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Enhanced stability of vortex-antivortex states in two-component mesoscopic superconductors
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Using the Ginzburg-Landau (GL) theory, we calculate the stability of sample symmetry-induced vortex-
antivortex molecules in a mesoscopic superconducting bilayer exposed to a homogeneous magnetic field. We
demonstrate the conditions under which the two condensates cooperatively broaden the field-temperature stability
range of the composite (joint) vortex-antivortex state. In cases when such broadening is not achieved, a reentrance
of the vortex-antivortex state is found at lower temperatures. In a large portion of the phase diagram noncomposite
states are possible, in which the antivortex is present in only one of the layers. In this case, we demonstrate that
the vortex-antivortex molecule in one of the layers can be pinned and enlarged by interaction with a vortex
molecule in the other. Using analogies in the respective GL formalisms, we map our findings for the bilayer onto

mesoscopic two-band superconductors.

DOLI: 10.1103/PhysRevB.87.024501

I. INTRODUCTION

Intuitively, one expects that the current of superconducting
vortices in a homogeneous magnetic field can only turn in
one particular direction, bundling the flux inside the vortex
core. While true for bulk superconductors, this is not always
the case in mesoscopic superconductors where confinement
of the condensate plays an important role, and where the
symmetry of the sample can stimulate the creation of one
or more antivortices, i.e., vortices with currents circulating
in the opposite direction, thus expelling flux.! The existence
of such vortex-antivortex (V-Av) states can be understood
from the Ginzburg-Landau (GL) theory close to the su-
perconducting/normal state (S/N) boundary, where the GL
equations for the superconducting order parameter become
linear and the order parameter distribution must obey the
symmetry of the sample. As a result, for, e.g., vorticity
L =3 in a square sample, a state with a central antivortex
surrounded by four vortices (L =4 — 1 = 3) becomes the
ground state. This particular V-Av state was studied extensively
in Ref. 2, also further away from the S/N boundary. The
main findings were that the V-Av state was highly sensitive
to defects and imperfections, and that the V-Av molecule is
very compact (smaller than the coherence length &), both
serious drawbacks regarding the experimental realization. To
overcome these problems it was shown in Refs. 3 and 4
that nanoengineered pinning can make the V-Av state more
robust against imperfections and can multiply enlarge the
V-Av molecule. Nevertheless, direct observation of the V-Av
state remains one of the main experimental challenges in
mesoscopic superconductivity to date.

Notwithstanding the many attempts, the conceptually
novel V-Av configuration has not been found experimentally.
Therefore, there still exists a need for alternative proposals
of a different system where this state can be stabilized in
a substantially larger part of the field-temperature (H-T)
parameter space, with a clear separation of the vortices and
the antivortex, and if possible, with some tunability of the
V-Av state.
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In this paper, we propose that the latter can be realized
in mesoscopic superconducting bilayers, readily accessible in
experiment.” Our system consists of two thin (<&) squares
of (in general) different superconducting materials, separated
by an insulating layer that is sufficiently thin to allow
for Josephson coupling between the two superconductors.
This system can then be described by a Lawrence-Doniach
Ginzburg-Landau (LDGL) model for just two superconducting
layers. Due to the coupling between the superconducting layers
and the different critical parameters and intrinsic length scales,
nontrivial physical behavior is expected to emerge.

We here focus on the conditions in which the top layer
induces the V-Av in the bottom layer at higher temperatures,
and vice versa—the bottom layer imprints the V-Av state
on the top one at low temperatures. The main idea is that
in such a case the temperature interval with stable V-Av
state can be substantially enlarged as compared to a regular
mesoscopic sample. However, the Josephson and magnetic
couplings between the layers add to the complexity of the
competing interactions in this system. In the present paper, we
describe the novel effects stemming from this competition.

The paper is organized as follows. In the next section, we
outline the theoretical formalism used in the study, and give
details of the considered sample geometry. In Sec. III, we
demonstrate the obtained stability ranges of various found
vortex-antivortex states, as a function of studied parameters.
Sec. IV is subsequently devoted to the analysis of the influence
of different parameters on the enhancement of the vortex-
antivortex state. In Sec. V, we translate our findings to a
different system of recent interest—a two-band mesoscopic
superconductor—after showing that the GL theoretical model
for two-band superconductivity can be mapped onto the LDGL
model for a bilayer system. We summarize our findings in
Sec. VL.

II. THEORETICAL FORMALISM AND
SAMPLE PARAMETERS
Our theoretical investigation is based on the LDGL theory®
in which the free energy of a very thin bilayer system (two
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superconducting layers of thickness d, separated by a spacer
layer of thickness s) in a perpendicular magnetic field H is
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where n = 1,2 indexes the layers. Here the last integral is
taken over the entire space, whereas the first two are assumed
uniform over the thickness superconducting and spacer layers,
respectively (justified for thin layers), and integrated over
surface projection of the layers. The constant I" quantifies the
Josephson coupling between the superconducting layers, and
is in general inversely proportional to the mass anisotropy of
the tunneling Cooper pair and the squared interlayer spacing
(assumed small here). Minimizing Eq. (1) with respect to ¥,
and A leads to the LDGL equations:
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where ©®(x) denotes the Heaviside step function, and
z=0 1is taken in the center of the sample. Equa-
tions (2) are written in dimensionless form, with v, =
W, /W0, Yo = &/ —Qno/ B> @ = maatap/mioyo, m = my/my,
8 = JoaoBi/aoBr = Yoo/ W10, ¥ =Ts/ajod, and 7, =
—-In(T/T,,) (T, are the critical _temperatures of the layers,
when decoupled).® TT = —iV — A is the gauge-invariant mo-
mentum, with vector potential scaled by fic /2e&1g = ¢o/2m&1
(¢po being the flux quantum). Here &1 = 71 /+/—2m a1 denotes
the coherence length of the first layer at zero temperature, and
also serves as unit of all distances. «,, are the GL parameters
of the uncoupled layers, defined for each layer independently
as the ratio of respective A (penetration depth) and & at zero
temperature.

The equations for v, are solved in 2D, and the super-
currents j, in Eq. (2) are also calculated in 2D as j, =
RV, (=iV — A, ] (where R stands for the real part).
However, the equation for A in Eq. (2) is solved in 3D. We
then solve the system of Eqgs. (2) self-consistently, with the
Neumann boundary condition (imposing no supercurrent can
pass through the sample boundary) and by mapping it on a
regular square grid. Details on the numerical procedure can be
found in Ref. 9.

Without loss of generality, we consider a sample of square
shape. In order to have an optimally enlarged V-Av molecule,*
we will use our previously proposed geometry with 2 x 2 holes
(unless stated otherwise). All the obtained results can anyhow
be extrapolated to the case of a plain square, as the symmetry
of the sample, and thus the physical origin of the V-Av state
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therein, is the same. The size (side) of the sample will be
further denoted by w. The holes are of square shape with side
wy,, and are centered in the sample at a distance 2d, from each
other [see Fig. 2(b)]. In what follows, we consider a sample
with w = 10&;9, w;, = 1.5&19, and d, = 1.75&;9, with each
layer having thickness 1.0&;9. After scaling all temperatures
to 7,1, we are left with six parameters to fully characterize the
superconducting properties: the ratio of critical temperatures
of the layers T,,/T,, the ratio of the coherence lengths of
two layers at zero temperature o, the ratio of the Cooper-
pair densities in the absence of any external influence §,
strength of Josephson coupling y, mass ratio m, and the GL
parameter k; (k3 is then fixed by the choice of the preceding
parameters).

III. STABILITY RANGE OF THE V-Av STATES

Without mutual coupling, the two superconductors in
the bilayer are independent of each other, and in zero
field superconductivity in them would cease at respective
temperatures 7,,. In this case, one can apply the earlier
findings, and conclude that the L =4 — 1 V-Av state should
be found directly below the S/N boundary [T.(H)] and
should extend down to temperatures at which the side of
the sample measures ~7&(7T).* However, the two layers can
be of different materials having very different length scales
and critical temperatures, so their V-Av stability regions—in
the absence of coupling—would be displaced in the magnetic
flux-temperature (¢-7') diagram, as shown in the left column
of Fig. 1. In Figs. 1(a)-1(c), we increase T,,, so that the V-Av
stability region of the second layer shifts up in temperature
following the shift of the S/N boundary of that layer.

In the presence of Josephson coupling, one immediately
assumes that the superconductor dominant in superconducting
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FIG. 1. (Color online) ¢-T stability regions of the L =4 — 1
V-Av state in a bilayer square with 2x2 holes, in the absence of
Josephson coupling (left) and for nonzero coupling (right). The
parameters other than shown are « = 0.3,6 = 9, and k,, > 1.
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properties should impose its vortex configuration on the
weaker superconductor, and this is certainly the case for
T > T.»(H), where the first layer is in the V-Av state, and
the second layer superconducts solely due to the coupling.
However, at lower temperatures the second layer hosts the
V-Av state, and in order to impose it on the first layer one
needs & > 1, as that parameter regulates the influence of ¥,
on Y| in Eq. (2). Therefore, if the latter condition is met, the
superconducting condensate in a square bilayer can potentially
sustain the V-Av state fo far lower temperatures compared
to the case of separate layers. To ideally extend the stability
region of the joint V-Av state, the lower boundary of the V-Av
stability region in the first layer should be close to the upper
boundary of the V-Av region in the second layer, i.e., around
T.»(H). When the V-Av state in the second superconductor is
found at much lower temperatures than the one of the first
superconductor [see Fig. 1(d)], or for insufficiently strong
Josephson coupling, no enlargement of the stability region
of the V-Av state is realized. Instead, one finds only at high
temperatures an island of the composite V-Av state (i.e., a state
where the V-Av molecule exists in both superconductors). As
temperature is lowered, the L = 4 — 1 state disappears and
reappears only in the second layer, while the vortex state in the
first superconductor is a simple L = 3 noncircular symmetric
multivortex [shown in Fig. 2(b)]. When not every (anti)vortex
in one layer is matched by a (anti)vortex in the other layer, we
refer to such a state as a noncomposite one.

In Fig. 1(e), with T, increased as compared to Fig. 1(d),
one observes two separate regions of the composite V-Av
state—the top region induced by the first layer and the bottom
region due to the second layer. As a unique property of our
bilayer system, we predict a reentrance of the composite V-Av
state by sweeping temperature up or down. When further
increasing T;,, Fig. 1(f) shows that the stability regions of
the V-Av states in the two superconductors merge into a
large region of a composite V-Av state. A similar effect is
found with increasing Josephson coupling [see Fig. 2(a)],
where the composite V-Av state expands at the expense of
the noncomposite antivortex state (L = 3 in first layer and
L =4 — 1 in the other). However, the latter state is also an
interesting one, since it involves an antivortex in just one of
the layers. In Fig. 2(b) we show the Cooper-pair density plots of
Y1 and ), respectively for such a state, and location of vortices
and an antivortex can be better visualized in the circulation of
phase of the order parameters shown in Fig. 2(c). Remarkably,
this state is asymmetric; i.e., the antivortex in the second layer
is not centered. This is a consequence of the interaction of
the V-Av molecule with an asymmetric L = 3 multivortex
state (one hole without vorticity) in the first layer. Notably, as
already shown in Figs. 1 and 2, this asymmetric state can be
stable in a rather large portion of the ¢-T parameter space. One
should note that this state as a whole is fourfold degenerate in
energy (can be rotated by integer multiples of 90° due to the
sample symmetry), but is reproducible in every other respect.

Finally, in the analysis of Fig. 2(a), we briefly point out the
observed decrease of the top critical temperature of the com-
posite V-Av state. This is due to the increased Josephson cou-
pling, which enters the temperature-dependent terms in Eq. (2)
and gradually decreases the overall 7, of the sample to the
average between the two critical temperatures of the two layers.
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FIG. 2. (Color online) (a) ¢-T stability regions of the L =4 — 1
V-Av state in a 2x 2 perforated square bilayer, for increasing Joseph-
son coupling. Other parameters are « = 0.3, § =9, and T, = T,4.
(b) The Cooper-pair density in the two layers for the noncomposite
vortex-antivortex state, marked by a point in diagram (a). (c) The
distribution of phase of the order parameters shown in (b), facilitating
visualization of (anti)vortices.

IV. OTHER CONDITIONS FOR ENHANCED V-Av STATE

In mesoscopic superconductivity, one of the key param-
eters is the coherence length of the Cooper-pair condensate.
Therefore, in Fig. 3, we show the calculated V-Av ¢-T stability
regions for increasing parameter «, i.e., decreasing the nominal
coherence length of the second layer (§,). We observe that by
increasing «, the stability region of the composite V-Av state
first expands, but subsequently shrinks as o approaches unity.
Namely, as & decreases, the intrinsic critical temperature of
the second layer at zero field 7., does not change, but its
value for a given field increases [i.e., T.o(H) boundary tilts
upwards]. This moves the intrinsic V-Av stability regions in
the two layers closer together which enables their merging
into a larger stability region for the composite V-Av state,
similarly to what is shown in Fig. 1. However, at the same
time, decreasing &, increases the effective size of the sample,
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FIG. 3. (Color online) The evolution of the stability region of the composite L = 4 — 1 V-Av state in a 2x2 perforated square bilayer with
the increasing parameter « (decreasing &, /&;). Other parameters are y = 0.057,8 = 9, and T,, = 0.957,.

and a higher temperature is needed to enhance the effect of
confinement and induce the V-Av state in the second layer.
This eventually shrinks the ¢-T stability region of the V-Av
state in the second layer, consequently of the composite state
as well.

When the layer with the lower critical temperature is able
to electronically influence the other layer more strongly than
the other way around, it will result in a substantial extension
of the composite V-Av state in a bilayer system. The layer
with lower T, therefore needs to have a larger Cooper-pair
density. For T,y > T, we thus need § > 1. The influence of
4 is clearly illustrated in Fig. 4. In panels (a) and (b) § is small,
so the influence of the first layer on the second is strong. As a
consequence, the vortex state of the first layer is imprinted on
the second one, and the intrinsic V-Av state of the second layer
is almost completely destroyed. In Fig. 4(c), where § is larger,
the V-Av in the second layer revives. It is however not strong
enough to induce the V-Av state in the first layer in its full ¢-T
stability region. When § is increased further, as in Fig. 4(d),
the second layer is finally able to impose the V-Av state on the
first layer in a larger portion of the ¢-T space.

As alast part of the discussion, we point out the importance
of the magnetic coupling between vortices in the two layers.
Even in a sample without holes, a noncomposite antivortex
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FIG. 4. (Color online) The evolution of the stability region of the
composite L =4 — 1 V-Av state in a 2x2 perforated square bilayer
with the increasing § (the ratio of Cooper-pair density in the two
layers at zero temperature and zero magnetic field). Other parameters
are y = 0.057,« = 0.3, and T, = 0.95T,,.

state can be realized—such as the one shown in Fig. 5. In
this case, we have the L =4 state in one layer, with four
separated vortices in a multivortex state, and the L =4 —
1 V-Av state in the second layer. While the vortices in the
first layer adopt a fourfold-symmetric position due to their
mutual repulsion, the vortex state in the second layer becomes
fourfold symmetric due to the magnetic field generated by
the first layer. Moreover, the vortices of the first layer now
act as magnetic pinning centers for the vortices in the second
layer, similarly to the influence of 2 x 2 holes, and help to
realize a much expanded V-Av molecule in a plain square with
V-Av distance of ~1.4&; (in Ref. 1, this distance was below
the coherence length). Notice that this effect does not strictly
depend on sample geometry, as four vortices in the L = 4 state
form a square configuration even in a sufficiently large circular
superconducting disk.'”

FIG. 5. (Color online) Contour plots of the Cooper-pair density of
the first (top) and the second layer (bottom) forthe L = 4/L =4 — 1
state in a mesoscopic bilayer square (no holes), demonstrating the V-
Av molecule in the second layer which is pinned by the vortices of the
first layer through only magnetic coupling. The parameters used are
w =165, 0 =025,y =0,§=045,¢/¢0 =5,T =0.6T,1,k; =
0.5, and k, = 0.555. The interlayer distance is greatly exaggerated
in the figure, to enable visualization of the vortex states in both
layers.
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V. V-Av MOLECULE IN TWO-BAND MESOSCOPIC
SUPERCONDUCTORS

The past decade has seen a large scientific attention on
superconducting MgB,. Among other things, this material
possesses two superconducting gaps.!''* In other words,
it hosts two superconducting condensates, and their mutual
coupling (e.g., Josephson and/or magnetic one), in combi-
nation with different intrinsic length scales and temperature-
dependent properties, makes the net behavior highly nontrivial.
Furthermore, the effect of the boundary in the mesoscopic
regime can be very different for the two condensates, and can
lead to novel physics. For example, noncomposite vortices
(with cores displaced in the two bands) and fractional vortices
(with noninteger net flux) have been predicted in mesoscopic
two-band disks.'>"!"

We will show that this system has similarities to the
superconducting bilayer studied in the preceding sections of
this paper. To make this analogy clearer, we write here the
so-called two-component (TC) GL theory, which reduces to
the dimensionless equations'>!®

02y — Gu — [Py — v = 0,

- n
2y, — alxa — Y2y — an—‘ywl =0, 3)
2
nd= L5425
- Klz.]l K22]2-

In these equations the order parameters are expressed in W
[defined as W? = 872T?/7¢(3)], lengths are measured in
& = h?v?/6W? (which now has the meaning of the coherence
length of the condensate in the first band, at zero temperature,
as if it was decoupled from the system), and the vector potential
in Ag = 2m&; /¢p. vi=1» are the Fermi velocities in the two
bands which define the parameter o = (v;/ v2)%, a measure
for the squared ratio of the intrinsic coherence lengths in
two bands (analogously to the bilayer case). The temperature
dependence is captured by x; = S;/(n;n) — In(T/T.), with
S1=Ap —mnS, S =iy —nanS, §= A +nint
Vi — nain)? + 4n1n2)\%2)/(2n1n2n), and n =det A =
AMiAa — )\%2. A= M’\:“ M i;f | is the (symmetric) coupling
matrix, using the notation of Ref. 19. From the above
expressions one can obtain the intrinsic critical temperatures,
i.e., the temperatures at which the gaps would deplete in the
absence of coupling: T,; = T, exp(—S;/n;n), again adding to
similarities to the bilayer case, where each layer has its own
T, in the absence of coupling. y = Ajp/nn determines the
strength of the Josephson-like coupling between the band
condensates. n; represent the partial density of states in the two
bands (preserving n; + n, = 1). The intrinsic GL parameters
of each band can be defined as k7 = 7/2n; N(0)W?¢} and
k3 = k?a’ny /ny. Summarizing, we have eight parameters to
fully characterize the superconducting properties: v; (which
only enters the scaling of sizes/distances), o, 11, A1, A2, A2,
W (setting T,), and N(0) (entering ;). The supercurrents Ji
in Eq. (3) are defined as j; = RIY;(—iV — A)y;], again the
same as in Eq. (2) for the bilayer system.

With the Neumann boundary condition that no supercurrent
can pass through the boundary of the sample, we solve this
system of equations self-consistently on a square Cartesian
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grid, for the exact same size and geometry of the sample used
for the bilayer in Sec. II. The boundary conditions on the
supercurrent in this calculation have an additional important
consequence, as they strongly couple the TCGL equations
and enhance the difference in spatial profiles of two order
parameters. For that reason, we preserve the higher order
terms in the GL model, in spite of the issues pointed out
in Ref. 19. Although incomplete, those terms are essential
for the description of the involved physics in the mesoscopic
two-band superconductors, and are also instrumental to the
analogy to bilayers—which is our main goal in this section.
Namely, one can immediately notice the striking resemblance
of Egs. (2) and (3). The equations for the order parameters have
the same shape, though somewhat different coefficients, while
the equations for the magnetic field are identical in the two
cases (of course, after rescaling to different respective units).
Motivated by this, in what follows, we examine whether similar
physics to that reported for bilayers in Secs. III and IV holds
for two-band samples of the same size and geometry. This
is not directly clear, since for example Josephson coupling
multiplies both order parameters in LDGL equations, and
that with opposite signs. In TCGL, parameters x and y are
interdependent via microscopic parameters, and in a rather
complicated manner. Another important difference can be that
the coupling term in the second equation of LDGL does not
directly depend on the ratio of the length scales of the two
components, whereas in TCGL it does.

A. Influence of the microscopic parameters of the bands

Without mutual coupling, the two bands are independent
and superconductivity in them ceases at their respective
temperatures 7;. Therefore, the complete discussion from the
beginning of Sec. III applies to two-band samples as well.
We therefore construct the applied magnetic flux-temperature
(¢-T) phase diagram in Fig. 6, in analogy to Fig. 1. From top to
bottom X,; is increased, and with it the critical temperature of
the second band T,,, with the effect that the V-Av stability
region of the second band is shifting up in temperature.
This picture is of course unrealistic—any introduced coupling
between bands will also couple the V-Av stability regions
(see the right panel of Fig. 6). In comparison with Fig. 1, we
notice the very similar behavior of the stability range of V-Av
molecules, as well as the noncomposite states. For T > T,,
the first band mostly imposes its V-Av state on the second
band. To extend the stability region of the V-Av state to lower
temperatures (T < T,), the reverse should be enabled; i.e.,
one needs an;/n, K 1, as this multiplying factor in Eq. (3)
ensures that the influence of 1, on /| is much stronger than the
opposite. In Fig. 6, we used an;/n, = 0.0125. The interband
coupling was introduced via the nonzero A,. Considering
other constants in the A matrix, the choice of A;; = 23 inFig. 6
may seem unrealistic. However, in the other notation from the
literature )»Si]f) = n,A,y, one has A(llil) =0.92, )L(ll;) =0.015,

A9 =0.36, and A3y = 0.77 for the middle panel of Fig. 6.
These values are of the same order as the ones readily found
in the literature.?>>3 In this notation, we can express in a
different way the criterion to obtain an extended V-Av region
in the ¢-T space. Namely, A2 < A{1" directly means that the
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FIG. 6. (Color online) ¢-T stability regions of the L =4 — 1
V-Av state in a two-band square with 2x2 holes, in the absence
of interband coupling (left) and for nonzero coupling (right). The
parameters other than shown in the figures are @ = 0.3, A;; = 23,
ny = 004, and Ki > 1.

second band has a stronger influence on the first band than the
other way around.

Let us now discuss the influence of the coupling between
the bands based on the results shown in Fig. 7. As the interband
coupling is increased (by increasing A;,), the influence of the
second condensate on the first one gradually increases as the

[ v-Av in both bands
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FIG. 7. (Color online) The stability regions of the L =4 — 1
V-Av state in a 2x2 perforated two-band square, as a function
of increasing interband coupling (via X;;). Other parameters are
o = 03, A = 23, Ap = 094, n, = 004, and K1 > 1.
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FIG. 8. (Color online) The evolution of the stability region of
the composite L =4 — 1 V-Av state in a 2x2 perforated two-band
square with the increasing « and thus decreasing Fermi velocity and
coherence length of the second band. Other parameters are n; = 0.04,
A =23, A1 = 0.2, and 1y, = 0.96.

T/T

composite state annexes a larger part of the V-Av state stability
region of the second band. At the same time, the stability region
of the noncomposite V-Av state is reduced, but at a slower rate
since the influence of the first band on the second one is weaker
than the opposite. With further increasing coupling, we observe
that the composite V-Av state expands further at the expense
of the noncomposite state (which finally disappears). During
this process, we notice a decrease of the critical temperature
for the V-Av state in Fig. 7, similarly to that observed for
bilayers in Fig. 2. However, the origin is slightly different—in
the present case increasing A, increases the coupling constant
y—but also induces a strong decrease of the intrinsic critical
temperatures 7; which all combine to a decreasing overall 7.

Following further the reasoning presented in Sec. IV, we
now discuss the influence of the length scales of the two-band
condensates. The difference between those lengthscales was
recently thoroughly discussed in literature,?* and is known to
potentially lead to new physical phenomena,” while being
particularly pronounced close to the hidden critical point
of two-band superconductors.’® In Fig. 8, we show the
calculated ¢-T phase diagrams for increasing parameter «, in
a 2x2 perforated two-band square. Changing this parameter
in TCGL corresponds to changing the Fermi velocity v, and
consequently changing the intrinsic coherence length &, of the
second band, while & remains constant. It then comes as a
little surprise that the results of Fig. 8 are very similar to our
results for a bilayer in Fig. 3, since the LDGL parameter « has
the same meaning. Actually, all features observed in Fig. 3 are
reproduced in Fig. 8. However, one subtle difference exists,
since in the TCGL model increasing « also strengthens the
influence of the first band on the second one [see Eq. (3)].
This contributes to the faster reduction of the stability region
of the V-Av state with increasing « from intermediate values
to unity.

After the phenomenon described in our analysis of bilayers
in Sec. III, we emphasize here once more the possible reentrant
behavior of the V-Av state as a function of temperature,
observed also in the two-band sample. For example, in Fig. §,
for « = 0.2 we notice two separate islands of the composite
V-Av state, observable by, e.g., changing symmetry of the
magnetic field profile obtained by scanning Hall probe imaging
at different temperatures.?” For o = 0.15 two separate islands
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FIG. 9. (Color online) Stability regions in ¢-T parameter space
of the L =4 — 1 V-Av state in a 2 x2 perforated two-band square for
different local density of states n, (and correspondingly changing n,).
Other parameters are « = 0.3, A1} = 23, 11, = 0.37,and 15, = 0.83.

of the V-Av state are found only in the second band, which
may be verified experimentally by imaging only the second
band (as is readily done for the = band of MgB,; see Ref. 28).
The splitting/merger of the stability regions of the V-Av state
in two bands can also be realized by control of the local
density of states, which might be achieved to certain extent
by local carrier injection.? As explained earlier, for a broad
¢-T stability of the composite V-Av state one needs a low
any /n, factor, which can be realized by a small 7. Increasing
ny increases T, and decreases T.,, and thus results in a gradual
separation of this region into two, as we show in Fig. 9.
Increasing n; also diminishes the effect of the second band
on the first one, and the composite V-Av state can no longer
be found at low temperatures (although present in the second
band). As a result, for, e.g., n; = 0.04 in Fig. 9, we observe
the reentrance of the composite V-Av state with changing
temperature, whereas for larger n; the reentrance was found
for the V-Av state only in the second band.
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VI. CONCLUSIONS

In summary, we demonstrated that the V-Av state can
be stabilized in mesoscopic single-band superconducting
bilayers and two-band samples in a far larger portion of
the field-temperature phase diagram than is the case for
single mesoscopic polygons. We also showed that V-Av
states in two-component samples are much richer than their
single-component counterparts, and appear in composite and
noncomposite (asymmetric) form, either of which can show
reentrant behavior as a function of temperature. This is
observable through, e.g., the symmetry of the magnetic field
profile measurable by scanning Hall probe microscopy.?’
Alternatively, the vortex state in either component can also
be directly imaged by, e.g., scanning tunneling microscopy.
Although this work was motivated by possibly improved
conditions for the observation of the V-Av molecule in
mesoscopic samples, and strengthening of the molecule itself,
it is clear from our results that more studies of bilayer
systems are needed—related to rich possible vortex phases,
but also to their dynamics in applied drive to one or both
layers, as well as the flux cutting phenomena of relevance to
layered bulk superconductors such as high-7, ones. Likewise,
more work should be done on two-band samples, since our
results reiterate the possibility of vortex decomposition in
such samples (reported earlier in the literature; see Refs. 15,16
and citing articles), which is bound to generate exciting new
physics in both static and dynamic regimes. Unfortunately,
in spite of the recent resurgence of interest in multiband
materials (mainly due to iron pnictides), almost no work has
been experimentally done to date on mesoscopic samples.
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