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Fluctuations in superconducting rings with two order parameters
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Motivated by two-band superconductivity in, e.g., borides and pnictides, starting from the two-band Ginzburg-
Landau energy functional, we discuss how the presence of two order parameters and the coupling between them
influence a superconducting ring in the fluctuative regime. Our method is an extension of the von Oppen–Riedel
formalism for rings; it is exact, but requires numerical implementation. We also study approximations for
which analytic expressions can be obtained, and check their ranges of validity. We provide estimates for the
temperature ranges where fluctuations are important, calculate the persistent current in MgB2 rings as a function of
temperature and enclosed flux, and point out its additional dependence on the cross-section area of the wire from
which the ring is made. We find temperature regions in which fluctuations enhance the persistent currents
and regions where they inhibit the persistent current. The presence of two order parameters that can fluctuate
independently always leads to larger averages of the order parameters at Tc, but yields larger persistent current
only for appropriate parameters. In cases of very different material parameters for the two coupled condensates,
the persistent current is inhibited.
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I. INTRODUCTION

Fluctuations are extremely important near phase transitions,
and have therefore been the subject of intense research
in the past. Particularly in superconductivity, it has been
shown that thermally driven electronic fluctuations, i.e.,
formation and dissociation of Cooper pairs close to the
critical temperature Tc, can affect all relevant properties
of a superconductor.1 Techniques that incorporate thermal
fluctuations to the Ginzburg-Landau model are described
in a recent review.2 Fluctuations in mesoscopic loops are
particularly interesting because their critical temperature is
reduced in an oscillatory fashion as a function of the magnetic
field—a phenomenon known as the Little-Parks (LP) effect.3

More importantly, as LP oscillations are directly related to
flux (vorticity) entry in superconductors, one can identify
the magnetic fields for which fluctuations are particularly
important, as is the case of half integer flux values.4 The latter
experiment4 detected current in the ring above Tc, a clear
signature of fluctuations, and may be regarded as a paradigm
for thin superconducting ring behavior, a case for which
the theory for thermal fluctuations is known exactly.5 The
additional influence of quantum fluctuations was addressed in
Ref. 6.

Superconductivity is essentially a macroscopic quantum
state with long-range phase coherence, therefore described
as a single wave function. Superconductors with multiple
superconducting gaps, which may therefore be described
by multiple order parameters, have recently attracted great
attention due to the multigap nature of MgB2,7 OsB2,8 and
iron pnictides.9 In such cases, thermal excitation allows
contributions from multiple wave functions and one may
expect a dramatically different behavior of the system. With
that as motivation, we here explore the interplay of the wave
functions and thermal fluctuations in superconducting rings
with two order parameters. The rings we will consider need not
be made of a two-band superconductor, but may also consist
of two thin superimposed superconducting rings,10 possibly

separated by an isolating layer, such as the active part in readily
made experiments with annular Josephson junctions.11

We conduct our theoretical analysis in the framework of the
Ginzburg-Landau (GL) theory. The multiband GL equations
were developed long ago;12 in the case of two bands the free-
energy density has the form

f =
∑
ν=1,2

(
ãν |�̃ν |2 + b̃ν

2
|�̃ν |4 + K̃ν |��̃ν |2

)

− γ̃ (�̃1�̃
∗
2 + �̃2�̃

∗
1), (1)

where �̃1,2 are the order parameters, ã1,2, b̃1,2, K̃1,2, and γ̃

are material parameters, and � = ∇ + 2πiA/�0, with A the
vector potential and �0 the superconducting flux quantum.
Zhitomirsky and Dao13 obtained expressions for the material
parameters in a multiband superconductor using Gor’kov’s
technique. Kogan and Schmalian14 recently emphasized that
consistency imposes conditions on the temperature depen-
dence of these coefficients, which results in the same coherence
length for both order parameters in a two-band superconductor.
Shanenko et al.15 went on to show the importance of terms of
higher order in temperature, and the resulting separation of
characteristic lengths for the two bands.16 We should note,
however, that fluctuations move the order parameters astray
from equilibrium, so that in general their ratio is not constant.

Moreover, besides clean two-band superconductors, we are
also interested in relating our results to additional systems.
For example, the functional for two thin superimposed single-
band rings, coupled via Josephson tunneling (i.e., Lawrence-
Doniach coupling term17), will have the shape of Eq. (1),
with ãLD

ν = ãν − γ̃ . The functional for dirty two-band super-
conductors will have coefficients with different temperature
dependence.18 In this paper we thus adopt the standard GL
approach, where the material parameters in Eq. (1) are arbitrary
functions of the temperature and any required restriction will
be a particular case. Note, however, that our method is in
general applicable to any further modified energy functional,
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e.g., for nanothin superconductors (effectively multiband due
to quantum confinement of the electron motion, which results
in the formation of discrete electronic states and thus splitting
of the total band of single-electron states in a series of
subbands19), dirty two-band superconductors with gradient
coupling,20 or three (or more) -band superconductors.21

The paper is organized as follows. In Sec. II we give the
details of our theoretical method. In Sec. III we employ differ-
ent approximations, obtain analytic solutions when possible,
and compare to the numerically exact results. Section IV is
devoted to properties characteristic of two-order-parameter
rings, particularly different degrees of freedom not present
in single-band superconductors. We summarize the paper in
Sec. V.

II. METHOD

In this paper we deal with one-dimensional (1D) supercon-
ducting rings with two order parameters, extending the results
obtained by von Oppen and Riedel5 (vOR) from single to two
order parameters. The vOR formalism is applicable to uniform
1D loops without energy barriers that would sustain metastable
states; a method of wider applicability has been presented and
explained in detail in Ref. 22.

Instead of the formalism of Ref. 5, we will follow a
slightly different approach, which in our view is conceptually
simpler, as we will not invoke concepts such as imaginary
time or imaginary vector potential. We start by absorbing the
coefficients K̃1,2 into the order parameters and by switching
to a gauge invariant formulation, i.e., we define

�ν(θ ) = exp

(
2πiR

�0

∫ θ

0
A(θ ′)dθ ′

)√
K̃ν�̃ν(θ ), (2)

where R is the radius of the ring, θ is the angle along the ring,
and A is the tangential component of A. Likewise we define

aν = ãν

K̃ν

, bν = b̃ν

K̃2
ν

, γ = γ̃√
K̃1K̃2

. (3)

With these definitions the free-energy density becomes

f =
∑
ν=1,2

(
aν |�ν |2 + bν

2
|�ν |4 + 1

R2

∣∣∣∣d�ν

dθ

∣∣∣∣
2)

−γ (�1�
∗
2 + �2�

∗
1). (4)

With the normalizations we are using, a
−1/2
ν is the coherence

length for the order parameter �ν in the absence of coupling to
the other order parameter. As in Ref. 5, we consider a uniform
1D ring, which in particular does not alter the applied field
(screening is negligible), so that no magnetic energy has to be
added to f .

In order to have a more intuitive picture of the problem,
we represent the complex order parameters �ν by two-
dimensional real vectors rν , such that in polar coordinates
rν = |�ν | and the angular coordinate ϑν is the phase of �ν .
Integrating f over the volume of the ring, its free energy
becomes

F = 2w

R

∫ π

−π

dθ

(
1

2

∣∣∣∣dr1

dθ

∣∣∣∣
2

+ 1

2

∣∣∣∣dr2

dθ

∣∣∣∣
2

+ V

)
, (5)

where w is the cross section of the wire from which the ring
is made and

V = R2

2

(
a1r

2
1 + a2r

2
2 + b1

2
r4

1 + b2

2
r4

2

− 2γ r1r2 cos(ϑ1 − ϑ2)

)
. (6)

As in Ref. 5, r1,2(θ ) may be regarded as the trajectories of two
fictitious particles during a period of time −π � θ � π . The
first two terms in the integrand of Eq. (5) then represent their
kinetic energy and V their potential energy.

Following Ref. 23, a pair of functions rν(θ ) is interpreted as
a microstate of the system and F as the energy of the system for
that microstate. It follows that up to an irrelevant multiplicative
constant the partition function is

Z =
∫

Dr1Dr2 exp(−F/kBT ), (7)

where T is the temperature and
∫
Dr1Dr2 denotes integration

over all functions rν(θ ) with appropriate periodicity. Since �̃ν

are single valued, rν(θ = π ) = rν(θ = −π ) and ϑν(θ = π ) =
ϑν(θ = −π ) + 2πϕ, where ϕ is the flux enclosed by the ring
divided by �0.

Using slight adaptations of Eqs. (2.14), (2.15), (2.16),
(2.22), and (2.23) in Ref. 23 (which are reviewed in the
appendix), Z can be brought to the form

Z =
∑

n

exp(−2πεn/S)

×
∫

dr1dr2�
∗
n [rν(θ = π )]�n[rν(θ = −π )]. (8)

Here εn and �n[rν] are a complete set of eigenvalues and
normalized eigenfunctions of the fictitious Hamiltonian

H = −S2

2

(∇2
1 + ∇2

2

) + V, (9)

where the Laplacian ∇2
ν acts on rν and S = kBT R/2w. S has

dimensions of surface in the plane of the trajectories of r1,2

and dimensions of force in reality. The integral in Eq. (8) is
taken over the entire planes of motion for each particle, but for
every argument rν in �n we have to take the corresponding
argument in �∗

n .
We note now that the angular momentum operator Lz =

−i(∂/∂ϑ1 + ∂/∂ϑ2) commutes with H . We can therefore
choose the set of eigenfunctions {�n} with well defined
angular momentum, i.e., they can obey Lz�n,
 = 
�n,
 and
therefore have the form �n,
(r1,r2) = ∑


1
ψn,
,
1 (r1,r2,ϑ1 −

ϑ2) exp{i[
1ϑ1 + (
 − 
1)ϑ2]}, with 
 and 
1 integers. In view
of the periodicity conditions of rν , it follows that �n,
[rν(θ =
π )] = exp(2πi
ϕ)�n,
[rν(θ = −π )]. By substitution of this
result into Eq. (8) we obtain

Z =
∑




exp(−2πi
ϕ)Z
, (10)

with

Z
 =
∑

n

exp(−2πεn,
/S), (11)
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where summation in Eq. (10) is made over all integers and
in Eq. (11) over all the states with total angular momentum

. Since H is invariant under the transformation {ϑ1,ϑ2} →
{−ϑ1, − ϑ2}, εn,−
 = εn,
 and we can also write

Z = Z0 + 2
∞∑


=1

cos(2π
ϕ)Z
. (12)

Once the partition function is known, all the equilibrium
quantities can be derived from it. The average current around
the ring is

〈I 〉 = kBT

�0

∂ ln Z

∂ϕ
= −kBT

�0

4π

Z

∞∑

=1

sin(2π
ϕ)
Z
. (13)

Following similar steps to those that led to Eq. (12), we
obtain that the statistical average of any function of the order
parameters is

〈p(�1,�2)〉 = 1

Z

[
P0 + 2

∞∑

=1

cos(2π
ϕ)P


]
, (14)

where P
 = ∑
n exp(−2πεn,
/S)〈n
|p(r1,r2)|n
〉. Here

we introduced the matrix element 〈n
|p(r1,r2)|n
〉 =∫
dr1dr2p(r1,r2)|�n,
(rν)|2, which may in practice be

evaluated in any convenient basis.

III. EVALUATIONS

All the quantities of interest may be evaluated numerically
using Eqs. (10)–(14) of the preceding section. However, if the
order parameters are small the problem becomes linearized and
simple approximations can be obtained. We therefore postpone
the use of Eqs. (10)–(14) to Sec. III C, and first show the
analytic results obtained using different approximations.

A. High temperature

Let T be sufficiently higher than Tc, so that the order pa-
rameters are small and the quartic terms in V can be neglected.
For high T we can also assume a1 + a2 >

√
(a1 − a2)2 + 4γ 2

and define the quantities

η = a1 − a2

2
√

(a1 − a2)2 + 4γ 2
,

(15)

ξ 2
3,4 = 2

a1 + a2 ∓
√

(a1 − a2)2 + 4γ 2
.

For γ = 0 and a1 > a2, ξ3,4 = a
−1/2
2,1 ; we therefore regard ξ3,4

as a sort of coherence lengths in the presence of coupling.
We can now define a rotation in the 4D space of both

particles through

r1 =
√

1

2
− η r3 −

√
1

2
+ η r4,

(16)

r2 =
√

1

2
+ η r3 +

√
1

2
− η r4.

With this transformation, the “potential energy” in Eq. (6)
becomes

Vquad = (R2/2)[(r3/ξ3)2 + (r4/ξ4)2]. (17)

The following features should be noted: (i) in the coordi-
nates {r3,r4}, ∇2

1 + ∇2
2 still has the meaning of the Laplacian

in the 4D space; (ii) since on passing from θ = −π to θ = π

both ϑ1 and ϑ2 increase by 2πϕ, and since r3,4 are linear
combinations of r1,2 with fixed coefficients, also their angles
ϑ3,4 increase by 2πϕ; (iii) the angular momentum operators
−i∂/∂ϑ3,4 for each separate particle now both commute with
the Hamiltonian; (iv) the total angular momentum equals the
sum of the angular momenta of each particle and the total
energy equals the sum of their energies. As a consequence
of these features, the partition function in Eq. (10) becomes
Z = Z(3)Z(4), where Z(ν) is the value of Z obtained when
εn,
 is replaced with the value that corresponds to particle ν

only. It follows that equilibrium quantities such as the average
current or the average energy will equal the sum of the separate
contributions of particles 3 and 4.

The Hamiltonian of the fictitious particles 3 and 4 is just
that of two decoupled harmonic oscillators and its eigenvalues
are well known: ε

(3,4)
n,
 = (SR/ξ3,4)(2n + |
| + 1). The sum in

Eq. (11) becomes a geometric series and we obtain

Z
(3,4)

 = e−2π |
|R/ξ3,4

2 sinh 2πR/ξ3,4
. (18)

Substitution into Eq. (10) gives

Z(3,4) = [2(cosh 2πR/ξ3,4 − cos 2πϕ)]−1 (19)

and the average current in the ring equals

〈Iquad〉 = −(2π sin 2πϕ kBT /�0)

× [(cosh 2πR/ξ3 − cos 2πϕ)−1

+ (cosh 2πR/ξ4 − cos 2πϕ)−1]. (20)

From Eq. (20) we can obtain the Little-Parks temperature,
i.e., the temperature for the onset of superconductivity in
the absence of fluctuations. Without fluctuations the current
vanishes above this onset; this is implemented by taking the
limit kBT → 0 in the first factor in Eq. (20). At the LP tem-
perature the current becomes nonzero, requiring divergence of
the second factor, i.e., iR/ξ3 = ϕ mod 1. From here, the LP
condition is

R2[
√

(a1 − a2)2 + 4γ 2 − (a1 + a2)] = 2ϕ2, (21)

where for simplicity of notation we restrict ourselves to the
range |ϕ| � 1/2. Near Tc we can write aν = aνc − αντ , with
τ = (Tc − T )/Tc and a1ca2c = γ 2; if in addition (ϕ/R)2 

α1,2, condition (21) is fulfilled for

τ = τLP = a1c + a2c

a1cα2 + a2cα1

ϕ2

R2
. (22)

B. Hartree approximation

One may expect to improve the quadratic approximation
by means of a formalism that also becomes exact at T = 0.
For this purpose we make the replacement (b1,2/2)r4

1,2 →
b1,2〈r2

1,2〉r2
1,2 in the potential given by Eq. (6). At high tem-

peratures both terms are negligible and at low temperatures,
where fluctuations can be neglected, they both lead to the same
“force” −∇V .24
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With this approximation the potential becomes again
quadratic, so that we can still use the results of the previous
section by substituting η → η′ and ξ3,4 → ξ ′

3,4, with

η′ = a′
1 − a′

2

2
√

(a′
1 − a′

2)2 + 4γ 2
,

ξ ′2
3,4 = 2

a′
1 + a′

2 ∓ √
(a′

1 − a′
2)2 + 4γ 2

, (23)

a′
1,2 = a1,2 + b1,2

〈
r2

1,2

〉
.

In order to implement this approximation, we have to evaluate
〈r2

1,2〉. 〈r2
3,4〉 are given by

〈
r2

3,4

〉 = − Sξ ′
3,4

2πR2

∂ ln Z(3,4)

∂(1/ξ ′
3,4)

= Sξ ′
3,4

R

sinh 2πR/ξ ′
3,4

cosh 2πR/ξ ′
3,4 − cos 2πϕ

; (24)

on the other hand, since 〈r3 · r4〉 = 0, 〈r2
1,2〉 = (1/2 ∓

η′)〈r2
3 〉 + (1/2 ± η′)〈r2

4 〉, hence 〈r2
3,4〉 = (1/2 ∓ 1/4η′)〈r2

1 〉 +
(1/2 ± 1/4η′)〈r2

2 〉. Substituting this into Eq. (24) leads to(
1

2
∓ 1

4η′

)〈
r2

1

〉 +
(

1

2
± 1

4η′

)〈
r2

2

〉

= Sξ ′
3,4

R

sinh 2πR/ξ ′
3,4

cosh 2πR/ξ ′
3,4 − cos 2πϕ

. (25)

This is a system of two equations for obtaining 〈r2
1 〉 and 〈r2

2 〉.
For a general situation, Eqs. (25) have to be solved

numerically, but we can find asymptotic expressions for some
special situations of interest. Sufficiently above the critical
temperature Tc one usually has 2πR/ξ ′

3,4 � 1, so that the
fractions at the right of Eqs. (25) reduce to 1. Near Tc and for
a range in which bν〈r2

ν 〉 
 αν |τ | 
 aν we obtain

〈|�1,2|2(T )〉 = 〈
r2

1,2

〉

≈ kBT

2(a1c + a2c)3/2w

(
a1c,2c + a2c,1c(a1c + a2c)√

(a1cα2 + a2cα1)|τ |
)

.

(26)

It is interesting to note that 〈|�1,2|2(T )〉 decreases very
moderately with T − Tc. If the radius of the ring is sufficiently
large, we still have 2πR/ξ ′

3,4 � 1 at T = Tc; assuming that
bν〈r2

ν 〉 
 aν still holds leads to

〈|�1,2|2(Tc)〉 ≈
(

a2
2c,1ck

2
BT 2

c

4(a1c + a2c)β1,2w2

)1/3

+a1c,2c[3β1,2 − a2c,1c(b1 + b2)]kBTc

6(a1c + a2c)3/2β1,2w
, (27)

with β1,2 = b1,2a2c,1c + b2,1a
3
1c,2c/γ

2. Comparison of
Eqs. (26) and (27) with the values of |�1,2|2 in the absence of
fluctuations enables us to estimate the range of temperatures
for which fluctuations are important.

Figure 1 shows the values of 〈�2
1,2〉 = 〈r2

1,2〉 near Tc for
MgB2, using the material parameters reported in Ref. 25. In
the absence of thermal fluctuations, β1,2〈�2

1,2〉 is given by the
dashed line for both bands. The inset in the figure shows the

σ

π

4 2−

−−−

−

−

− 0 2 4 6 8
0

2 × 1021

4 × 1021

6 × 1021

8 × 1021

1 × 1022

10 3 T Tc Tc

β
1,

2
1,

2
2

cm
4−

3 2 1 0 1 2
0
2
4
6
8

10
12
14

103 T Tc Tc

R
2
ξ′ 32

FIG. 1. (Color online) Average Cooper-pair densities
|�ν=1,2(=σ,π )|2 in the ring as functions of temperature, calculated in
the Hartree approximation. Each |�ν |2 has been multiplied by βν for
the purpose of comparison with the values in the absence of thermal
fluctuations (dashed line). The sample is a ring of radius 10−4 cm
and cross section 10−10 cm2 that encloses no magnetic flux. The
material parameters are those of MgB2, taken from Ref. 25. Inset:
(R/ξ ′

3)2 for the same ring.

behavior of R/ξ ′
3 near Tc; ξ ′

4 
 ξ ′
3 remains practically constant

in this range.
Finally, it should be mentioned that, although the Hartree

approximation becomes exact both in the limit of high and
of low temperature, it has several limitations, and near Tc the
variational Gaussian approximation is expected to be more
accurate.2,26

C. Exact evaluation

We proceed now to evaluate numerically the average
currents and additional quantities using Eqs. (10)–(14). For this
task we require in principle a complete set of eigenvectors and
eigenvalues of the Hamiltonian H in Eq. (9). In practice, the
usual procedure invokes some auxiliary Hamiltonian HB for
which a complete set of eigenvectors and eigenvalues is known.
H is then projected into the subspace of the Hilbert space that
has as a basis a set of low energy eigenstates of HB . Finally,
this projected Hamiltonian is diagonalized numerically and the
required eigenvalues are obtained. This procedure is expected
to give good approximations for the states of H that are almost
entirely contained in the projection subspace; for this purpose
we require a sufficiently large basis and an appropriate choice
of HB .

We define the basis Hamiltonian

HB(k1,k2) = −S2

2

(∇2
1 + ∇2

2

) + R2

2

(
k2

1r
2
1 + k2

2r
2
2

)
, (28)

which has the known set of eigenfunctions

ψn1,
1,n2,
2 (r1,r2) = C
∏

ν=1,2

r |
ν |e−Rkνr
2
ν /2S

× 1F1
( − nν,|
ν | + 1,Rkνr

2
ν /S

)
ei
νϑν

(29)

with eigenvalues RS[k1(2n1 + |
1| + 1) + k2(2n2 + |
2| +
1)]. Here C is the normalization constant and 1F1 is Kummer’s
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I
0

k B
T

FIG. 2. (Color online) Average current in a two-order-parameter
superconducting ring as functions of temperature. For the top curve
the parameters are as in Fig. 1, except that the normalized flux is ϕ =
0.25. For the lower curves the cross section w of the ring is smaller.
The current was evaluated using a truncated basis of the Hilbert
space, provided by the functions in Eq. (29) with maximum quantum
numbers n1,max = 11, |
1|max = 22, n2,max = 4, and |
2|max = 8.

hypergeometric function. We can then evaluate any matrix
element Hi,j = 〈ψi |H |ψj 〉, where the functions ψi=1,...,N are
the functions with lowest eigenvalues within the basis of the
Hilbert space provided by Eq. (29). More precisely, when
evaluating Z
, we include in the set {ψi} only eigenfunctions
that obey 
1 + 
2 = 
. If N is sufficiently large, then the lowest
eigenvalues of the matrix (Hi,j ) will be a sufficiently accurate
approximation for the lowest eigenvalues of the operator H .
In practice, rather than fixing N , we fix maximum values for
n1, |
1|, n2, and |
2|.

We are interested in choosing k1 and k2 so that an accurate
approximation is obtained without N becoming prohibitively
large. From Eq. (29) we see that the scale of 〈r2

ν 〉 is given
by S/Rkν ; we therefore set kν = pS/R〈r2

ν 〉, where 〈r2
ν 〉 is

obtained from the Hartree approximation and p is still a free
parameter. Since for a good approximation the eigenvalues
should actually be independent of p, we mimic this situation
by minimizing the lowest eigenvalue of (Hi,j ) with respect
to p.

Figure 2 shows the currents as functions of the temperature
obtained with this method for rings of three different cross
sections, with the material parameters of MgB2. For com-
pleteness, the figure includes also values of current that are
too small to be experimentally observable. The temperature
range covered here is much wider than the range presented in
Ref. 5, where the temperature scale is given by the Thouless
correlation energy (divided by kB) which is of the order of the
LP temperature; for a MgB2 ring with radius of the order of a
micron the LP temperature is of the order of 10−5 Tc.

For sufficiently high temperature (the required tempera-
ture decreases with cross section w), the current becomes
independent of the cross section. For the parameters taken
here and T = 3Tc, a ring with w = 10−10 cm2 and a ring
with w = 10−8 cm2 carry the same average current (within
1% difference). At the other extreme, far below Tc, i.e.,
where fluctuations are unimportant, 〈I 〉 ∝ w. However, the
dependence of 〈I 〉 on w near Tc is not intermediate: we notice
in Fig. 2 that decrease of w by an order of magnitude near

1.0 0.5 0.0 0.5 1.0 1.5
10 10

10 7

10 4

0.1

100

105

106w1 3 T Tc Tc cm2 3

I
T

I
T

c

FIG. 3. (Color online) Scaling of the function 〈I (T )〉 with the
cross section. The parameters are the same as in Fig. 2. �: w = 10−10

cm2; ©: w = 10−11 cm2; �: w = 10−12 cm2. The straight line is a
guide for the eye.

Tc leads to a current decrease of several orders of magnitude,
whereas for intermediate behavior the current would decrease
by one order of magnitude at most. Figure 3 shows the scaled
current against the scaled temperature for the same rings as
in Fig. 2, close to Tc. We notice that, in spite of the moderate
influence of temperature on 〈|�1,2|2〉 predicted by Eq. (26),
the current decreases exponentially. We also find that for
smaller cross sections the rate of change of 〈I 〉 is slower.
We empirically found that the scaling w1/3 leads to a universal
curve.

We attribute didactic interest to understanding the behavior
of our methods far below Tc. There, convergence of the
series in Eqs. (12) and (13) becomes slow, and numeric
implementation of the exact evaluation becomes inefficient.
Below certain temperature, ξ ′ 2

3 in Eq. (23) becomes negative,
and interpretation of the potential in Eq. (17) as that of a
harmonic oscillator, and the sum of convergent geometric
series that led to Eqs. (20) and (25) is no longer justified.
Nevertheless, the expressions in Eqs. (20) and (25) are
analytic functions of ξ ′ 2

3 that remain meaningful and are
expected to remain valid beyond the range in which they were
proven. Numeric implementation of the Hartree approximation
requires special care in order to pick the relevant rather than
spurious solutions of Eqs. (25).

In the limit T → 0, R/ξ ′
3 → iϕ, so that the right-hand side

in the first of Eqs. (25) does not vanish. Taking the appropriate
limits in Eqs. (20) and (25) we obtain that the current in the
Hartree approximation is IH (0) = −4πw(�2

1 + �2
2)ϕ/R�0,

exactly as in the absence of fluctuations.
We conclude this section with a review of the accuracy of

our evaluations. The accuracy of the “exact” evaluation can be
estimated by repeating it with reduced maximum values for nν

and |
ν |. We found the largest inaccuracy for large w and small
T . In the results presented in Fig. 2, the maximal inaccuracies
are of the order of 10%. Figure 4 compares our approximation
methods against the exact evaluation for w = 10−10 cm2. One
can see in the figure that all the approximation methods are very
inaccurate precisely in the most interesting region, i.e., close
to Tc. The range of temperatures where the approximations are
inaccurate is larger for smaller cross sections w. The Gaussian
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FIG. 4. (Color online) Ratio of the current values obtained with
approximated methods to the exact evaluation. Parameters are the
same as in Fig. 1, except that here ϕ = 0.25. G: Gaussian (quadratic)
approximation; H: Hartree approximation; MF: mean-field evaluation
(i.e., without fluctuations). The descent of the MF curve to 0 at the
Little-Parks temperature looks vertical in this scale.

approximation is known to diverge in this region also in the
case of a single order parameter.5,27 Note also that there exists a
range of temperatures for which the mean-field current is larger
than our exact evaluation, meaning that thermal fluctuations
inhibit the current in this region.

IV. INDEPENDENCE, ASYMMETRY, AND PHASE
DIFFERENCE OF THE ORDER PARAMETERS

The most conspicuous qualitative differences of a two
order parameter system, as compared to a system with a
single order parameter, are independence and asymmetry. By
independence we mean that at a given point and time the
two order parameters are not necessarily equal to each other;
by asymmetry we mean that the average values of the order
parameters are not necessarily the same. A consequence of
independence that deserves special attention is that the phases
of both order parameters are not necessarily equal. In this
section we investigate the influence of these properties.

A. Symmetric case

We start by considering independence while assuming
equal coefficients for both order parameters. For simplicity,
we assume

aν = γ − ατ, bν = b, (30)

with γ , α, and b constants. As an illustration, we may think
of a film of a uniform single-parameter material of thickness
z0 with energy density −2ατ |�|2 + b|�|4 + 2|∇�|2.
If we decide to denote by �1 (respectively �2) the
value of � in the upper (respectively lower) half of the
film, substitute the z derivative by a finite difference
and average over z0, we obtain the energy density
−ατ (|�1|2 + |�2|2) + b(|�1|4 + |�2|4)/2 + |∇xy�1|2 +
|∇xy�2|2 + (8/z2

0)(|�1|2 + |�2|2 − �1�
∗
2 − �2�

∗
1), with

∇xy being the component of the gradient in the plane of
the film. One can easily identify that we have recovered
the energy density for two order parameters, with coupling

0
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3E7

1E8

3E8 1E9

1E10

2 1 0 1 2 3 4 5

0.4

0.6

0.8

1.0

1.2

1.4

104 T Tc Tc

I
Γ

I

FIG. 5. (Color online) Comparison among currents as functions
of the temperature for systems with different coupling γ , but with
otherwise identical parameters. The value of γ is marked next to
every curve in E notation (e.g., 3E7 denotes γ = 3 × 107 cm−2). The
other parameters are R = 10−4 cm, w = 10−10 cm2, α = 1012 cm−2,
b = 1017erg−1 cm−1, kBTc = 10−15 erg, ϕ = 0.25.

γ = 8/z2
0. In the limit z0 → 0, γ → ∞, and �1 and �2 are

the same; in the opposite extreme, γ → 0, and �1 and �2

are independent, while in the general case they are correlated.
Following this analogy, it is very easy to obtain results for the
cases γ → 0 and γ → ∞: the case γ → 0 is equivalent to
that of two single parameter systems in parallel, and the case
γ → ∞ is equivalent to that of a single parameter system
with a doubled cross section.

Figure 5 compares calculated average currents 〈I (T )〉 as
the parameter γ is varied in the range 0 � γ < ∞, while
all the other parameters are common to all curves. For a
facilitated comparison, all the functions have been divided
by 〈I∞(T )〉, the current obtained for γ → ∞. Figure 5
shows the temperature range close to Tc; far below Tc the
influence of fluctuations is negligible and all the curves should
coalesce. For every temperature, we note that as γ increases
from 0 to ∞, 〈I (T )〉 changes from 〈I0(T )〉 to 〈I∞(T )〉.
However, this change is not monotonic: |〈I (T )〉| initially
decreases and after reaching a minimum increases toward
|〈I∞(T )〉|. The fact that |〈I0(T )〉| < |〈I∞(T )〉| for T ≈ Tc

may look surprising, since γ = 0 means larger freedom than
γ → ∞ and we would therefore expect larger fluctuations
in the former case. We will see in the following that
indeed the order parameters assume larger values for γ = 0;
however, they may be less coordinated, resulting in a smaller
current.

The solid curves in Fig. 6 show the values of ϕ for which
the current is maximum at T = Tc for the limiting cases γ = 0
and γ → ∞. From a dimensional analysis we find that in the
present situation the temperature enters the operator H/S only
through the combination kBTcbR3/w, so that ϕmax is a function
of this quantity. Since the mean-field current has its maximum
at ϕmax > 1/4, it is interesting to note that ϕmax can be smaller
than 1/4. The curve for γ → ∞ can be inferred from the case
γ = 0: in order to obtain it at a given Tc, we have to double the
value of w. Since ϕmax is a function of kBTcbR3/w, doubling
w is the same as dividing Tc by 2, i.e., at a given Tc, the value
of ϕmax for γ → ∞ is the same that ϕmax for γ = 0 had at half

214515-6



FLUCTUATIONS IN SUPERCONDUCTING RINGS WITH . . . PHYSICAL REVIEW B 84, 214515 (2011)

0

0

0.01 0.03 0.1 0.3 1 3
0.14

0.16

0.18

0.20

0.22

0.24

0.03

0.1

0.3

1

kBTcbR3 w

m
ax

bR
2

2

FIG. 6. (Color online) Magnetic flux for which the fluctuation
current is maximal, and value of the order parameters at T = Tc,
as functions of Tc. 〈|�|2〉 was evaluated at ϕ = ϕmax. Each curve is
marked by its value of γ and by an arrow that points to the relevant
y axis. The thin straight line (red online) highlights the asymptotic
power dependence of bR2〈|�|2〉 on kBTcbR3/w.

that temperature. With a logarithmic x axis, this relation gives
a shift of the curve to the right.

The dashed lines in Fig. 6 show the values of bR2〈|�|2〉 at
T = Tc and ϕ = ϕmax, evaluated by means of Eq. (14). Except
for kBTc 
 w/bR3 or kBTc � w/bR3, we obtain 〈|�|2〉 ≈
0.68(bR2)−1(kBTcbR3/w)2/3 = 0.68(k2

BT 2
c /bw2)1/3 for γ =

0. For γ → ∞ 〈|�|2〉 is smaller by a factor 22/3. The
first term in the Hartree approximation value in Eq. (27)
is smaller than the result obtained for γ → ∞ by about
7%.

Figure 7 shows the average current evaluated at T = Tc

and ϕ = ϕmax. As already found in Ref. 5, 〈I (Tc)〉 is not
a monotonic function of Tc, but has a maximum instead.
As discussed above, the curve for γ → ∞ is obtained as
a shift of the curve for γ = 0. What we learn from this
curve is that for kBTc < 0.163w/bR3 |〈I0(Tc)〉| > |〈I∞(Tc)〉|,
meaning that independence of the order parameters en-
hances the fluctuation current, whereas the opposite occurs
for kBTc > 0.163w/bR3.
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FIG. 7. (Color online) Maximum current at T = Tc as a function
of the scaled Tc for γ = 0 and for γ → ∞.
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FIG. 8. (Color online) Ratio between the fluctuation currents for
the case a1c �= a2c (denoted I�=) and the case a1c = a2c (denoted I=).
For the solid lines b = 3 × 1015 erg−1 cm−1 (kBTcbR3/w = 0.03)
and γ = 3 × 106 cm−2; for the dashed lines b = 1017 erg−1 cm−1

(kBTcbR3/w = 1) and γ = 3 × 107 cm−2. In all cases ϕ = ϕmax. The
other parameters are the same as in Fig. 5.

B. Asymmetric case

There are three material parameters that can differ between
the order parameters: a1c �= a2c, α1 �= α2, and b1 �= b2. Since
near Tc the usual case is |α1,2τ |,b1,2|�1,2|2 
 |a1c − a2c|, we
focus on the influence of the difference between a1c and a2c.

Figure 8 shows the ratio between the fluctuation currents
for the cases a1c �= a2c and a1c = a2c, while all the other
parameters are kept unchanged. Although the values of
kBTcbR3/w and γ do have some influence, the general trend
is that the difference between a1c and a2c inhibits fluctuation
supercurrent in the region T ≈ Tc, with this effect being
stronger for T < Tc.

C. Phase difference

The possibility of having two order parameters with
different phases is a new degree of freedom not encountered
in single band superconductors. This freedom could lead to
novel phenomena and applications, and a broad spectrum of
ideas have been raised in recent years (e.g., Refs. 28–31 and
references therein).

In the language developed in Sec. II, the phase difference
between the order parameters is ϑ1 − ϑ2; our formalism en-
ables easy investigation of the average value of cos(ϑ1 − ϑ2).
Let us consider a material with γ > 0. Considerably below
Tc the order parameters are large, the coupling interaction is
large compared to the thermal energy, and the order parameters
are practically locked, so that we expect 〈cos(ϑ1 − ϑ2)〉 ≈ 1.
In the opposite limit the coupling is small in comparison
to the thermal energy, the order parameters are practically
independent and 〈cos(ϑ1 − ϑ2)〉 ≈ 0.

The values of 〈cos(ϑ1 − ϑ2)〉 were obtained by means
of Eq. (14). Figure 9 shows these values as a function of
temperature for material parameters as in MgB2, in the absence
of magnetic flux. The flux dependence would be hardly visible
in the scale of this figure. The flux dependence vanishes
both at low and at high temperatures and is largest close to
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FIG. 9. Expectation values for the phase difference between both
order parameters as a function of temperature for MgB2 in the absence
of flux. The material and geometric parameters are as in Fig. 1.
Inset: dependence of the phase difference on the flux for T − Tc =
−2 × 10−3Tc. �ϑ stands for ϑ1 − ϑ2.

T = Tc − 2 × 10−3Tc. The inset shows the flux dependence at
this temperature.

Figure 9 describes the phase difference as an average of a
local quantity. Another question of interest stems from the
global manifestation of phase, i.e., we could ask what is
the probability that the two order parameters have different
winding numbers. The possibility of fractional vortex states
arising from different winding numbers has been discussed in
the literature (e.g., Refs. 32 and 33) for simply connected
samples and a similar phenomenon can be expected for a
sample with a ring topology. Since vorticity is not a linear
functional of the order parameters, it is not amenable for
treatment using the formalism of Sec. II and methods similar
to those used in Ref. 22 seem more appropriate.

V. CONCLUSIONS

Motivated by a recent surge in interest in the physics
of coupled condensates in two-band superconductors, we
have analyzed the role and importance of fluctuations in
superconducting rings with two order parameters. We have
extended the analysis of the fluctuative regime made by von
Oppen and Riedel5 for the single order-parameter case, based
on the Ginzburg-Landau energy functional. Further, we have
made semianalytic evaluations of the influence of fluctuations
on the persistent current and on the order parameters in
the ring, as functions of temperature, coupling between the
order parameters, and magnetic flux. For guidance of future
experiments, we have identified the ranges of parameters
where fluctuations inhibit or enhance the persistent current
in the ring, and pointed out the influence of the cross section
of the ring as well as the influence of the freedom of the
order parameters to undergo separate fluctuations. Although
the influence of fluctuations is most important close to Tc,

we have also studied the behavior far from Tc, providing a
complete picture.

In addition to two-band materials, our findings apply to
artificially made systems of two superimposed rings, as readily
made in experiments that involve annular Josephson junctions.
The present study can also serve as a general guideline
for theoretical efforts and interpretations of experimental
data in systems described by multiple order parameters in
the fluctuative regime. It is also well known that thermal
fluctuations are more pronounced in low-dimensional systems,
which enhances the relevance of our results especially bearing
in mind that even elementary (Pb, In, Sn) but nanothin
superconductors are always effectively multiband.19 It is of
current interest to reveal the confinement and temperature
regimes that favor or inhibit thermal fluctuations in such
nanostructures, and control their influence on, e.g., vortex
matter,34 transport properties,35 or applicability as, e.g., photon
detectors.36 Further studies of such effects in samples made of
bulk-multiband superconductors are bound to be interesting,
although nanostructuring of materials such as MgB2 and
pnictides is still a formidable experimental challenge.
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APPENDIX: PROOF OF EQ. (8)

We denote by ρ the four-dimensional vector (r1,r2). We
divide the ring into N segments, N � 1, and rewrite Eq. (5) as

F

kBT
= 2π

NS

N−1∑
i=0

g(ρi+1,ρi), (A1)

with S = kBT R/2w, ρi = ρ(2iπ/N ) and g(ρi+1,ρi) =
V (ρi+1) + (N2/8π2)|ρi+1 − ρi |2.

Since �̃1,2 are single valued, ρ0 is a function of ρN . Let
us write this constraint as ρ0 = ρ̃N . Therefore substitution of
Eq. (A1) into Eq. (7) gives

Z =
∫

dρ0 . . . dρNδ(ρ0 − ρ̃N ) exp

[
− 2πg(ρ1,ρ0)

NS

]
. . .

× exp

[
− 2πg(ρN,ρN−1)

NS

]
. (A2)

Using the identity δ(ρ − ρ ′) = ∑
n �∗

n (ρ)�n(ρ ′), where
{�n} is any complete set of normalized states, Z becomes

Z =
∑

n

∫
dρN�∗

n (ρ̃N )

×
∫

dρN−1 exp

[
− 2πg(ρN,ρN−1)

NS

]
. . .

×
∫

dρ0 exp

[
− 2πg(ρ1,ρ0)

NS

]
�n(ρ0). (A3)
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Choosing the set {�n} such that it fulfils the eigenvalue
equation

∫
dρi exp

[
− 2πg(ρi+1,ρi)

NS

]
�n(ρi)

= exp

[
− 2πεn

NS

]
�n(ρi+1), (A4)

Z reduces to

Z =
∑

n

exp

[
− 2πεn

S

] ∫
dρN�∗

n (ρ̃N )�n(ρN ), (A5)

which is equivalent to Eq. (8).
We still have to find a set of eigenstates that fulfils Eq. (A4).

Expanding �n(ρi) in powers of ρi − ρi+1 around �n(ρi+1),
which is equivalent to an expansion in powers of N−1/2, the
integral in Eq. (A4) can be performed and �n is found to obey
the eigenvalue equation23 H�n = εn�n.
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