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Based on the Gor’kov formalism for a clean s-wave superconductor, we develop an extended version of the
single-band Ginzburg-Landau (GL) theory by means of a systematic expansion in the deviation from the critical
temperature Tc, i.e., τ = 1 − T/Tc. We calculate different contributions to the order parameter and the magnetic
field: the leading contributions (∝ τ 1/2 in the order parameter and ∝ τ in the magnetic field) are controlled by the
standard GL theory, while the next-to-leading terms (∝ τ 3/2 in the gap and ∝ τ 2 in the magnetic field) constitute
the extended GL (EGL) approach. We derive the free-energy functional for the extended formalism and the
corresponding expression for the current density. To illustrate the usefulness of our formalism, we calculate, in
a semianalytical form, the temperature-dependent correction to the GL parameter at which the surface energy
becomes zero, and analytically, the temperature dependence of the thermodynamic critical field. We demonstrate
that the EGL formalism is not just a mathematical extension to the theory: variations of both the gap and
the thermodynamic critical field with temperature calculated within the EGL theory are found in very good
agreement with the full BCS results down to low temperatures, which dramatically improves the applicability of
the formalism compared to its standard predecessor.
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I. INTRODUCTION

In 1950, Ginzburg and Landau proposed a phenomeno-
logical theory of superconductivity (the GL theory) based on
a specific form of the free-energy functional constructed in
the vicinity of the critical temperature from Landau’s theory
of second-order transitions.1 Minimization of this functional
generates the system of two GL equations that give the
spatial distribution of the superconducting order parameter
(the condensate wave function) and of the magnetic field
in a superconductor. Over the years, the GL approach has
been enormously successful in describing various properties
of superconductors (see, e.g., Ref. 2), and has been extensively
used, particularly in the last decade, in the domain of
mesoscopic superconductivity (see, e.g., Ref. 3).

In 1957, Bardeen, Cooper, and Schrieffer (BCS) devel-
oped the well-known microscopic theory of the conventional
superconductivity4 and then, two years later, Gor’kov showed
that the GL equations can be obtained from the BCS
formalism.5 However, in spite of the availability of the micro-
scopic theory, the GL approach remains still an optimal choice
for many practical calculations when the spatial distribution
of the pair condensate and, thus, of the magnetic field are
nontrivial, e.g., for multiple-vortex configurations. The simple
differential structure of the local GL equations in comparison
with the microscopic theory offers clear advantages, including
the possibility of analytical derivations in many important
cases.

A desire to develop an extension to the GL theory, with the
idea of improving the formalism while retaining at least some
advantages of its original formulation, stimulated significant
efforts by many theorists. Several GL-type theories of different
complexity were proposed. In the earliest developments,6,7 the
so-called “local superconductor” formalism was attempted,
being a complicated synthesis of the BCS and GL approaches.

The GL theory with nonlocal corrections (i.e., including
higher powers of the gradients of the order parameter) was
used in studies of the anisotropy of the upper critical field
(see Ref. 8) and the vortex structure (see Ref. 9) in d-
wave superconductors. Recently, various extensions to the
GL theory were introduced in the context of studying the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state.10–12 In all
the above examples, extending the GL theory was based on
the expansion of the self-consistent gap equation by including
higher powers of the order parameter and its spatial gradients
phenomenologically.13 However, accounting for such higher-
power terms is not as straightforward as it may seem. The
fundamental problem here is to select properly all relevant
contributions of the same order of magnitude (accuracy). This
(serious) issue does not arise in the derivation of the original
GL theory for a single-band superconductor, where only the
first nonlinear term and the second-order (leading) gradient
of the condensate wave function are included. However, as
recently shown in Ref. 14, a similar selection performed for
the GL theory of a two-band superconductor leads to the
appearance of incomplete higher-order contributions. Such
incomplete terms may cause misleading conclusions and
should be avoided.

To tackle this problem, one needs to work with a single
small parameter in the expansion. In the present case, such a
small parameter is the proximity to the critical temperature,
i.e., τ = 1 − T/Tc. Indeed, the standard GL approach can be
seen as the lowest-order theory in the τ expansion of the self-
consistent gap equation (see, e.g., Refs. 14 and 15). However,
next orders in τ are also of great importance, for example,
to capture the physics of different healing lengths of different
condensates in multiband superconductors.15,16 In this paper,
we show that next orders in τ are also important in the single-
band case, surprisingly improving the GL theory. We obtain a
systematic series expansion of the self-consistent gap equation
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for a single-band, s-wave, clean superconductor, using τ as
the governing small parameter. In the derivation, we employ
a technique in the spirit of the asymptotic expansion methods
used extensively in the applied mathematics.17 Similarly to the
asymptotic analysis in other models, we obtain a hierarchical
system of the so-called transport equations, which need to
be solved recursively starting from the lowest order. Using
this method, corrections to the standard GL theory can in
principle be calculated with an arbitrary accuracy. However,
unlike asymptotic expansions for linear models, here the
complexity of the higher-order equations increases rapidly
and their solution can not be obtained in the general form.
Based on the Gor’kov Green function formalism, we derive
and investigate the first three orders of the τ expansion of
the gap equation, i.e., τn/2 with n = 1,2,3. To the order τ 1/2,
we find the equation for the critical temperature. Collecting
the terms proportional to τ 3/2, we obtain the standard GL
theory giving the lowest-order (in τ ) contributions to the
superconducting condensate, i.e., ∝ τ 1/2, and to the magnetic
field, i.e., ∝ τ . Then, by matching the terms of the order τ 5/2,
we derive equations for the next-to-leading corrections to the
superconducting order parameter and magnetic field, ∝ τ 3/2

and τ 2, respectively. The equations controlling the order
parameter and the magnetic field up to the next-to-leading
order in τ constitute the extended GL formalism (EGL).
To illustrate the power of our extension to the GL theory,
we investigate the energy associated with a surface between
the superconducting (S) and normal (N) phases. In particular,
we calculate the temperature dependence of κ∗, the value of
the GL parameter at which the surface energy becomes zero.
It is important to stress here that, contrary to other available
extensions of the GL theory discussed above, our formalism
is not much more complicated than the standard GL theory.
As is shown in the calculation of the S/N surface energy,
plenty of important information can be obtained from the EGL
formalism analytically.

Note that as is known, the GL theory is heavily used also
in the study of thermal fluctuations. Here, we do not address
this issue but deal with an extension to the GL formalism in
the mean-field level. Our aim is to expand the validity domain
of the GL theory down to lower temperatures, which will be
useful for the problems with a strongly nonuniform distribution
of the pair condensate, e.g., for multiple vortex solution in the
presence of stripes and clusters of vortices. In this case, any
fully microscopic approach will be a very complicated and
rather time-consuming task.

The paper is organized as follows. In Sec. II, we introduce
a general approach to construct the asymptotic expansion in τ

for the self-consistent gap equation. In order to illustrate the
main ideas behind the method, a simpler case of zero magnetic
field is considered here. Section III presents the generalization
to a nonzero magnetic field. Such a generalization requires the
normal-metal Green function beyond the traditional Peierls
(phase) approximation, and the corresponding expression is
presented and discussed. The series expansion of the free-
energy functional up to the next-to-leading order in τ is given in
Sec. IV. The complete set of equations for the order parameter
and the magnetic field in the EGL approach is derived by
finding the stationary point of the functional in Sec. V. In
Sec. VI, we estimate the accuracy of the EGL formalism by

comparing its results for the uniform order parameter and the
critical magnetic field with those of the standard GL approach
and the BCS theory. Here, we demonstrate that the temperature
in which the GL theory is valid is dramatically increased due
to the extension. In Sec. VII, we investigate the S/N surface
energy and calculate the temperature-dependent correction to
κ∗. Finally, Sec. VIII presents the summary of our results and
our conclusions.

The main text of the paper contains only the key formulas,
the general ideas, and the main steps of the derivation.
Readers interested in details are referred to the Appendices. In
particular, Appendix A shows how to calculate the coefficients
appearing in the τ expansion of the gap equation in the
absence of a magnetic field. Appendix B presents details of
our calculations for the normal-metal Green function beyond
the Peierls phase approximation. Appendix C generalizes the
calculations given in Appendix A to the case of a nonzero
magnetic field.

II. SERIES EXPANSION IN τ OF THE GAP EQUATION
AT ZERO MAGNETIC FIELD

As is known since the classical work by Gor’kov,2,5,18 the
GL equations can be derived from the microscopic BCS theory
in the most elegant way via the Green function formalism.
For the sake of clarity of presentation of our main ideas,
the case of zero magnetic field is considered first, while the
generalization to a nonzero magnetic field is given in the next
section. The goal of our work is to construct the extended GL
formalism through the expansion of the Gor’kov equations in
τ = 1 − T/Tc, with Tc the critical temperature (T < Tc). We
start by writing the Gor’kov equations as the Dyson equation
for the Green function Ǧω in the Gor’kov-Nambu 2 matrix
representation, which reads as (see, e.g., Refs. 18–20)

Ǧω = Ǧ(0)
ω + Ǧ(0)

ω �̌ Ǧω, (1)

with

Ǧω =
(
Gω Fω

F̃ω G̃ω

)
, Ǧ(0)

ω =
(
G(0)

ω 0
0 G̃(0)

ω

)
, (2)

where h̄ω = πT (2n + 1) is the fermionic Matsubara fre-
quency (n is an integer and kB is set to unity) and the 2 × 2
matrix gap operator �̌ in Eq. (1) is defined by

�̌ =
(

0 �̂

�̂∗ 0

)
, 〈r|�̂|r′〉 = δ(r − r′)�(r′), (3)

where the superconducting order parameter �(r) obeys the
self-consistent gap equation, i.e.,

�(r) = −gT
∑

ω

Fω(r,r), (4)

with g the (Gor’kov) coupling constant. As usual, the sum
in the right-hand side of Eq. (4) is assumed to be properly
restricted to avoid the ultraviolet divergence. Equations (1)
and (2) further give

Fω(r,r′) =
∫

d3y G(0)
ω (r,y) �(y) G̃ω(y,r′), (5a)

G̃ω(r,r′) = G̃(0)
ω (r,r′) +

∫
d3y G̃(0)

ω (r,y)�̂∗(y)Fω(y,r′). (5b)
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For the normal-state temperature Green function G(0)
ω (r,y),

we have (at zero magnetic field)

G(0)
ω (r,y) =

∫
d3k

(2π )3

eik(r−y)

ih̄ω − ξk

, (6)

with the single-particle energy ξk = h̄2k2/2m − μ measured
from the chemical potential μ, and G̃ω(r,y) = −G−ω(y,r).

The Gor’kov equations (5) supplemented by Eq. (6) make
it possible to express the anomalous (Gor’kov) Green function
Fω(r,r′) in terms of �(r) and G(0)

ω (r,y). Then, by inserting this
expression into Eq. (4), one obtains the self-consistent gap
equation. Solution to the gap equation can be represented in
the form of a perturbation series over powers of �(r) (which
is small in the vicinity of the critical temperature Tc):

�(r) =
∫

d3y Ka(r,y)�(y) +
∫ 3∏

j=1

d3yj Kb(r,{y}3)

×�(y1)�∗(y2)�(y3) +
∫ 5∏

j=1

d3yj Kc(r,{y}5)

×�(y1)�∗(y2)�(y3)�∗(y4)�(y5) + . . . , (7)

where {y}n = {y1, . . . ,yn} and the integral kernels are given
by

Ka(r,y) = −gT
∑

ω

G(0)
ω (r,y)G̃(0)

ω (y,r),

Kb(r,{y}3) = −gT
∑

ω

G(0)
ω (r,y1)G̃(0)

ω (y1,y2)

×G(0)
ω (y2,y3)G̃(0)

ω (y3,r), (8)

Kc(r,{y}5) = −gT
∑

ω

G(0)
ω (r,y1)G̃(0)

ω (y1,y2)G(0)
ω (y2,y3)

× G̃(0)
ω (y3,y4)G(0)

ω (y4,y5)G̃(0)
ω (y5,r).

equation (7) can be truncated to a desired order, which yields a
nonlinear integral equation. The latter is further converted into
a nonlinear partial differential equation by using the gradient
expansion

�(yj ) = �(r + zj ) =
∞∑

n=0

1

n!
(zj · ∇r)n�(r), (9)

with zj · ∇r the scalar product. In particular, the GL equation
is obtained when keeping only the first two terms, including
Ka and Kb, in Eq. (7) and the second-order spatial derivatives
in the gradient expansion (9).

While Eq. (7) is a regular series expansion of the gap
equation (4), the partial differential equation mentioned
above is not. The gradient expansion introduces a second
small parameter together with the corresponding truncation
approximation, and the relation between the order parameter
and its gradients is not known a priori. As a result, one
can not compare the accuracy of the relevant terms in the
expansion, and the truncation procedure becomes ill defined.
This problem does not appear in the derivation of the GL
equation, where one keeps only the lowest second-order
gradient term. In order to extend the GL formalism, one has
to deal with a single small parameter in the system that can
be used to compare the relevant contributions. This small

parameter follows from the solution of the GL equation. When
T → Tc, the order parameter decays as � ∝ τ 1/2 → 0. Also,
the solution reveals the scaling length ξ ∝ τ−1/2, i.e., the GL
coherence length, which determines the spatial variations of
the order parameter in the vicinity of Tc and dictates that
∇� ∝ τ , or, using the short-hand notation, ∇ ∝ τ 1/2. Thus,
the parameter τ controls both relevant quantities and can be
used to produce a single-small-parameter series expansion of
the gap equation (4).

A systematic expansion of the gap equation in τ can be
facilitated by introducing the scaling transformation for the
order parameter, the coordinates, and the spatial derivatives of
the order parameter in the following form:

� = τ 1/2�̄, r = τ−1/2r̄, ∇r = τ 1/2∇r̄. (10)

Note that, in terms of the scaled coordinates, the typical spatial
variation of the order parameter occurs on a scale that is
independent of τ to the leading order. After the transformation
given by Eq. (10), the parameter τ enters the expansion in
Eqs. (7) and (9) as follows. In Eq. (9), only coordinate r
changes. The scaling of the difference z does not change
the expressions as it is an integration variable, and thus the
scaling will not be applied to it. As � is now a function of r̄,
each derivative ∇ in the expansion (9) adds a factor τ 1/2. By
inserting Eq. (9) with these factors into the expansion given
by Eq. (7) and taking into account the factor τ 1/2 for the order
parameter in Eq. (10), we arrive at a simple mnemonic rule to
count the minimal order of each term in the expansion of the
gap equation: each occurrence of � or ∇ in the formulas
adds the factor τ 1/2. The final form of the expansion is
obtained by calculating the relevant coefficients through the
evaluation of the remaining integrals. As those coefficients
depend on temperature, they can also be represented as series
in τ . The formulated procedure allows one to calculate the τ

expansion for the gap equation to arbitrary order. However, in
practice, calculations of higher orders become more and more
complicated. In this work, we limit ourselves to the analysis of
the self-consistent gap equation in the first three orders, i.e., up
to the order τ 5/2. Collecting terms of the order τ 1/2, we obtain
the equation for Tc. Working in the order τ 3/2, we recover the
standard GL theory, producing the leading contribution to �,
i.e., ∝ τ 1/2. The order τ 5/2 yields the equation that controls
the next-to-leading contribution to �, i.e., ∝ τ 3/2 (this is what
we call the EGL formalism). Details of the selection of all the
necessary terms in Eq. (7) that contribute to one of the three
orders mentioned above are given in Appendix A. The final
result reads (∇̄ = ∇r̄) as

τ 1/2

g
�̄ = a1τ

1/2�̄ + a2τ
3/2∇̄2�̄ + a3τ

5/2∇̄2(∇̄2�̄)

− b1τ
3/2|�̄|2�̄ − b2τ

5/2[2�̄ |∇̄�̄|2 + 3�̄∗(∇̄�̄)2

+ �̄2∇̄2�̄∗ + 4|�̄|2∇̄2�̄] + c1τ
5/2|�̄|4�̄, (11)

where the coefficients ai , bi , and ci are obtained from the
integrals with the kernels Ka , Kb, and Kc, respectively, and
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they are given by

a1 = AT − a

(
τ + τ 2

2
+ O(τ 3)

)
,

AT

N (0)
= ln

(
2eγ h̄ωD

πTc

)
,

b1 = b[1 + 2τ + O(τ 2)], b = N (0)
7ζ (3)

8π2T 2
c

,

c1 = c[1 + O(τ )], c = N (0)
93ζ (5)

128π4T 4
c

, (12)

a2 = K[1 + 2τ + O(τ 2)], K = b

6
h̄2v2

F ,

a3 = Q[1 + O(τ )], Q = c

30
h̄4v4

F ,

b2 = L[1 + O(τ )], L = c

9
h̄2v2

F ,

where a = −N (0) and N (0) = mkF /(2π2h̄2) is the DOS at
the Fermi energy, with vF the Fermi velocity; ωD denotes the
Debye (cutoff) frequency, γ = 0.577 is the Euler constant,
and ζ (. . .) is the Riemann zeta function. It is of importance to
note that Eq. (11) contains only half-integer powers of τ . The
reason for this is twofold. First, due to the structure of Eq. (7),
there appear only odd integer powers of the order parameter.
Second, the spherical symmetry dictates that the integrals with
an odd number of ∇ operators are equal to zero.

The solution to the gap equation (11) must also be sought
in the form of a series expansion in τ . Based on Eqs. (11) and
(12), we are able to introduce

�̄(r) = �̄0(r) + τ�̄1(r) + . . . . (13)

By substituting this into Eq. (11) and collecting terms of the
same order, we obtain a set of equations for each �n.

By collecting terms of the order τ 1/2, we obtain

(g−1 − AT )�̄0 = 0. (14)

The solution to this equation, i.e., gAT = 1, gives the
ordinary BCS expression for the critical temperature, i.e.,
Tc = (2eγ /π )h̄ωD exp[−1/gN(0)].

In the order τ 3/2, one recovers the standard GL equation for
the leading contribution to the order parameter �0:

a�̄0 + b|�̄0|2�̄0 − K∇̄2�̄0 = 0. (15)

Note that its standard form with the temperature-dependent a

coefficient is obtained by multiplying all terms by the factor
τ 3/2 and returning to the unscaled quantities, i.e.,

aτ�0 + b|�0|2�0 − K∇2�0 = 0.

Finally, collecting all terms of the order τ 5/2, we arrive at
the equation for �1, i.e., the next-to-leading term in the order
parameter:

a�̄1 + b(2|�̄0|2�̄1 + �̄2
0�̄

∗
1) − K∇̄2�̄1 = F, (16)

where F is given by

F = −a

2
�̄0 + 2K∇̄2�̄0 + Q∇̄2(∇̄2�0)

− 2b|�̄0|2�̄0 − L[2�̄0 |∇̄�̄0|2 + 3�̄∗
0 (∇̄�̄0)2

+ �̄2
0 ∇̄2�̄∗

0 + 4|�̄0|2 ∇̄2�̄0] + c|�̄0|4�̄0. (17)

This is a linear differential inhomogeneous equation to be
solved after �0 is found from Eq. (15). Note that similar
features in the τ expansion of the gap equation appear for
a two-band superconductor as well.15

We note again that, in principle, one can continue the
procedure up to arbitrary order in τ , obtaining corrections
to the standard GL theory with desired accuracy. While the
equation for �0 is nonlinear, the higher-order contributions
to � will be controlled by inhomogeneous linear differential
equations. Such a system of equations is solved recursively,
starting from the lowest order, since solutions for previous
orders will appear in the higher-order equations, but not
vice versa. The solution to the system will thus be uniquely
defined (when the relevant boundary conditions are specified),
ensuring consistency of the developed expansion.

We also remark that the structure of Eq. (16) makes it
possible to conclude that the next-to-leading term �1(r) is
not trivially proportional to �0(r). For that reason, the spatial
profile of �1(r) is different compared to �0(r). This means that
the characteristic length for the spatial variations of �(r) in
EGL differs from the standard GL coherence length. However,
both lengths have the same dependence on τ , i.e., ∇̄�̄1 ∝ τ .

III. SERIES EXPANSION IN τ OF THE GAP EQUATION
FOR NONZERO MAGNETIC FIELD

The magnetic field enters the formalism developed in the
previous section via changes in the normal-metal Green func-
tion. In the Gor’kov derivation, the field-induced corrections
are accounted for through the field-dependent Peierls phase
factor as

G(0)
Gor(rt,r

′t ′) = e
ie
h̄c

∫ r
r′ A · dq G(0)

B=0(rt,r′t ′), (18)

where A is the vector potential, i.e., B = rotA. It is of
importance to note that the integral in the exponent is evaluated
along the straight line connecting r′ and r. This approximation
leads to Eq. (15), where the gauge-invariant derivative replaces
∇. Obtaining corrections to the GL equation requires the Green
function to be calculated with an accuracy sufficient to produce
the complete set of terms contributing up to the order τ 5/2 in the
τ expansion of the gap equation. Taking into account Eqs. (11)
and (12), one concludes that the normal-metal Green function
must be calculated with the accuracy O(τ 2).

Accounting for the magnetic field in the expansion can
be done by noting that the critical magnetic field Hc in
a superconducting system is proportional to τ . Similarly, a
solution of the GL equations for the field also changes as ∝ τ .
Thus, the derivation of the τ expansion for the field corrections
can be conveniently done by introducing the following scaling
for the magnetic field:

A = τ 1/2Ā, B = rotA = τ B̄, (19)

so that the critical field quantities become independent on
τ in the first order. We note that the spatial dependence of
the magnetic field can also be represented in the form of the
gradient expansion as it is done for the order parameter in
Eq. (9). As the characteristic scale for the spatial variations
of the magnetic field is defined by the magnetic penetration
depth λ ∝ τ−1/2, which has the same τ dependence as the GL
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coherence length ξ , we can again employ the scaled spatial
coordinates as those in Eq. (10). So, the gradient expansion
for the magnetic field follows the same rule as for the order
parameter: each ∇ introduces an additional factor τ 1/2.

The τ expansion of the Green function can now be done
using the path-integral method by accounting of the quantum
fluctuations around the classical trajectory. For details of
the calculations, we refer the reader to Appendix B. The
final expression for the Green function that contains all
contributions to the order τ 2 reads as

G(0)
ω (r,r′) = e

ie
h̄c

∫ r
r′ A · dq

{
1 + e2τ 2B̄2(r)

24m2c2

×
[
∂2
ω + i

h̄
m(r − r′)2

⊥∂ω

]
+ O(τ 5/2)

}
×G(0)

ω,B=0(r,r′), (20)

where the phase factor in the exponent is the same as in
Eq. (18). We remark that the Peierls phase also contains
terms of higher orders than τ 2. However, they do not enter
the final equations for the next-to-leading contribution to the
order parameter and magnetic field. It is simply convenient
to represent the Green function in the form with the Peierls
factor because it naturally leads to the appearance of the
gauge-invariant spatial derivatives of the order parameter.
One also notes that this factor is written using the unscaled
quantities. In fact, the scaling does not affect it. In addition,
we do not scale the difference of the coordinates z = r − r′
as it is an integration variable. The new field-dependent term
in Eq. (20) is proportional to τ 2B̄2. It does not follow from
the Peierls phase and, so, is not present in the approximation
given by (18). It is interesting that the field gradients do not
contribute to the correction to the Peierls approximation.

The field-modified expansion of the gap in powers of the
order parameter and its spatial derivatives are obtained by
substituting Eq. (20) into the kernels in Eq. (8) and proceeding
in a manner similar to that discussed in Appendix A for
Eq. (11). It is convenient to remove the phase factor from
the Green functions and introduce the “two-point” auxiliary
order parameter, i.e.,

�̄(r̄,r̄′) = e
− 2ie

h̄ c

∫ r̄
r̄′ Ā · dq̄

�̄(r̄). (21)

Then, as shown in Appendix C, the modification of Eq. (11)
due to the phase factor is that �(r) is replaced by �(r,r′),
and the limit r′ → r is implied after all relevant calculations
(we remark that such a limit is not permutable with the
differentiating with respect to r). In particular, for the first
three terms in the modified Eq. (11), we have

a1τ
1/2 lim

r′→r
�̄(r̄,r̄′) = a1τ

1/2�̄, (22a)

a2τ
3/2 lim

r′→r
∇̄2

r �̄(r̄,r̄′) = a2τ
3/2D̄2�̄, (22b)

a3τ
5/2 lim

r′→r
∇̄2

r

[∇̄2
r �̄(r̄,r̄′)

]
= a3τ

5/2

[
D̄4 − 4ie

3h̄ c
¯rotB̄ · D̄ + 4e2

h̄2c2
B̄2

]
�̄, (22c)

with D̄ = ∇̄ − i 2e
h̄ c

Ā, the gauge-invariant gradient, and ¯rotB̄ =

∇̄ × B̄. The terms related to the kernel Kb in the field-modified
Eq. (11) read as

−b1τ
3/2 lim

r′→r
|�̄(r̄,r̄′)|2�̄(r̄,r̄′) = −b1τ

3/2|�̄|2�̄, (23a)

−b2τ
5/2 lim

r′→r

{
2�̄(r̄,r̄′) |∇̄r�̄(r̄,r̄′)|2 + 3�̄∗(r̄,r̄′)[∇̄r�̄(r̄,r̄′)]2

+ �̄2(r̄,r̄′) ∇̄2
r �̄∗(r̄,r̄′) + 4|�̄(r̄,r̄′)|2∇̄2

r �̄(r̄,r̄′)
}

= −b2τ
5/2[2�̄ |D̄�̄|2 + 3�̄∗(D̄�̄)2 + �̄2 (D̄2�̄)∗

+ 4|�̄|2D̄2�̄], (23b)

whereas the term coming from the integral with the kernel Kc

is of the form

c1τ
5/2 lim

r′→r
|�̄(r̄,r̄′)|4�̄(r̄,r̄′) = c1τ

5/2|�̄|4�̄. (24)

In addition to the contributions that appear due to the
Peierls factor in the Green function, we also obtain an extra
contribution to the right-hand side of Eq. (11) due to the terms
proportional to B2 in Eq. (20). This contribution comes only
from the integral involving the kernel Ka (when keeping terms
up to the order τ 5/2) and reads as

−a4τ
5/2 B̄2(r̄) lim

r′→r
�̄(r̄,r̄′) = −a4τ

5/2B̄2 �̄, (25)

where a4 = bh̄2e2/(36m2c2)[1 + O(τ )], with b given by
Eq. (12).

Using the modified Eq. (11) together with Eqs. (22)–(24)
and collecting terms of the same order in τ , one can generalize
Eqs. (15) and (16) to the case of a nonzero magnetic field.
However, since the magnetic field is also a variable in the
GL theory, it needs to be found self-consistently from a
complementary set of equations. The most elegant way to
derive the complete set of equations for the magnetic field and
for the order parameter is based on the free-energy functional
that accounts for the energy associated with the presence
of the magnetic field and the superconducting pairing. This
functional must be also represented as a series expansion in τ ,
which is the subject of the next section.

IV. FREE-ENERGY FUNCTIONAL

The free-energy functional Fs can be obtained, e.g., by
using the path-integral methods developed for the BCS
theory.21 Its expansion in � reads as

Fs = Fn,B=0 +
∫

d3r
B2(r)

8π

+ 1

g

∫
d3r d3y [δ(r − y) − Ka(r,y)]�∗(r)�(y)

− 1

2g

∫
d3r

3∏
j=1

d3yj Kb(r,{y}3) �∗(r)�(y1)

×�∗(y2)�(y3) − 1

3g

∫
d3r

5∏
j=1

d3yj Kc(r,{y}5)

×�∗(r)�(y1)�∗(y2)�(y3)�∗(y4)�(y5) − . . . , (26)
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where Fn denotes the free energy of the normal state (Fn,B=0

stays for the zero magnetic field). Here, it is worth noting that,
generally,

K∗
a (r,y) = Ka(y,r),

K∗
b(c)(r,{y}3(5)) = Kb(c)({y}3(5),r),

which means that the right-hand side of Eq. (26) is a real
quantity (as necessary for the free energy). In addition, we
have

Kb(r,y1,y2,y3) = Kb(y2,y3,r,y1),

Kc(r,y1,y2,y3,y4,y5) = Kc(y2,y3,r,y1,y4,y5)

= Kc(y2,y3,y4,y5,r,y1),

which makes it possible to immediately find that the extremum
condition of this functional with respect to �∗ leads to Eq. (7).

Series expansion of the free-energy functional given by
Eq. (26) is obtained by following essentially a similar approach
as is used in previous sections. The scaling transformation
for the order parameter, coordinates, and magnetic field is
introduced, and the gradient expansion for the order parameter
(9) is substituted into Eq. (26). As before, the coefficients
of the series expansion appear as the integrals with kernels
Ka,b,c. As we are interested in the terms that are used to derive
the GL equations and the equations for the next-to-leading
contributions to the order parameter and the magnetic field,
we must expand the functional up to the order τ 3. This follows
from the rules for counting the powers of τ introduced in
Sec. II. A calculation of the series expansion in τ of the free-
energy functional is greatly simplified by noting that all terms
in Eq. (26) can be derived from the corresponding terms in
Eq. (11) by multiplying the latter by (2/n)�∗, where n is the
number of �∗ factors of the corresponding integral term in
Eq. (26). As a result, we obtain the functional, which can be
represented in the following symmetric (real) form (here and
below we omit bars over the scaled quantities unless it causes
confusion):

fs = fn,B=0 + B2

8π
+ 1

τ
(g−1 − a1)|�|2 + a2|D�|2

− τa3

(
|D2�|2 + 1

3
rotB · i + 4e2

h̄2c2
B2|�|2

)
+ τa4B2|�|2 + b1

2
|�|4 − τ

b2

2
[8|�|2|D�|2

+ (�∗)2(D�)2 + �2(D∗�∗)2] − τ
c1

3
|�|6, (27)

where fs(n) = Fs(n)/V (with the scaling f = f̄ τ 2) and i is
given by

i = i
2e

h̄ c
(�D∗�∗ − �∗D�). (28)

We stress that i is not the current density j. However, when
replacing � → �0 and A → A0 in Eq. (28), we find i0
being proportional to j0, the leading contribution to the
current density j (see the next section). We also note that
the representation of the functional in a real symmetric form
as in Eq. (27) implicitly relies on the disappearance of the
corresponding surface integrals. It is easy to check that this is
ensured by the boundary conditions discussed in Sec. V.

Obtaining the final series expansion in τ for the free-energy
density requires the τ expansion for the coefficients given in
Eqs. (12) and (25), for the order parameter given by Eq. (13),
and for the magnetic field. The latter is expressed in the form

A = A0 + τA1 + . . . , B = B0 + τB1 + . . . . (29)

After collecting the relevant terms, the free-energy density fs

is written in the form

fs − fn,B=0 = f0 + τf1 + O(τ 2), (30)

where the leading-order term (the standard GL functional) is
specified by

f0 = B2
0

8π
+ a|�0|2 + b

2
|�0|4 + K|D0�0|2, (31a)

and the next-to-leading contribution f1 can be written as a sum
of two terms, i.e., f1 = f

(0)
1 + f

(1)
1 with

f
(0)
1 = a

2
|�0|2 + 2K|D0�0|2 − Q

(∣∣D0
2�0

∣∣2 + 1

3
rotB0 · i0

+ 4e2

h̄2c2
B2

0|�0|2
)

+ b

36

e2h̄2

m2c2
B2

0|�0|2 + b|�0|4

− L
2

[8|�0|2|D0�0|2 + (�∗
0)2(D0�0)2

+�2
0(D∗

0�
∗
0)2] − c

3
|�0|6 (31b)

and

f
(1)
1 = B0 · B1

4π
+ (a + b|�0|2)(�∗

0�1 + �0�
∗
1)

+K[(D0�0 · D∗
0�

∗
1 + c.c.) − A1 · i0]. (31c)

Here, D0 is equal to D with the substitution A → A0, and i0 is
obtained from Eq. (28) by � → �0 and A → A0.

V. COMPLETE SET OF EQUATIONS FOR B �= 0

A system of coupled equations for both � and A are
obtained from the extremum condition of the free energy
given by Eq. (27). The subsequent expansion of the obtained
expressions yields the GL equations as well as the equations for
the next-to-leading contributions to the order parameter and the
magnetic field. Alternatively, this full set of equations can also
be obtained by finding the extremum of the free energy with
respect to �0 and A0 in such a way that all terms appearing in
Eq. (30) are taken separately. Note that finding the extremum
of the functional with respect to �1 and A1 yields the same set
of equations. This property follows from Eqs. (13) and (29).

By searching for the minimum of the functional with the
density f0, we reproduce the standard GL equations

a�0 + b|�0|2�0 − KD2
0�0 = 0, (32a)

rotB0 = 4π

c
j0, (32b)

where j0 = Kci0. Likewise, the same equations are obtained
by finding the extremum of f1 with respect to �∗

1 and A1.
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The minimum of the functional with the density f1 with
respect to �∗

0 and A0 yields the following equations:

a�1 + b(2 |�0|2�1 + �2
0�

∗
1) − KD2

0�1 = F, (33a)

rotB1 = 4π

c
j1. (33b)

The right-hand side of Eq. (33a) is given by

F = −a

2
�0 + 2KD2

0�0 + Q
[

D2
0

(
D2

0�0
)

− i
4e

3h̄ c
rotB0 · D0�0 + 4e2

h̄2c2
B2

0�0

]
− b

36

e2h̄2

m2c2
B2

0�0 − 2b|�0|2�0 − L
[
2�0|D0�0|2

+ 3�∗
0(D0�0)2 + �2

0(D2
0�0)∗ + 4|�0|2D2

0�0
]

+ c|�0|4�0 − i
2e

h̄ c
K {A1 · D0}+�0, (34)

with {A1 · D0}+ denoting a symmetrized product. The next-to-
leading contribution to the current density j1 [j = j0 + τ j1 +
O(τ 2)] appearing in the right-hand side of Eq. (33b) splits into
two terms, i.e.,

j1 = Kci1 + J, (35)

where

i1 = i
2e

h̄c
(�0D∗

0�
∗
1 + �1D∗

0�
∗
0 − �∗

1D0�0 − �∗
0D0�1)

− 8e2

h̄2c2
A1|�0|2 (36a)

and

J = c

{(
2K − 3L|�0|2

)
i0 + Qi′0 + Q

3
rot roti0

+Q 8e2

h̄2c2

[
rot(B0|�0|2) − 1

3
|�0|2rotB0

]
− b

18

e2h̄2

m2c2
rot(B0|�0|2)

}
, (36b)

with

i′0 = i
2e

h̄c

[
�0

(
D0D2

0�0
)∗ − D0�0

(
D2

0�0
)∗

+ D2
0�0(D0�0)∗ − �∗

0D0D2
0�0

]
. (36c)

We note that, based on Eq. (32), one finds that i′0 = 2/K(a +
b|�0|2) i0. We also note that i1 given by Eq. (36b) is the next-to-
leading contribution to i = i0 + τ i1 + O(τ 2). Equations (33)–
(36) are the generalization of Eq. (16) to the case of a nonzero
magnetic field.

Through our derivation, we used the straightforward gener-
alization of the Ginzburg-Landau boundary conditions at the
specimen surface, i.e.,

D0⊥�0 = 0, D0⊥�1 − i
2e

h̄ c
A1⊥�0 = 0. (37)

As seen, Eq. (37) follows from the expansion of D⊥� = 0
in τ . These boundary conditions cancel the surface integrals
appearing in the procedure of the variation of the free-energy
functional with respect to � and �∗. In addition, Eq. (37)

allows us to cancel the surface integrals that appear due to the
obvious requirement of the self-conjugation of the free-energy
functional. Note that Eq. (37) is not the only possible choice
for the boundary conditions that makes all the relevant surface
integrals equal to zero. While being of great interest, discussion
of different possible variants of the boundary conditions
for different interfaces is beyond the scope of the present
investigation. Below, based on our formulation of the EGL
formalism, we investigate properties of a bulk superconductor
that are not sensitive to the particular choice of the local
boundary conditions at the specimen surface.

VI. VALIDITY DOMAIN OF THE EGL FORMALISM

In this section, we estimate the domain of the quantitative
and qualitative validity of the GL approach when extended to
the next-to-leading order in τ . Obviously, a detailed analysis
of the accuracy of the EGL formalism, including spatially
nonuniform solutions of Eq. (33), requires much effort and
is beyond the scope of this work. However, it is possible to
get a feeling about the accuracy of the formalism in question
on the basis of the spatially uniform case. In the following,
we compare the EGL results for the order parameter and the
thermodynamic critical field Hc with those of the BCS model.

For the spatially uniform case, Eq. (16) yields

�1

�0

∣∣∣
bulk

= −3

4
− ac

2b2
= −3

4

(
1 − 31ζ (5)

49ζ 2(3)

)
, (38)

with �0 = (−a/b)1/2, the solution of Eq. (15). Taking into
account Eq. (13) and using Eq. (38), we obtain the order
parameter in the unscaled representation up to the order
τ 3/2 as

�(T )

�BCS(0)
= eγ

√
8

7ζ (3)
τ 1/2

[
1 − 3

4
τ

(
1 − 31ζ (5)

49ζ 2(3)

)]
, (39)

where �BCS(0) = (π/eγ )Tc is the zero-temperature gap cal-
culated from the full BCS formalism, see, e.g., Ref. 18.
Results found from the standard and extended GL approaches
are compared to the full BCS solution in Fig. 1. We can

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

BCS

ext GL

Δ (
T

)/
Δ B

C
S
(0

)

T/T
c

GL

FIG. 1. (Color online) The temperature-dependent gap (unscaled)
in units of the zero-temperature order parameter calculated within the
full BCS approach �BCS(0) versus the relative temperature T/Tc: the
solid curve represents the full BCS; the dashed curve shows the result
of the EGL formalism given by Eq. (39); the dotted curve illustrates
the standard GL approach.
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see that the GL result notably differs from the BCS curve
below temperatures T = 0.7–0.8Tc. At the same time, the
EGL approach is in a very good quantitative agreement with
the BCS theory down to T = 0.2Tc, and only below this
temperature does the order parameter calculated within the
extended formalism exhibit a slight decrease not supported by
the BCS picture.

The thermodynamic critical field Hc measures the conden-
sation energy so that

H 2
c

8π
= fn,B=0 − fs,B=0, (40)

where fs,B=0 is the free-energy density of a homogeneous
superconducting state in the absence of a magnetic field. By
using Eqs. (15), (16), (30), and (31), we find

Hc = Hc 0 + τHc1 + O(τ 2),

Hc 0 =
√

4πa2

b
, Hc1 = −Hc 0

(
1

2
+ ac

3b2

)
. (41)

The solution Hc = Hc 0 recovers the result of the GL theory
(Hc = τHc0 in the original unscaled variables). The term
τHc1 (τ 2Hc1 in the original unscaled variables) provides the
next-order correction. The numerical coefficient ac/(3b2) is
calculated using Eq. (12). This yields

Hc/Hc 0 = 1 − τ

2

(
1 − 31ζ (5)

49ζ 2(3)

)
+ O(τ 2)

= 1 − 0.273τ + O(τ 2). (42)

Being back to the original unscaled variables, we get for the
thermodynamic critical field up to the order τ 2

Hc(T )

Hc,BCS(0)
= eγ

√
8

7ζ (3)
τ

[
1 − τ

2

(
1 − 31ζ (5)

49ζ 2(3)

)]
, (43)

where Hc,BCS(0) = [4πN (0)]1/2 πTc/e
γ is the zero-

temperature thermodynamic critical field.18 Figure 2
shows the result given by Eq. (43) as compared to those of
the standard GL formalism and the BCS approach. Here,

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

BCS

ext GL

GL

H
c(T

)/
H

c,
 B

C
S
(0

)

T/T
c

FIG. 2. (Color online) The thermodynamic critical magnetic field
Hc(T ) (unscaled) in units of Hc,BCS(0) versus the relative temperature
T/Tc: the solid curve represents the BCS theory; the dashed curve
shows the result of the EGL formalism; the dotted curve illustrates
the standard GL theory.

one notes a very good quantitative agreement between the
EGL formalism and the BCS theory down to temperatures
0.3–0.4Tc. In particular, the EGL results are only by 5% larger
at T = 0.35Tc. At lower temperatures, the curve representing
the EGL formalism deviates from the BCS data by 10%–20%.
This can be compared with the standard GL theory for which
Hc(0)/Hc,BCS = eγ

√
8/[7ζ (3)] = 1.736.

Thus, based on the results given in Figs. 1 and 2, one is
able to expect that the domain of the quantitative validity of
the EGL theory (in the clean limit) is τ < 0.7 (T/Tc > 0.3),
which is a significant extension as compared to τ < 0.2–0.3,
typical for the standard GL approach.

VII. SURFACE ENERGY IN THE NEXT-TO-LEADING
ORDER IN τ

The EGL formalism given by Eq. (33) allows one to find
corrections to the solutions of the physical problems for which
the GL approach is relevant. Here, we illustrate the power of
the EGL formalism by investigating, in the next-to-leading
order in τ , the energy associated with a surface separating
the superconducting and normal phases. It is one of the
fundamental problems in the theory of superconductivity in
view of the fact that superconducting materials are classified
as type I or type II according to whether the surface energy is
positive or negative, respectively. From the standard GL theory,
it is well known that the surface energy is controlled by the
GL parameter κ = λ/ξ , where λ is the magnetic penetration
depth and ξ is the GL coherence length. The surface energy is
positive for κ < κ∗ and negative for κ > κ∗, where κ∗ = 1/

√
2

is a universal constant, being independent of temperature. Now,
based on the EGL approach, it is interesting to check whether
or not κ∗ is independent of temperature in the next-to-leading
order in τ .

Following the standard calculation of the surface energy
(see, e.g., Ref. 22), we consider a surface separating the
superconducting and normal phases perpendicular to the z axis.
The superconducting and normal phases are found at z → −∞
and z → ∞, respectively. This means that the superconducting
order parameter approaches its bulk (uniform) value at z →
−∞ and goes to zero at z → ∞. The magnetic field is
chosen in the y direction. It approaches the thermodynamic
critical field Hc [see Eq. (41)] at z → ∞ and becomes zero at
z → −∞. Note that z → ±∞ means here that the point is far
beyond the surface, but still inside the specimen. When going
far beyond the specimen, the magnetic field always approaches
Hc. Further, the vector potential is taken in the Coulomb gauge
in the form A = {A(z),0,0}. The magnetic field, respectively,
reads as B = {0,A′(z),0}. Hereafter, the prime sign denotes the
derivative with respect to z. It should be noted that this choice
applies to both B0 (A0) and B1 (A1). In this case, Eqs. (32a)
and (33a) contain only real coefficients and, hence, have real
solutions.

For our choice, the surface energy per unit area σsn (the
surface tension) is given by a one-dimensional (1D) integral
of the difference between the Gibbs free-energy densities of
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the nonuniform superconducting solution gs and the uniform
normal state gn, i.e.,

σsn =
∫ +∞

−∞
dz (gs − gn), gs(n) = fs(n) − HB

4π
, (44)

where fs is given by Eqs. (30) and (31) and fn = fn,B=0 +
H2/(8π ). The external magnetic field H is constant and its
absolute value is equal to the thermodynamic critical field Hc.
In the normal phase, B = H and B = H = Hc, which results
in gn = fn,B=0 − H 2

c /(8π ). To proceed further, it is convenient
to introduce the following dimensionless quantities:

r̃ = r
λ

, Ã = A
Hc 0λ

, B̃ = B
Hc 0

, �̃ =
√

−b

a
�,

(45)˜̇ı0 = i0
4πKλ

Hc 0
, g̃s(n) = 4π

H 2
c 0

gs(n), σ̃sn = 4π

λH 2
c 0

σsn,

with λ = (h̄c/|e|)√−b/(32πKa). In what follows, we omit
the tilde in all the formulas unless it causes confusion. Using
the new dimensionless quantities, we arrive at

σsn = α0 + τα1, αi =
∫ +∞

−∞
dz gi(z), (46a)

where g0(z) and g1(z) are the coefficients of the expansion
of the difference gs − gn in powers of τ , i.e., gs − gn = g0 +
g1τ + O(τ 2). Taking into account Eqs. (31a) and (44), we
obtain

g0 = −�0�
′′
0

κ2
+
(

A2
0

2
− 1

)
�2

0 + �4
0

2
+ 1

2
(A′

0 − 1)2. (46b)

From Eqs. (31b), (31c), and (44), it is seen that g1 can be split
into two parts, i.e.,

g1 = g
(0)
1 + g

(1)
1 , (46c)

where g
(0)
1 includes only the quantities with the index 0, i.e.,

g
(0)
1 = −�2

0

2
+ 2

(�′
0)2

κ2
+ A2

0�
2
0 + Qa

K2

[(
�′′

0

κ2
− A2

0

2
�0

)2

+ 1

3κ2
A′′

0A0�
2
0 + (A′

0)2

2κ2
�2

0

]
+ (A′

0)2�2
0

48(kF λ)2
+ �4

0

+ La

2bK

[
10

κ2
(�′

0)2�2
0 + 3A2

0�
4
0

]
+ ac

3b2
�6

0, (46d)

and g
(1)
1 reads as

g
(1)
1 = 2

[
(�2

0 − 1)�0�1 + A2
0

2
�0�1 + 1

κ2
�′

0�
′
1

]
−A1i0 + (A′

0 − 1)

(
A′

1 + 1

2
+ ac

3b2

)
, (46e)

incorporating �1 and A1.
When calculating σsn, we use �0(1) and A0(1) obtained by

solving Eqs. (32) and (33). This makes it possible to simplify
the problem significantly, excluding the terms involving �1

and A1. The point is that such terms in g
(1)
1 can be transformed

into the functional derivatives of f0 [see Eq. (31a)] with respect
to �0 and A0. These derivatives are equal to zero and generate

the standard GL equations (32a) and (32b) that are now
reduced to

− 1

κ2
�′′

0 − �0 + �3
0 + A2

0

2
�0 = 0, (47a)

A′′
0 = −i0 = A0�

2
0, (47b)

with the boundary conditions (inside the sample)

�0(−∞) = 1, A′
0(−∞) = 0,

(47c)
�0(∞) = 0, A′

0(∞) = 1.

Here, we stress again that far outside the specimen, we always
have A′

0 = 1 and A′
1 = − 1

2 − ac
3b2 . However, inside the sample,

deep in the superconducting domain, we are able to employ
A′

0(1) = 0 (in addition, due to our choice of a real order
parameter, we also have A0(1) = 0). So, based on Eqs. (46)
and (47), we find that g

(1)
1 can be replaced by

g
(1)
1 =

(
1

2
+ ac

3b2

)
(A′

0 − 1). (48)

As seen, there are only two physical parameters that enter
the relevant expressions for σsn, i.e., the GL parameter κ

and the product of the Fermi wave number and the magnetic
penetration depth kF λ. As to the quantities Qa/K2, ac/(3b2),
La/(bK), and Hc1/Hc 0, they are simply numbers. From
Eq. (12), we obtain

Qa

K2
= −0.817,

ac

3b2
= −0.227,

La

bK = −0.454 (49)

and, in addition, Hc1/Hc 0 = −0.273, as seen from Eqs. (41)
and (42). For conventional superconductors, the term including
kF λ in Eq. (46d) is extremely small and, so, we are left with
only one governing physical parameter κ in both the leading
and next-to-leading orders.

Now, we have everything at our disposal to calculate κ∗ at
which the surface energy σsn becomes zero, i.e.,

α0(κ∗) + τα1(κ∗) = 0. (50)

The solution to Eq. (50) should be represented in the form of
the τ expansion

κ∗ = κ∗
0 + τκ∗

1 + O(τ 2), (51)

where κ∗
0 obeys

α0(κ∗
0 ) = 0. (52)

When κ∗
0 is known, the next-to-leading-order contribution κ∗

1
is found by expanding Eq. (50) in powers of τ , i.e.,

α0(κ∗
0 ) + τα1(κ∗

0 ) + τκ∗
1

[
∂α0

∂κ∗
0

+
∫ +∞

−∞
dz

×
(

δα0

δ�0

∂�0

∂κ∗
0

+ δα0

δA0

∂A0

∂κ∗
0

)]
= 0, (53)

where all contributions are calculated at κ = κ∗
0 . The partial

derivative ∂α0
∂κ∗

0
in the above expression accounts for a change

in α0 caused by the explicit presence of κ in Eq. (47a).
The functional derivatives of α0 appear in the integral in the
right-hand side of Eq. (53) due to changes in �0 and A0
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when changing κ . At first sight, this complicates the problem
enormously because of the need to know the derivatives ∂�0

∂κ

and ∂A0
∂κ

at the point κ = κ∗
0 . It is, however, clear that δα0

δ�0
= 0

and δα0
δA0

= 0 because they yield the GL equations in the leading
order in τ . So, κ∗

1 is given by

κ1 = −α1(κ∗
0 )

(
∂α0

∂κ∗
0

)−1

, (54)

and the derivatives of �0 and A0 with respect to κ at the point
κ = κ∗

0 disappear from the final result.
Thus, to calculate both κ0 and κ1, one only needs to find

�0 and A0 from the standard GL equations (47a) and (47b) at
κ = κ∗

0 . The calculation of κ∗
0 = 1/

√
2 is a classical problem

that can be found in textbooks on superconductivity (see, e.g.,
Ref. 22). By calculating κ1, we first find

∂α0

∂κ∗
0

= − 1

2(κ∗
0 )3

I1, I1 =
∫ +∞

−∞
dz �2

0

(
1 − �2

0

)
, (55)

where Eq. (47a) was used to simplify the expression. In turn,
using Eqs. (46), (47), and the helpful relation22

�2
0 = 1 − A′

0 (56)

and assuming kF λ � 1, which is always satisfied in the
conventional superconductors, one finds

α1 = I1

(
1 + 2Qa

K2
− ac

3b2

)
+ I2

(
2La

bK − 5Qa

3K2
− ac

3b2

)
,

(57)

with

I2 =
∫ +∞

−∞
dz �4

0

(
1 − �2

0

)
. (58)

By numerically solving Eqs. (47), we obtain I1 = 0.775 and
I2 = 0.433. Finally, by substituting Eqs. (55) and (57) into
Eq. (54) and using Eq. (49), we obtain κ∗

1 = −0.027κ∗
0 . Thus,

Eq. (51) for κ∗ reads as

κ∗ = 1√
2

[1 − 0.027τ + O(τ 2)]. (59)

As seen, contrary to the result of the standard GL theory
(the leading order in our τ expansion), κ∗ given by Eq. (59)
is temperature dependent. This means that the traditional
classification of type-I and type-II superconductors becomes,
in principle, temperature dependent. However, inconvenience
caused by such dependence is not crucial because of the very
small value of κ∗

1 , i.e., a change in κ∗ with temperature is less
than 2% in the strict validity domain of the EGL theory.

VIII. CONCLUSIONS

By employing an approach similar to the asymptotic-
expansion methods used in the mathematical physics, we
constructed a systematic expansion of the self-consistent gap
equation (for a clean s-wave single-band superconductor) in
powers of τ , the proximity to the critical temperature. The
procedure of matching the expansion terms of the same order
of magnitude generates a hierarchy of equations. The lowest-
order theory, i.e., the equations for the leading contributions

to the order parameter and the magnetic field, recovers the
standard GL approach, while the next orders in τ constitute its
extension. Such a hierarchy of equations should be solved
recursively, starting from the standard GL equations. We
derived and studied the equations for the next-to-leading
contributions to the order parameter � and the magnetic
field B. In order to select all relevant terms in the case
of a nonzero magnetic field, the normal-metal temperature
Green function was generalized beyond the standard Peierls
phase approximation to incorporate additional terms up to the
order τ 2. The relevant boundary conditions were shown to be
directly related to the series expansion in τ for the current.
The accuracy of the GL theory extended to the next-to-leading
order in τ was tested by comparing the results of the extended
formalism for the uniform order parameter and the critical
magnetic field with the corresponding results of the standard
GL approach and the BCS theory. This demonstrated that the
validity domain of the GL theory is considerably increased
by the extension. We found very good agreement with the
full BCS calculations down to temperatures 0.3–0.4 Tc. To
illustrate advantages of the constructed extension to the GL
formalism, the surface energy for the interface between the
superconducting and normal phases was investigated. We have
found, in a semianalytical form, the temperature-dependent
correction to the value of the GL parameter κ at which
the surface energy becomes zero. Surprisingly, the obtained
correction is extremely small: it does not exceed 2% even
at T = 0.3–0.4 Tc. This result implies that the boundary
between type-I and type-II superconducting behavior is almost
independent of temperature.

It should be noted that a functional similar to Eq. (27) was
considered in Ref. 12 in the context of the FFLO state (we have
an additional term ∝ a4). However, there is a conceptional
difference with our work: we focus on a series expansion in τ

and, so, this functional is only the initial point to construct such
an expansion. Our focus on a perturbation theory in τ allowed
us to make a proper selection of all the relevant contributions.
It means that we did not simply borrow some functional from
previous papers as the initial step for our study but instead
performed an extensive procedure of microscopic derivations
(see the Appendices) accompanied by an accurate analysis
of the temperature dependence of each contributing term. We
proved that the initial free-energy functional given by Eq. (27)
contains all the terms that contribute to � and B in the leading
and next-to-leading orders in τ .

We also note that although the term ∝ a4 in Eq. (27)
does not produce a pronounced contribution for conventional
bulk superconductors [it is proportional to 1/(kF λ)2, see, e.g.,
Eq. (46d)], going beyond the Peierls phase approximation
can be of importance, e.g., for multiband (subband) materials
(systems), where one of the relevant bands is characterized
by an extremely small Fermi momentum, but λ is determined
mostly by other bands with large kF (so that the product kF λ

can be even smaller than 1). One of the possible examples is
single-crystalline metallic superconducting nanofilms, where
different subbands are induced by the quantization of the
perpendicular electron motion, and the energetic position of
each subband (with respect to the Fermi level) can vary
significantly with changing nanofilm thickness, substrate
material etc.24 Similar physics can be expected for a thin
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superconducting layer induced by an external electric field at
the interface between the semiconductor (SrTiO3 and KTaO3)
and an electrolyte.25
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APPENDIX A: COEFFICIENTS IN THE EXPANSION OF
THE GAP EQUATION FOR ZERO MAGNETIC FIELD

1. Coefficients ai related to the integral kernel Ka(r,y)

We start our derivation of the right-hand side of Eq. (11)
from the terms coming from the integral involving the kernel
Ka(r,y) = Ka(z) (with z = r − y), i.e.,

Ia = 1

g

∫
d3z Ka(z)�(r + z). (A1)

Following the usual practice, this integral is expanded in terms
of the spatial derivatives of the order parameter �(r), i.e.,
Eq. (9). Keeping to the mnemonic rule formulated in Sec. II,
we conclude that working to the order τ 5/2, it is necessary to
incorporate all the spatial derivatives up to the fourth order in
the gradient expansion (9). Due to the symmetry of the kernel
Ka(z) with respect to the transformation z → −z, the first- and
third-order derivatives do not contribute. So, we obtain only
the three relevant terms in Eq. (11) that come from Eq. (A1),
i.e.,

I (1)
a = τ 1/2

g
�̄

∫
d3z Ka(z), (A2a)

I (2)
a = τ 3/2

g

∫
d3z Ka(z)

(z · ∇̄)2

2!
�̄, (A2b)

I (3)
a = τ 5/2

g

∫
d3z Ka(z)

(z · ∇̄)4

4!
�̄, (A2c)

where �̄(r̄) is the scaled order parameter as a function of
scaled coordinates. Details on calculations of I

(1)
1 and I (2)

a can
be found in textbooks, e.g., in Ref. 18, with the result

I (1)
a = a1τ

1/2�̄, I (2)
a = a2τ

3/2∇̄2�̄, (A3)

where a1 and a2 are given by Eq. (12). To find I (3)
a , it is first

convenient to rearrange Eq. (A4) in the form (odd powers of
∇̄ do not contribute)

I (3)
a = τ 5/2

g

∫
d3z Ka(z)

[
1

4!

∑
n

z4
n∇̄4

n+
1

8

∑
n
=m

z2
nz

2
m∇̄2

n∇̄2
m

]
�̄,

(A4)

with z = {z1,z2,z3} and ∇̄ = {∇̄1,∇̄2,∇̄3}. As seen from
Eq. (A4), two integrals are needed to be calculated, i.e.,∫

d3z Ka(z) z4
n and

∫
d3z Ka(z) z2

nz
2
m (n 
= m).

In the following, we assume spherical symmetry, i.e., Ka(z) =
Ka(z), with z ≡ |z|. In this case, the above integrals do not
depend on indices n and m.

As follows from Eq. (6),

G(0)
ω (r,y) = − πN (0)

kF |r − y| e
i kF |r−y| sgnω−i

|ω|
vF

|r−y|
, (A5)

with kF the Fermi wave number, N (0) = mkF /(2π2h̄2) the
density of states at the Fermi surface, and vF the Fermi velocity.
When inserting Eq. (A5) into Eq. (8), one can find [G̃(0)

ω (r,y) =
−G(0)

−ω(y,r)]

Ka(z) = gT

[
πN (0)

kF z

]2 1

sinh(z/ξT )
, (A6)

with ξT = h̄vF /(2πT ). Then, based on Eq. (A6) and replacing
T by Tc, we obtain∫

d3z Ka(z) z4
n = 4

5
gc h̄4v4

F , (A7a)∫
d3z Ka(z) z2

nz
2
m = 4

15
gc h̄4v4

F (n 
= m), (A7b)

where c is given by Eq. (12). The integrals can easily be taken
by using (see, e.g., Appendices in Ref. 18)∫ ∞

0
dx

x�−1

sinh(x)
= 2(1 − 2−�)�(�)ζ (�) (� > 1),

with �(. . .) the Euler gamma function and ζ (. . .) the Riemann
zeta function. Equations (A4) and (A7) make it possible to get

I (3)
a = τ 5/2 c

30
h̄4v4

F

⎡⎣∑
n

∇̄4
n +

∑
n
=m

∇̄2
n∇̄2

m

⎤⎦ �̄, (A8)

which is reduced to

I (3)
a = a3τ

5/2∇̄2(∇̄2�̄), (A9)

with the coefficient a3 given by Eq. (12). Now, collecting the
results for I (1)

a , I (2)
a , and I (3)

a , we obtain

Ia = a1τ
1/2�̄ + a2τ

3/2∇̄2�̄ + a3τ
5/2∇̄2(∇̄2�̄), (A10)

as appears in Eq. (11).

2. Coefficients bi related to the integral kernel Kb(r,{ y}3)

Our next step is to calculate the coefficients bi in Eq. (11)
that are related to the second integral kernel, i.e., Kb(r,{y}3).
We start with

Ib = 1

g

∫ 3∏
i=1

d3ziKb(z1,z2,z3)�(r + z1)�∗(r + z2)�(r + z3),

(A11)

with zi = yi − r (i = {1,2,3}) and Kb(z1,z2,z3) = Kb

(r,{y}3). The integral in Eq. (A11) is expanded in terms of the
spatial derivatives of �(r) and �∗(r) by using Eq. (9). The
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terms that contribute to the relevant orders τ 3/2 and τ 5/2 are
the following:

I
(1)
b = τ 3/2

g
�̄ |�̄|2

∫ 3∏
i=1

d3zi Kb(z1,z2,z3), (A12a)

I
(2)
b = τ 5/2

g
�̄

∫ 3∏
i=1

d3zi Kb(z1,z2,z3)

× (z2 · ∇̄)�̄∗ [(z1 + z3) · ∇̄]�̄, (A12b)

I
(3)
b = τ 5/2

g
�̄∗

∫ 3∏
i=1

d3zi Kb(z1,z2,z3) (z1 · ∇̄)�̄ (z3 · ∇̄)�̄,

(A12c)

I
(4)
b = τ 5/2

g

�̄2

2

∫ 3∏
i=1

d3zi Kb(z1,z2,z3) (z2 · ∇̄)2�̄∗, (A12d)

I
(5)
b = τ 5/2

g

|�̄|2
2

∫ 3∏
i=1

d3zi Kb(z1,z2,z3)

× [(z1 · ∇̄)2 + (z3 · ∇̄)2]�̄. (A12e)

The contribution given by Eq. (A12a) appears already in the
standard GL domain, and, so, explanations on evaluating I

(1)
b

can be found in textbooks (see, e.g., Refs. 2 and 18). This term
reads as

I
(1)
b = −b1τ

3/2|�̄|2�̄. (A13)

The other terms in Eq. (A12) require a more involved
calculational procedure. In the following, the details of such
a procedure are given for I

(2)
b . As to calculations of I

(3)
b , I

(4)
b ,

and I
(5)
b , we restrict ourselves to only basic remarks.

The term I
(2)
b can be written as

I
(2)
b = −τ 5/2Tc[1 + O(τ )]

∑
nm

�̄ ∇̄n�̄ ∇̄m�̄∗

×
∑

ω

∫ 3∏
j=1

d3zj G(0)
ω (−z1) G̃(0)

ω (z1 − z2)

×G(0)
ω (z2 − z3) G̃(0)

ω (z3) z2m (z1n + z3n), (A14)

with G(0)
ω (r,r′) = G(0)

ω (r − r′) and zj = {zj1,zj2,zj3}. The inte-
gral in Eq. (A14) is reduced by invoking the Fourier transform
and applying the well-known convolution theorem provided
that we rearrange the polynomial in the relevant integrand as

z2m (z1n + z3n) = (−z1m)(−z1n) − (−z1m)z3n

+ (z1m − z2m)(−z1n) − (z1m − z2m)z3n.

Then, one finds

I
(2)
b = τ 5/2Tc[1 + O(τ )]

×
∑
nm

�̄ ∇̄n�̄ ∇̄m�̄∗ ∑
ω

∫
d3k

(2π )3

×
{(

∂m∂n

1

ih̄ω − ξk

)
1

(ih̄ω + ξk)2(ih̄ω − ξk)

−
(

∂m

1

ih̄ω − ξk

)(
∂n

1

ih̄ω + ξk

)
1

h̄2ω2 + ξ 2
k

+
(

∂m

1

ih̄ω + ξk

)(
∂n

1

ih̄ω − ξk

)
1

h̄2ω2 + ξ 2
k

−
(

∂m

1

ih̄ω + ξk

)(
∂n

1

ih̄ω + ξk

)
1

(ih̄ω − ξk)2

}
,

(A15)

with ∂k = {∂1,∂2,∂3}. After straightforward but tedious calcu-
lations, we further obtain

I
(2)
b = −τ 5/2Tc[1 + O(τ )]

∑
n

�̄ ∇̄n�̄ ∇̄n�̄
∗

×
∑

ω

∫
d3k

(2π )3

h̄4k2
n

m2

[
2

(ih̄ω − ξk)4(ih̄ω + ξk)2

+ 2

(ih̄ω − ξk)3(ih̄ω + ξk)3

]
, (A16)

with k = {k1,k2,k3}. Due to the spherical symmetry of the term
in the parentheses, the integral in Eq. (A16) does not depend
on n so that k2

n can be replaced by k2/3. Then, by making use
of the standard approximation (ξ = ξk)∫

d3k

(2π )3
≈ N (0)

∫ +∞

−∞
dξ,

one gets

I
(2)
b = −τ 5/2Tc[1 + O(τ )] �̄ |∇̄�̄|2 4h̄2

3m
N (0)

×
∑

ω

∫ +∞

−∞
dξ

(ξ + μ)(2ξ 2 + 2ih̄ωξ )

(h̄2ω2 + ξ 2)4
.

(A17)

The terms in the numerator of the integrand proportional to an
odd power of ξ do not contribute. The same is related to the
terms proportional to ω due to the summation over the positive
and negative Matsubara frequencies. So, Eq. (A17) is further
reduced to

I
(2)
b = −τ 5/2Tc[1 + O(τ )]�̄ |∇̄�̄|2

×N (0)μ
4h̄2

3m

∑
ω

1

|h̄ω|5
∫ +∞

−∞
dα

2α2

(1 + α2)4
, (A18)

where, we recall, h̄ω = πT (2n + 1). Now, by using

∞∑
n=0

1

(n + 1/2)5
= 31ζ (5),

∫ +∞

−∞
dα

2α2

(1 + α2)4
= π

8
,

with ζ (. . .) the Riemann zeta function, we arrive at

I
(2)
b = −2b2τ

5/2 �̄ |∇̄�̄|2, (A19)

with b2 given by Eq. (12).
Based on the calculations of I

(2)
b , we can further proceed

with I
(3)
b , I

(4)
b , and I

(5)
b . The contribution given by I

(3)
b can be

reduced to

I
(3)
b = −τ 5/2Tc[1 + O(τ )

]
�̄∗ (∇̄�̄)2

×N (0)μ
2h̄2

3m

∑
ω

1

|h̄ω|5
∫ +∞

−∞
dα

1

(1 + α2)3
, (A20)
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with ∫ +∞

−∞
dα

1

(1 + α2)3
= 3π

8
.

When making the summation over ω, Eq. (A14) becomes of
the form

I
(3)
b = −3b2τ

5/2 �̄∗ (∇̄�̄)2. (A21)

For I
(4)
b , we obtain

I
(4)
b = τ 5/2Tc[1 + O(τ )

]
�̄2 ∇̄2�̄∗

×N (0)μ
2h̄2

3m

∑
ω

1

|h̄ω|5
∫ +∞

−∞
dα

3α2 − 1

(1 + α2)4
, (A22)

with ∫ +∞

−∞
dα

3α2 − 1

(1 + α2)3
= −π

8
.

This results in

I
(4)
b = −b2τ

5/2 �̄2 ∇̄2�̄∗. (A23)

At last, I
(5)
b is reduced to

I
(5)
b = τ 5/2Tc[1 + O(τ )

]|�̄|2 ∇̄2�̄

×N (0)μ
4h̄2

3m

∑
ω

1

|h̄ω|5
∫ +∞

−∞
dα

α2 − 1

(1 + α2)4
, (A24)

which results in

I
(5)
b = −4b2τ

5/2 |�̄|2 ∇̄2�̄∗. (A25)

Now, based on Eqs. (A11), (A13), (A19), (A21), (A23), and
(A25), we obtain

Ib = −b1τ
3/2|�̄|2�̄ − b2τ

5/2[2�̄ |∇̄�̄|2 + 3�̄∗(∇̄�̄)2

+ �̄2 ∇̄2�̄∗ + 4|�̄|2∇̄2�̄], (A26)

with b1 and b2 defined by Eq. (12).

3. Coefficient c1 coming from Kc(r,{ y}5)

The term with the coefficients c1 in Eq. (11) appears due to
the contribution to �(r)/g given by

Ic =
∫ 5∏

j=1

d3zj Kc(z1,z2,z3,z4,z5) �(r + z1)�∗(r + z2)

×�(r + z3)�∗(r + z4)�(r + z5). (A27)

We need all contributions up to the order τ 5/2 in Eq. (11). As
the leading-order term in the order parameter is proportional
to τ 1/2, it is possible to neglect the contribution of the spatial
derivatives of the order parameter and limit ourselves only to
the local contribution given by

I (1)
c = τ 5/2[1 + O(τ )]�̄ |�̄|4

×
∫ 5∏

j=1

d3zj Kc(z1,z2,z3,z4,z5). (A28)

By using Eq. (8), performing the Fourier transformation, and
passing to the integration over the single-electron energy, we
can find

I (1)
c = τ 5/2Tc[1 + O(τ )]�̄ |�̄|4 N (0)

×
∑

ω

1

|h̄ω|5
∫ +∞

−∞
dα

1

(α2 + 1)3
, (A29)

where the integral is equal to 3π/8 (see the previous section).
By evaluating the sum over the Matsubara frequencies in
Eq. (A29), we obtain

Ic = c1τ
5/2 �̄ |�̄|4, (A30)

where c1 is given by Eq. (12).

APPENDIX B: THE NORMAL-STATE GREEN FUNCTION
IN THE PRESENCE OF A MAGNETIC FIELD

As discussed in the main text of this paper, constructing the
EGL formalism requires the calculation of the normal-state
Green function in the presence of a magnetic field with
accuracy O(τ 2). This means that we are not able to rely upon
the phase-integral approximation of Gor’kov given by Eq. (18),
where the classical particle trajectory is assumed to be a
straight line. To go beyond this approximation, we need to take
τ -dependent deviations from such a linear trajectory. A natural
way of doing so is based on the following representation for
the single-particle propagator (see, e.g., Ref. 19):

G(0)(rt,r′t ′) = F (t − t ′) e
i
h̄
Scl , (B1)

where Scl is the classical action

Scl =
∫ t

t ′

mq̇2

2
ds + e

c

∫
C

A(q) · dq, (B2)

where the integrals are taken along the classical trajectory C

that satisfies the equation of motion

q̈ = e

m c
(q̇ × B), (B3)

with the boundary conditions q(t ′) = r′, q(t) = r. We are
interested in the systematic corrections to Gor’kov’s eikonal
approximation and, so, it is of convenience to recast Scl in the
form

Scl = SGor +
∫ t

t ′

m

2

[
q̇2 −

(r − r′

t − t ′
)2]

ds + e

c

∫ ∫
�

B(q) · d�,

(B4)

where SGor is the classical action along the straight line
connecting r′ and r, i.e.,

SGor = m(r − r′)2

2(t − t ′)
+ e

c

∫ r

r′
A(q) · dq, (B5)

which is the basis of the Gor’kov approximation for the
normal-state Green function in a magnetic field. The integral
in Eq. (B2) is over the surface � that is bound by the loop ∂�

consisting of two parts, i.e., the classical trajectory C from r′
to r and the straight line connecting r and r′. The orientation
of the ∂� is positive with respect to the surface.
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To simplify the further analysis, we introduce the decom-
position q = q1 + q2 and recast Eq. (B3) as follows:

q̈1 = e

m c
[q̇1 × B(r)], (B6a)

q̈2 = e

m c
{q̇1 × [B(q) − B(r)]} + e

m c
[q̇2 × B(q)], (B6b)

with the boundary conditions q1(t ′) = r′, q1(t) = r, and
q2(t) = q2(t ′) = 0. This decomposition is such that q1 is the
solution for the uniform (not dependent on q) magnetic field
B(r). This rearrangement is convenient because, as seen below,
the spatial derivatives of B(r) contribute to the propagator only
in the order τ 5/2. Now, we set B(r) = B(r)ez, with ez the unit
vector in the z direction. The corresponding τ expansion for q1

can be found from straightforward calculations with the result
given by (for the moment, we set r′ = 0, t ′ = 0)

q1x = x s/t + τ y�̄ϕ(s) + τ 2 x�̄2χ (s) + O(τ 3), (B7a)

q1y = y s/t − τ x�̄ϕ(s) + τ 2 y�̄2χ (s) + O(τ 3), (B7b)

q1z = z s/t, (B7c)

where �̄ = |e|B̄(r)/mc, with the scaled magnetic field B̄(r) =
1
τ
B(r) (in other words, �̄ stands for the scaled cyclotron

frequency). In addition, q1 = {q1x,q1y,q1z} and r = {x,y,z}
in Eq. (B7), and ϕ(s) and χ (s) are given by

ϕ(s) = s

2

(
1 − s

t

)
, χ (s) = s2

4

(
1 − t

3s
− 2s

3t

)
,

where, as seen, ϕ(t) = χ (t) = 0. It is worth noting that B̄(r)
does not depend on τ [see Eq. (29)].

The solution of Eq. (B6b) is more complicated because it
involves the spatial derivatives of B(r). Let us first consider a
simplified variant when the magnetic field is generally parallel
to the z axis, while its absolute value varies with position, i.e.,
B(q) = B(q)ez. Then, Eq. (B6b) can be rearranged as

q̈2 = e

m c

[
B
(
q(0)

1

) − B(r)
](

q̇(0)
1 × ez

) + O(τ 5/2), (B8)

with q(0)
1 = limτ→0 q1, i.e., q(0)

1 = {xs/t,ys/t,zs/t}. We can
further simplify this equation by making use of

B
(
q(0)

1

) − B(r)

= τ 3/2 s

t
(r · ∇̄)B̄(r) + τ 2 s2

2 t2
(r · ∇̄)2B̄(r) + O(τ 5/2),

where scaled derivatives are introduced, i.e., ∇̄ = τ−1/2∇,
and the operator ∇̄ acts only on the magnetic field. From
the resulting equation, we obtain

q2x = y

t
�(s,r) + O(τ 5/2), (B9a)

q2y = −x

t
�(s,r) + O(τ 5/2), (B9b)

q2z = 0, (B9c)

where �(s,r) satisfies the differential equation

�̈(s,r) = e

m c

[
τ 3/2 s

t
(r · ∇̄)B̄(r) + τ 2 s2

2t2
(r · ∇̄)2B̄(r)

]
,

supplemented by the boundary conditions �(0,r) =
�(t,r) = 0.

Now, we have everything at our disposal to calculate Scl −
SGor and, so, to analyze the corrections to the approximation
employed by Gor’kov. Using Eqs. (B2), (B5), (B7), and (B9),
we find

Scl − SGor = − m

24
τ 2 (x2 + y2)�̄2 t + O(τ 5/2). (B10)

It is remarkable that the spatial derivatives of the magnetic
field contribute to Scl − SGor only in orders higher than τ 2. In
particular, when considering the surface integral in Eq. (B4),
B ∝ τ and the contribution of the spatial derivatives of the
magnetic field to the surface integral, taken in its lowest order,
is proportional to τ 3/2. So, the resulting product is of the order
τ 5/2, which means that it does not make a contribution to
the first term in the right-hand-side of Eq. (B10). In turn, by
calculating the kinetic energy, we find

q̇2 = q̇2
1 + 2

�(s,r)

t
(yq̇1x − xq̇1y) + O(τ 5/2),

which, taken together with q̇1x = x/t and q̇1y = y/t , makes it
possible to conclude that the spatial derivatives of the magnetic
field can contribute to Scl only to the order τ 5/2.

Let us make a few remarks about Eq. (B10). Although this
result was derived under the simplified assumption B(q) =
B(q)ez, it is general and holds even in the presence of spatial
variations in the direction of the magnetic field. This can be
seen from the following. Based on our above consideration, we
expect that the two lowest orders contributing to B(q(0)

1 ) − B(r)
are τ 3/2 and τ 2. Then, Eq. (B6b) can be reduced to

q̈2 = e

m c

{
q̇(0)

1 × [
B
(
q(0)

1

) − B(r)
]} + O(τ 5/2), (B11)

the solution of which reads as (i = {x,y,z})
q2,i = e

m c t

∑
jk

εijk rjϒk(s,r) + O(τ 5/2), (B12)

with εjmk the permutation tensor and Bi(q
(0)
1 ) − Bi(r) = ϔi ,

where ϒi is taken in the two lowest orders in τ [with the
boundary conditions ϒi(0,r) = ϒi(t,r) = 0]. Whatever ϒi , it
does not make a contribution neither to the surface integral nor
to the kinetic term in each order lower than τ 5/2. In particular,
in the kinetic term, we obtain

q̇2 = q̇2
1 + 2

t

∑
ijk

εijkrirkϒj (s,r) + O(τ 5/2),

where the second term is simply equal to zero. We also remark
that detailed calculations make it possible to find that

q2 = eτ 3/2

6m c
s

(
1 − s2

t2

)
(r · ∇̄)[B̄(r) × r] + O(τ 2), (B13)

which means that the above assumption about the two lowest
contributing orders in B(q(0)

1 ) − B(r) is fully correct.
The only thing remaining is to specify the quantum-

fluctuation factor F (t) (t ′ = 0 is still of use). In the Gor’kov
approximation, F (t) = ( m

2πih̄t
)3/2, but this is no longer the case

in the order τ 2 and higher. Within accuracy O(τ 2), we obtain

F (t) =
(

m

2πih̄t

)3/2 (
1 + τ 2�̄2

24
t2

)
, (B14)
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which is nothing else but the fluctuation factor for the
propagator in a uniform magnetic field expanded in τ (see,
e.g., Ref. 23).

Now, based on Eqs. (B4), (B5), (B10), and (B14), and
making the usual imaginary-time substitution t → −it , we
arrive at the following expression for the temperature single-
particle Green function in the presence of a magnetic field
(t → t − t ′ and r → r − r′):

G(0)(rt,r′t ′) = G(0)
Gor(rt,r

′t ′)
{

1 − τ 2�̄2

24

[
(t − t ′)2

+ m

h̄
(r − r′)2

⊥ (t − t ′)
]

+ O(τ 5/2)

}
, (B15)

where (r − r′)⊥ is the component of the vector r − r′ perpen-
dicular to B(r) and G(0)

Gor(rt,r
′t ′) is the Gor’kov approximation

for the normal-state Green function given by Eq. (18). Now,
switching to the Fourier transform of the Green function given
by Eq. (B15), we find Eq. (20). As seen from Eqs. (20) and
(B15), the spatial derivatives contribute to the τ expansion of
the temperature normal-state Green function only in the order
τ 5/2 and higher. However, to construct the EGL formalism (up
to the order τ 3/2 in the order parameter), we need to know
G(0)

ω (r,r′) only up to the order τ 2.

APPENDIX C: EXPANSION FOR THE GAP EQUATION IN
THE PRESENCE OF A NONZERO MAGNETIC FIELD

In Appendix A, we gave the details of the calculations
for the coefficients appearing in the τ expansion of the gap
equation. It is of great importance to specify complications
that appear when generalizing the procedure to the case of a
nonzero magnetic field, i.e., for the normal-state temperature
Green function given by Eq. (20).

1. Terms related to the integral kernel Ka(r,y)

When switching to a nonzero magnetic field, Eq. (A1) can
be rewritten in the form

Ia = 1

g

∫
d3y Ka(r,y)�(y)

= lim
r′→r

1

g

∫
d3z Qa(r,z)�(r + z,r′), (C1)

where the “two-point” order parameter �(r,r′) is defined by
Eq. (21) and

Qa(r,z) = Ka,B=0(z) − gTc

e2B2(r)

24m2c2

×
∑

ω

{
G(0)

ω,B=0(−z)

(
∂2
ω − i

h̄
m z2

⊥∂ω

)
G̃(0)

ω,B=0(z)

+ G̃(0)
ω,B=0(z)

(
∂2
ω + i

h̄
m z2

⊥∂ω

)
G(0)

ω,B=0(−z)

}
+O(τ 5/2), (C2)

with Ka,B=0(z) the zero-magnetic-field kernel Ka given by
Eqs. (6) and (8). Then, introducing the expansion of �(y,r′)

in powers of z = y − r and collecting the relevant orders in τ ,
we obtain the following contributions:

I (1)
a = τ 1/2

g
lim
r′→r

�̄(r̄,r̄′)
∫

d3z Ka,B=0(z), (C3a)

I (2)
a = τ 3/2

g
lim
r′→r

∫
d3z Ka,B=0(z)

(z · ∇̄r)2

2!
�̄(r̄,r̄′), (C3b)

I (3)
a = τ 5/2

g
lim
r′→r

∫
d3z Ka,B=0(z)

(z · ∇̄r)4

4!
�̄(r̄,r̄′), (C3c)

I (4)
a = −τ 5/2Tc

e2B̄2(r̄)

12m2c2
lim
r′→r

�̄(r̄,r̄′)
∫

d3z
∑

ω

G(0)
ω,B=0(−z)

×
(

∂2
ω − i

h̄
m z2

⊥∂ω

)
G̃(0)

ω,B=0(z). (C3d)

After integrating over z (for I (1)
a , I

(2)
2 , I (3)

a see details in
Appendix A; for I (4)

a see the discussion below), Eqs. (C3) are
reduced to

I (1)
a = a1τ

1/2 lim
r′→r

�̄(r̄,r̄′), (C4a)

I (2)
a = a2τ

3/2 lim
r′→r

∇̄2
r �̄(r̄,r̄′), (C4b)

I (3)
a = a3τ

5/2 lim
r′→r

∇̄2
r

[∇̄2
r �̄(r̄,r̄′)

]
, (C4c)

I (4)
a = −a4τ

5/2B̄2(r̄) lim
r′→r

�̄(r̄,r̄′), (C4d)

where the coefficients a1, a2, a3 are given by Eq. (12) and a4

is defined in Eq. (25).
As already mentioned in Appendix A, the first two terms,

i.e., I (1)
a and I (2)

a , appear even in the standard GL domain
and, so, the details of calculating these contributions are well
known from textbooks.2,18 The results are given by Eqs. (22a)
and (22b), and the only difference from the standard GL theory
is that the coefficients a1 and a2 contain now extra terms of the
order τ 2. Calculating I (3)

a is a more involved and complicated
task and, so, the basic details of calculating I (3)

a are outlined
in the following. We remark that

lim
r′→r

(∇̄2
r )2�̄(r̄,r̄′) = lim

r′→r

[(
∇̄r − 2ie

h̄ c
�′

r(r̄,r̄′)
)2
]2

�(r),

(C5)

with �′
r(r̄,r̄′) = ∇̄r�(r̄,r̄′), where

�(r̄,r̄′) =
∫ r̄

r̄′
Ā · dq̄. (C6)

Here, the integral is taken along the straight line connecting
the points r′ and r. By expanding A(q) in powers of q̄ − r̄′, we
can rewrite �(r̄,r̄′) in the form

�(r̄,r̄′) =
∞∑

n=0

(a · ∇̄r′)n

(n + 1)!
(a · Ā(r̄′))

∣∣∣∣
a=r̄−r̄′

. (C7)

As seen, limr′→r ∇r�(r̄,r̄′) = Ā(r̄) and, so, one could expect
that limr′→r(∇̄2

r )2 = (D̄2)2 for n = 1,2 in Eqs. (C4b) and
(C4c). However, this is true only for n = 1 (i.e., for I (2)

a )
and does not hold for n = 2: the limiting procedure and
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differentiating do not commute in general. In particular,
straightforward but tedious calculations show that

lim
r′→r

(∇̄2
r

)2(
�̄(r̄) e− 2ie

h̄ c
�(r̄,r̄′))

= D̄2(D̄2�̄) − 4ie

3h̄ c

∑
ij

∇̄i�̄
(∇̄i∇̄j Āj − ∇̄2

j Āi

)
− 4e2

h̄2c2
�̄
∑
ij

[
∇̄i Āj (∇̄j Āi − ∇̄i Āj )

− 2

3
Āj

(∇̄2
i Āj − ∇̄j ∇̄i Āi

)]
, (C8)

with Ā = {Ā1,Ā2,Ā3} and ∇̄ = {∇̄1,∇̄2,∇̄3}. The above ex-
pression results immediately in Eq. (22c), when keeping in
mind that ∇iAj − ∇jAi = ∑

k εijkBk , with εijk the permuta-
tion tensor and B = {B1,B2,B3}.

Concluding this section, we note that integration over z
in I (4)

a (together with the accompanying summation over the
Matsubara frequencies) is similar to that for I (i)

a with i =
1,2,3. By invoking the Fourier transformation and converting
z2
⊥ into the corresponding derivatives of the Green functions

with respect to the single-particle energy, for I (4)
a we find

I (4)
a = −τ 5/2Tc[1 + O(τ )]

e2B̄2(r̄)

12m2c2
lim
r′→r

�̄(r̄,r̄′)

×
∑

ω

∫
d3k

(2π )3

{
(−2h̄2)

(ih̄ω + ξk)(ih̄ω − ξk)3

+ m

(ih̄ω − ξk)2

( − ∂2
1 − ∂2

2

) 1

ih̄ω + ξk

}
, (C9)

with ∂k = {∂1,∂2,∂3}. This is reduced to

I (4)
a = −τ 5/2Tc[1 + O(τ )] lim

r′→r
�̄(r̄,r̄′)

h̄2e2B̄2(r̄)

9m2c2
N (0)

×
∑

ω

1

|h̄ω|3
∫ +∞

−∞
dα

α2

(α2 + 1)3
. (C10)

Here, the integral is equal to π/8, and for the sum
over the Matsubara frequencies, we obtain

∑
ω 1/|h̄ω|3 =

7ζ (3)/(4π3T 3
c )[1 + O(τ )

]
. This gives Eq. (C4d).

2. Terms related to Kb(r,{ y}3)

The second generation of the terms appearing in the right-
hand side of the field-modified Eq. (7) comes from Eq. (A11),
which can now be rewritten in terms of the auxiliary “two-
point” order parameter, i.e., given by Eq. (21), as

Ib = lim
r′→r

1

g

∫ 3∏
i=1

d3zi Qb(r,z1,z2,z3)�(r + z1,r′)

×�∗(r + z2,r′)�(r + z3,r′), (C11)

where

Qb(r,z1,z2,z3) = Kb,B=0(z1,z2,z3) e� (C12)

and � = �(r,z1,z2,z3) is given by

�(r,z1,z2,z3) = �(r,r + z2) + �(r + z2,r + z1)

+�(r + z1,r) + �(r,r + z2)

+�(r + z2,r + z3) + �(r + z3,r),

(C13)

with �(r,r′) given by Eq. (C6). equation (C13) can be rewritten
in the form

� =
∫ ∫

S1

B(r) · dS1 +
∫ ∫

S2

B(r) · dS2 + O(τ 3/2),

(C14)

where the boundary of the surface S1 consists of the three line
segments that connect the points r, r + z1, and r + z2, i.e.,
r → r + z1 → r + z2 → r; and S2 is bounded by the three line
segments between the points r, r + z3, and r + z2, i.e., r →
r + z3 → r + z2 → r. Linear boundaries make it possible to
analytically calculate �(r,z1,z2,z3), i.e.,

� = τ {B̄(r̄) · [(z1 × z2) + (z3 × z2)]} + O(τ 3/2). (C15)

Now, we have everything at our disposal to collect the
relevant terms up to O(τ 5/2) in Eq. (11). Based on the
consideration in Appendix A, one obtains

I
(1)
b = −b1τ

3/2 lim
r′→r

|�̄(r̄,r̄′)|2�̄(r̄,r̄′), (C16)

I
(2)
b = −b2τ

5/2 lim
r′→r

{
2�̄(r̄,r̄′) |∇̄r�̄(r̄,r̄′)|2

+ 3�̄∗(r̄,r̄′)[∇̄r�̄(r̄,r̄′)]2 + �̄2(r̄,r̄′)
×∇̄2

r �̄∗(r̄,r̄′) + 4|�̄(r̄,r̄′)|2∇̄2
r �̄(r̄,r̄′)

}
, (C17)

which results in Eqs. (23) (here, ∇̄ can safely be replaced by
D̄ in the relevant expressions).

It may seem that there is one more term of the order τ 5/2

coming from the kernel Kb in the presence of a nonzero
magnetic field, i.e.,

I
(3)
b = τ 5/2

g
|�̄|2�̄

∫ 3∏
i=1

d3zi Kb,B=0(z1,z2,z3)

×{B̄(r̄) · [(z1 × z2) + (z3 × z2)]}. (C18)

However, we immediately find that I
(3)
b = 0 due to

Kb,B=0(z1,z2,z3) = Kb,B=0(−z1, − z2, − z3).
Concluding Appendix C, we note that the only term

appearing in Eq. (11) from the integral with the kernel Kc

is proportional to |�̄|4�̄ and, so, does not change its form
in the presence of a nonzero magnetic field (here, corrections
from B 
= 0 can appear only in higher orders in τ ).
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