type-I superconducting Pb nanowires Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 22 Pages 224504-224504,7  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Hall probe magnetometry has been used to investigate the magnetization of individual cylindrically shaped Pb nanowires grown by electrocrystallization on a highly oriented pyrolytic graphite electrode. These measurements have been interpreted by comparison with three-dimensional Ginzburg-Landau (GL) calculations for nanowires with our sample parameters. We find that the measured superheating field and the critical field for surface superconductivity are strongly influenced by the temperature-dependent coherence length, ξ(T) and penetration depth λ(T) and their relationship to the nanowire diameter. As the temperature is increased toward Tc this drives a change in the superconductor-normal transition from first order irreversible to first order reversible and finally second order reversible. We find that the geometrical flux confinement in our type-I nanowires leads to the formation of a one-dimensional row of single-quantum vortices. While GL calculations show a quite uniform distribution of vortices in thin nanowires, clear vortex bunching is found as the diameter increases, suggesting a transition to a more classical type-I behavior. Subtle changes in minor magnetization loops also indicate that slightly different flux configurations can form with the same vorticity, which depend on the sample history.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291888300012 Publication Date 2011-06-21  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access  
  Notes ; We acknowledge valuable conversations with F. V. Kusmartsev and W. M. Wu at Loughborough University, UK. This work was supported by the EPSRC-UK under Grant No. EP/E039944/1, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90927 Serial 1331  
Permanent link to this record
 

 
Author Engbarth, M.; Milošević, M.V.; Bending, S.J.; Nasirpouri, F. pdf  doi
openurl 
  Title Geometry-guided flux behaviour in superconducting Pb microcrystals Type A1 Journal article
  Year 2009 Publication Journal of physics : conference series Abbreviated Journal  
  Volume 150 Issue 5 Pages 052048  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrochemistry offers highly flexible routes to fabrication of a wide variety of mesostructures, including three-dimensional (3D) crystallites, thin films and nanowires. Using this method we have grown various 3D superconducting Pb mesostructures with vastly different morphologies. We present here results on a truncated(half)-icosahedron with a hexagonal base and a tripod structure with a triangular base. Using Hall probe magnetometry we have obtained magnetisation curves for these structures at several temperatures and see evidence of geometry-driven flux entry and exit as well as flux trapping caused by specific sample geometries. We also observe behaviour that we interpret in terms of the formation of giant vortices, bearing in mind that bulk Pb is a type-I superconducting material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos Publication Date 2009-04-01  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:106138 Serial 1332  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: