toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Peeters, J.; Steenackers, G.; Sfarra, S.; Legrand, S.; Ibarra-Castanedo, C.; Janssens, K.; van der Snickt, G. url  doi
openurl 
  Title IR reflectography and active thermography on artworks : the added value of the 1.53 µm band Type A1 Journal article
  Year (down) 2018 Publication Applied Sciences Abbreviated Journal Appl Sci-Basel  
  Volume 8 Issue 1 Pages 50  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Infrared Radiation (IR) artwork inspection is typically performed through active thermography and reflectography with different setups and cameras. While Infrared Radiation Reflectography (IRR) is an established technique in the museum field, exploiting mainly the IR-A (0.71.4 µm) band to probe for hidden layers and modifications within the paint stratigraphy system, active thermography operating in the IR-C range (35 μ m) is less frequently employed with the aim to visualize structural defects and features deeper inside the build-up. In this work, we assess to which extent the less investigated IR-B band (1.53 μ m) can combine the information obtained from both setups. The application of IR-B systems is relatively rare as there are only a limited amount of commercial systems available due to the technical complexity of the lens coating. This is mainly added as a so-called broadband option on regular Mid-wave infrared radiation (MWIR) (IR-C/35 μ m) cameras to increase sensitivity for high temperature applications in industry. In particular, four objects were studied in both reflectographic and thermographic mode in the IR-B spectral range and their results benchmarked with IR-A and IR-C images. For multispectral application, a single benchmark is made with macroscopic reflection mode Fourier transform infrared (MA-rFTIR) results. IR-B proved valuable for visualisation of underdrawings, pencil marks, canvas fibres and wooden grain structures and potential pathways for additional applications such as pigment identification in multispectral mode or characterization of the support (panels, canvas) are indicated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424388800050 Publication Date 2018-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2076-3417 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.679 Times cited 4 Open Access  
  Notes ; This research has been funded by the University of Antwerp and the Institute for the Promotion of Innovation by Science and Technology in Flanders (VLAIO) by the support to the TETRA project 'SINT: Smart Integration of Numerical modelling and Thermal inspection' with project number HBC.2017.0032. Furthermore, the research leading to these results has received funding from the Research Foundation Flanders (FWO) travel grant V4.010.16N and the Stimpro stimuli of UAntwerpen under project ID 32864. We would like to end with a special thanks to the MiViM research chair of Prof. Xavier Maldague and the support of the full team in supporting the preliminary measurements of this research. ; Approved Most recent IF: 1.679  
  Call Number UA @ admin @ c:irua:149164 Serial 5677  
Permanent link to this record
 

 
Author Nematollahi, P.; Neyts, E.C. doi  openurl
  Title A comparative DFT study on CO oxidation reaction over Si-doped BC2N nanosheet and nanotube Type A1 Journal article
  Year (down) 2018 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 439 Issue 439 Pages 934-945  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study, we performed density functional theory (DFT) calculations to investigate different reaction mechanisms of CO oxidation catalyzed by the Si atom embedded defective BC2N nanostructures as well as the analysis of the structural and electronic properties. The structures of all the complexes are optimized and characterized by frequency calculations at the M062X/6-31G* computational level. Also, The electronic structures and thermodynamic parameters of adsorbed CO and O-2 molecules over Si-doped BC2N nanostructures are examined in detail. Moreover, to investigate the curvature effect on the CO oxidation reaction, all the adsorption and CO oxidation reactions on a finite-sized armchair (6,6) Si-BC2NNT are also studied. Our results indicate that there can be two possible pathways for the CO oxidation with O-2 molecule: O-2(g) + CO(g) -> O-2(ads) + CO(ads) -> CO2(g) + O-(ads) and O-(ads) + CO(g) -> CO2(g). The first reaction proceeds via the Langmuir-Hinshelwood (LH) mechanism while the second goes through the Eley-Rideal (ER) mechanism. On the other hand, by increasing the tube diameter, the energy barrier increases due to the strong adsorption energy of the O-2 molecule which is related to its dissociation over the tube surface. Our calculations indicate that the two step energy barrier of the oxidation reaction over Si-BC2NNS is less than that over the Si-BC2NNT. Hence, Si-BC2NNS may serve as an efficient and highly activated substrate to CO oxidation rather than (4,4) Si-BC2NNT. (C) 2018 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000427457100112 Publication Date 2018-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 8 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.387  
  Call Number UA @ lucian @ c:irua:150745 Serial 4960  
Permanent link to this record
 

 
Author Aydin, H.; Bacaksiz, C.; Yagmurcukardes, N.; Karakaya, C.; Mermer, O.; Can, M.; Senger, R.T.; Sahin, H.; Selamet, Y. doi  openurl
  Title Experimental and computational investigation of graphene/SAMs/n-Si Schottky diodes Type A1 Journal article
  Year (down) 2018 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 428 Issue 428 Pages 1010-1017  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We have investigated the effect of two different self-assembled monolayers (SAMs) on electrical characteristics of bilayer graphene (BLG)/n-Si Schottky diodes. Novel 4“bis(diphenylamino)-1, 1':3”-terpheny1-5' carboxylic acids (TPA) and 4,4-di-9H-carbazol-9-y1-1,1':3'1'-terpheny1-5' carboxylic acid (CAR) aromatic SAMs have been used to modify n-Si surfaces. Cyclic voltammetry (CV) and Kelvin probe force microscopy (KPFM) results have been evaluated to verify the modification of n-Si surface. The current-voltage (I-V) characteristics of bare and SAMs modified devices show rectification behaviour verifying a Schottky junction at the interface. The ideality factors (n) from ln(I)-V dependences were determined as 2.13,1.96 and 2.07 for BLG/n-Si, BLG/TPA/n-Si and BLG/CAR/n-Si Schottky diodes, respectively. In addition, Schottky barrier height (SBH) and series resistance (Rs) of SAMs modified diodes were decreased compared to bare diode due to the formation of a compatible interface between graphene and Si as well as n-n interaction between aromatic SAMs and graphene. The CAR-based device exhibits better diode characteristic compared to the TPA-based device. Computational simulations show that the BLG/CAR system exhibits smaller energy-level-differences than the BLG/TPA, which supports the experimental findings of a lower Schottky barrier and series resistance in BLG/CAR diode. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000415227000128 Publication Date 2017-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 2 Open Access  
  Notes ; This work was supported by TUBITAK (The Scientific and Technical Research Council of Turkey) with project number 112T946. We also thank AQuReC (Applied Quantum Research Center) for Raman measurements. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Bilim Akademisi The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 3.387  
  Call Number UA @ lucian @ c:irua:154608UA @ admin @ c:irua:154608 Serial 5101  
Permanent link to this record
 

 
Author Sathiyamoorthy, S.; Girijakumari, G.; Kannan, P.; Venugopal, K.; Thiruvottriyur Shanmugam, S.; Veluswamy, P.; De Wael, K.; Ikeda, H. pdf  url
doi  openurl
  Title Tailoring the functional properties of polyurethane foam with dispersions of carbon nanofiber for power generator applications Type A1 Journal article
  Year (down) 2018 Publication Applied surface science Abbreviated Journal Appl Surf Sci  
  Volume 449 Issue 449 Pages 507-513  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract To produce effective thermoelectric nanocomposites, carbon nanofibers (CNF) incorporated polyurethane (PU) foams with nanocomposites are prepared via in-situ polymerization method to create a synergy that would produce a high thermopower. The formation mechanism of foams, the reaction kinetics, and the physical properties such as density and water absorption studied before and after CNF incorporation. The microscopy images showed a uniform dispersion of CNF in the PU matrix of the prepared foams. Spectroscopic studies such as X-ray photoelectron and laser Raman spectroscopy suggested the existence of a tight intermolecular binding interaction between the carbon nanofibers and the PU matrix in the prepared composite foams. It found that the thermopower is directly dependent on the concentration of carbon nanofiber since, with rising concentration of 1%3%, the coefficient values increased from 1.2 μV/K to 11.9 μV/K respectively, a value higher than that of earlier report. This unique nanocomposite offers a new opportunity to recycle waste heat in portable/wearable electronics and other applications, which will broaden the development of low weight and mechanical flexibility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438025400064 Publication Date 2018-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 4 Open Access  
  Notes ; ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:151287 Serial 5868  
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Karki, P.; Sevik, C.; Cakir, D. doi  openurl
  Title Electronic and mechanical properties of stiff rhenium carbide monolayers: A first-principles investigation Type A1 Journal article
  Year (down) 2018 Publication Applied surface science Abbreviated Journal  
  Volume 458 Issue Pages 762-768  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we predicted two new stable metallic Re-C based monolayer structures with a rectangular (r-ReC2) and a hexagonal (h-Re2C) crystal symmetry using first-principle calculations based on density functional theory. Our results obtained from mechanical and phonon calculations and high-temperature molecular dynamic simulations clearly proved the stability of these two-dimensional (2D) crystals. Interestingly, Re-C monolayers in common transition metal carbide structures (i.e. MXenes) were found to be unstable, contrary to expectations. We found that the stable structures, i.e. r-ReC2 and h-Re2C, display superior mechanical properties over the well-known 2D materials. The Young's modulus for r-ReC2 and h-Re2C are extremely high and were calculated as 351 (1310) and 617 (804) N/m (GPa), respectively. Both materials have larger Young's modulus values than the most of the well-known 2D materials. We showed that the combination of the short strong directional p-d bonds, the high coordination number of atoms in the unit-cell and high valence electron density result in strong mechanical properties. Due to its crystal structure, the r-ReC2 monolayer has anisotropic mechanical properties and the crystallographic direction parallel to the C-2 dimers is stiffer compared to perpendicular direction due to strong covalent bonding within C-2 dimers. h-Re2C was derived from the corresponding bulk structure for which we determined the critical thickness for the dynamically stable bulk-derived monolayer structures. In addition, we also investigated the electronic of these two stable structures. Both exhibit metallic behavior and Re-5d orbitals dominate the states around the Fermi level. Due to their ultra high mechanical stability and stiffness, these novel Re-C monolayers can be exploited in various engineering applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441400000088 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:193776 Serial 7875  
Permanent link to this record
 

 
Author Salvant, J.; Williams, J.; Ganio, M.; Casadio, F.; Daher, C.; Sutherland, K.; Monico, L.; Vanmeert, F.; De Meyer, S.; Janssens, K.; Cartwright, C.; Walton, M. pdf  doi
openurl 
  Title A Roman Egyptian Painting Workshop : technical investigation of the portraits from Tebtunis, Egypt Type A1 Journal article
  Year (down) 2018 Publication Archaeometry Abbreviated Journal Archaeometry  
  Volume 60 Issue 4 Pages 815-833  
  Keywords A1 Journal article; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Roman-period mummy portraits are considered to be ancient antecedents of modern portraiture. However, the techniques and materials used in their manufacture are not thoroughly understood. Analytical study of the pigments as well as the binding materials helps to address questions on what aspects of the painting practices originate from Pharaonic and/or Graeco-Roman traditions, and can aid in determining the provenance of the raw materials from potential locations across the ancient Mediterranean and European worlds. Here, one of the largest assemblages of mummy portraits to remain intact since their excavation from the site of Tebtunis in Egypt was examined using multiple analytical techniques to address how they were made. The archaeological evidence suggests that these portraits were products of a single workshop and, correspondingly, they are found to be made using similar techniques and materials: wax-based and lead white-rich paint combined with a variety of iron-based pigments (including hematite, goethite and jarosite), as well as Egyptian blue, minium, indigo and madder lake to create subtle variations and tones.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000438195100011 Publication Date 2017-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-813x; 1475-4754 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.47 Times cited 6 Open Access  
  Notes ; This collaborative initiative is part of NU-ACCESS's broad portfolio of activities, made possible by generous support of the Andrew W. Mellon Foundation as well as supplemental support provided by the Materials Research Center, the Office of the Vice President for Research, the McCormick School of Engineering and Applied Science and the Department of Materials Science and Engineering at Northwestern University. This work made use of the Keck-II facility of the NUANCE Center at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF NNCI-1542205); the MRSEC program (NSF DMR-1121262) at the Materials Research Center; the International Institute for Nanotechnology (IIN); the Keck Foundation; and the State of Illinois, through the IIN. Part of this research was carried out at the light source PETRA III at DESY, a member of the Helmholtz Association (HGF), and at ESRF (experiment no. HG-79). We are grateful to Marine Cotte and Wout De Nolf for their support during the experiment at beamline ID21. We would like to thank Gerald Falkenberg and Jan Garrevoet for their assistance in using beamline P06. ; Approved Most recent IF: 1.47  
  Call Number UA @ admin @ c:irua:152396 Serial 5455  
Permanent link to this record
 

 
Author Wuyts, K.; Hofman, J.; van Wittenberghe, S.; Nuyts, G.; De Wael, K.; Samson, R. pdf  url
doi  openurl
  Title A new opportunity for biomagnetic monitoring of particulate pollution in an urban environment using tree branches Type A1 Journal article
  Year (down) 2018 Publication Atmospheric environment : an international journal Abbreviated Journal Atmos Environ  
  Volume 190 Issue 190 Pages 177-187  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Environmental magnetism, and the magnetic leaf signal in particular, is amply investigated and applied as proxy for atmospheric particulate matter pollution. In this study, we investigated the magnetic signal of annual segments of tree branches, and the composition of particles deposited hereon. Branches are, contrary to leaves of deciduous trees, available during leaf-off seasons and exposed to air pollution year-round. We examined the intra- and inter-tree variation in saturation isothermal remanent magnetization (SIRM) of branch internodes of London plane (Platanus x aeerifolia Willd.) trees in an urban environment. The branch SIRM, normalized by surface area, ranged from 18 to 650 x 10(-6) angstrom; the median amounted to 106 x 10(-6) angstrom. Most of the branch magnetic signal was attributed to the epidermis or bark, and the presence of metal-containing particles on the branch surfaces was confirmed by SEM-EDX. The location of the trees and the height, the depth in the crown and the age of the branches significantly influenced the branch SIRM. The median branch SIRM was up to 135% higher near a busy ring road than in quiet environments (city park and quiet street canyon), and was linked to the presence of Fe-rich particles with co-occurrence of trace metals such as Cr, Cu, Zn and Mn on the branch surface. Within the tree crowns, the branch SIRM generally decreased with increasing height, and was 22% higher in the interior than at the periphery of the crowns. Within the branches, the SIRM increased with each year of exposure, but did not relate to year-to-year variation in particle concentrations due to branch surface changes (epidermis shedding). Our results provide indications that branches can be a valuable alternative for biomagnetic monitoring of particulate pollution, but intra-tree variability in branch SIRM can be substantial due to the branch's location in the tree and branch age.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000444659400017 Publication Date 2018-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.629 Times cited 3 Open Access  
  Notes ; We would like to thank the city council services of the city of Antwerp for their logistical support. We are grateful to Ana Castanheiro and Leen Van Ham for laboratory and SEM assistance. JH is supported as postdoctoral fellow of the Research Foundation Flanders (FWO; 12I4816N) and SVW is supported by a Marie Sklodowska-Curie Individual Fellowship under the grant agreement no 701815 FLUOPHOT. ; Approved Most recent IF: 3.629  
  Call Number UA @ admin @ c:irua:153607 Serial 5454  
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Van Passel, S. pdf  url
doi  openurl
  Title The potential of microalgae biorefineries in Belgium and India : an environmental techno-economic assessment Type A1 Journal article
  Year (down) 2018 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 267 Issue 267 Pages 271-280  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This study performs an environmental techno-economic assessment (ETEA) for multiple microalgae biorefinery concepts at different locations, those being Belgium and India. The ETEA methodology, which integrates aspects of the TEA and LCA methodologies and provides a clear framework for an integrated assessment model, has been proposed and discussed. The scenario in India has a higher profitability with a NPV of (sic)40 million over a period of 10 years, while the environmental impact in Belgium is lower. The inclusion of a medium recycling step provides the best scenario from both perspectives. The crucial parameters for feasibility are the beta-caroteneprice and content, the upstream environmental impact of electricity and the maximum biomass concentration during cultivation. The identification of these parameters by the ETEA guides future technology developments and shortens the time-to-market for microalgal-based biorefineries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441876100034 Publication Date 2018-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:153599 Serial 6270  
Permanent link to this record
 

 
Author Hu, J.; Zhao, J.; Wang, D.; Li, X.; Zhang, D.; Xu, Q.; Peng, L.; Yang, Q.; Zeng, G. pdf  url
doi  openurl
  Title Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge Type A1 Journal article
  Year (down) 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 254 Issue Pages 7-15  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this study, the impact of diclofenac (DCF), an antiinflammatory drug being extensively used in human health care and veterinary treatment, on the production of volatile fatty acids (VFAs) from anaerobic fermentation of waste activated sludge (WAS) was investigated for the first time. Experimental results showed that when DCF concentration increased from 2.5 to 25 mg/kg total suspended solid (TSS), the maximum production of VFAs increased from 599 to 1113 mg COD/L, but further increase of DCF to 47.5 mg/kg TSS decreased VFAs yield to 896 mg COD/L. The mechanism investigation revealed that DCF had no effect on the hydrolysis process, promoted the process of acidogenesis, acetogenesis, and homoacetogenesis, but severely inhibited methanogenesis, leading to the accumulation of VFAs. Microbial community analysis showed that the addition of DCF could promote the relative abundance of VFAs (especially acetic acid) producers, which was well consistent with the results obtained above.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426436100002 Publication Date 2018-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149849 Serial 7837  
Permanent link to this record
 

 
Author De Cocker, P.; Bessiere, Y.; Hernandez-Raquet, G.; Dubos, S.; Mozo, I.; Gaval, G.; Caligaris, M.; Barillon, B.; Vlaeminck, S.E.; Sperandio, M. pdf  url
doi  openurl
  Title Enrichment and adaptation yield high anammox conversion rates under low temperatures Type A1 Journal article
  Year (down) 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 250 Issue Pages 505-512  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study compared two anammox sequencing batch reactors (SBR) for one year. SBRconstantT was kept at 30 °C while temperature in SBRloweringT was decreased step-wise from 30 °C to 20 °C and 15 °C followed by over 140 days at 12.5 °C and 10 °C. High retention of anammox bacteria (AnAOB) and minimization of competition with AnAOB were key. 5-L anoxic reactors with the same inoculum were fed synthetic influent containing 25.9 mg NH4+-N/L and 34.1 mg NO2−-N/L (no COD). Specific ammonium removal rates continuously increased in SBRconstantT, reaching 785 mg NH4+-N/gVSS/d, and were maintained in SBRloweringT, reaching 82.2 and 91.8 mg NH4+-N/gVSS/d at 12.5 and 10 °C respectively. AnAOB enrichment (increasing hzsA and 16S rDNA gene concentrations) and adaptation (shift from Ca. Brocadia to Ca. Kuenenia in SBRloweringT) contributed to these high rates. Rapidly settling granules developed, with average diameters of 1.2 (SBRconstantT) and 1.6 mm (SBRloweringT). Results reinforce the potential of anammox for mainstream applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430740000062 Publication Date 2017-11-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148998 Serial 7920  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; Kobayashi, K.; Janda, J.; Van Nevel, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Sulfur-based denitrification treating regeneration water from ion exchange at high performance and low cost Type A1 Journal article
  Year (down) 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 257 Issue Pages 266-273  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Autotrophic denitrification with sulfur is an underexplored alternative to heterotrophic denitrification to remove nitrate from wastewater poor in organics. The application on ion exchange regeneration water (19.432.1 mS cm−1) is novel. Three fixed bed reactors were tested at 15 °C for >4 months, inoculated with activated sludge from sewage treatment. All were fast in start-up (<10 days) with high performance (94 ± 2% removal efficiency). pH control with NaOH rendered higher nitrate removal rates than limestone addition to the bed (211 ± 13 vs. 102 ± 13 mg N L−1 d−1), related to higher pH (6.64 vs. 6.24) and sulfur surface area. Bacterial communities were strongly enriched in Sulfurimonas (6367%) and Thiobacillus (2426%). In an economic comparison, sulfur-based denitrification (5.3 kg−1 N) was 15% cheaper than methanol-based denitrification (6.22 kg−1 N) and both treatments were opex dominated (85.9 vs. 86.5%). Overall, the technological and economic feasibility should boost further implementation of sulfurotrophic denitrification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430401100033 Publication Date 2018-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149975 Serial 8619  
Permanent link to this record
 

 
Author Vandekerckhove, T.G.L.; De Mulder, C.; Boon, N.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Temperature impact on sludge yield, settleability and kinetics of three heterotrophic conversions corroborates the prospect of thermophilic biological nitrogen removal Type A1 Journal article
  Year (down) 2018 Publication Bioresource technology Abbreviated Journal  
  Volume 269 Issue Pages 104-112  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In specific municipal and industrial cases, thermophilic wastewater treatment (>45 °C) might bring cost advantages over commonly applied mesophilic processes (1035 °C). To develop such a novel process, one needs sound parameters on kinetics, sludge yield and sludge settleability of three heterotrophic conversions: aerobic carbon removal, denitritation and denitrification. These features were evaluated in acetate-fed sequencing batch reactors (30, 40, 50 and 60 °C). Higher temperatures were accompanied by lower sludge production and maximum specific removal rates, resulting mainly from lower maximum growth rates. Thermophilic denitritation was demonstrated for the first time, with lower sludge production (1826%), higher nitrogen removal rates (2492%) and lower carbon requirement (40%) compared to denitrification. Acceptable settling of thermophilic aerobic (60 °C) and anoxic biomass (50 and 60 °C) was obtained. Overall, this parameter set may catalyze the establishment of thermophilic nitrogen removal, once nitritation and nitratation are characterized. Furthermore, waters with low COD/N ratio might benefit from thermophilic nitritation/denitritation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445897400014 Publication Date 2018-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152946 Serial 8646  
Permanent link to this record
 

 
Author Liu, Y.; Ngo, H.H.; Guo, W.; Peng, L.; Chen, X.; Wang, D.; Pan, Y.; Ni, B.-J. pdf  url
doi  openurl
  Title Modeling electron competition among nitrogen oxides reduction and N2Oaccumulation in hydrogenotrophic denitrification Type A1 Journal article
  Year (down) 2018 Publication Biotechnology and bioengineering Abbreviated Journal  
  Volume 115 Issue 4 Pages 978-988  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Hydrogenotrophic denitrification is a novel and sustainable process for nitrogen removal, which utilizes hydrogen as electron donor, and carbon dioxide as carbon source. Recent studies have shown that nitrous oxide (N2O), a highly undesirable intermediate and potent greenhouse gas, can accumulate during this process. In this work, a new mathematical model is developed to describe nitrogen oxides dynamics, especially N2O, during hydrogenotrophic denitrification for the first time. The model describes electron competition among the four steps of hydrogenotrophic denitrification through decoupling hydrogen oxidation and nitrogen reduction processes using electron carriers, in contrast to the existing models that couple these two processes and also do not consider N2O accumulation. The developed model satisfactorily describes experimental data on nitrogen oxides dynamics obtained from two independent hydrogenotrophic denitrifying cultures under various hydrogen and nitrogen oxides supplying conditions, suggesting the validity and applicability of the model. The results indicated that N2O accumulation would not be intensified under hydrogen limiting conditions, due to the higher electron competition capacity of N2O reduction in comparison to nitrate and nitrite reduction during hydrogenotrophic denitrification. The model is expected to enhance our understanding of the process during hydrogenotrophic denitrification and the ability to predict N2O accumulation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000426493300016 Publication Date 2017-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3592 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149850 Serial 8261  
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Gorbanev, Y.; Dewilde, S.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Reduction of Human Glioblastoma Spheroids Using Cold Atmospheric Plasma: The Combined Effect of Short- and Long-Lived Reactive Species Type A1 Journal article
  Year (down) 2018 Publication Cancers Abbreviated Journal Cancers  
  Volume 10 Issue 11 Pages 394  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) is a promising technology against multiple types of cancer. However, the current findings on the effect of CAP on two-dimensional glioblastoma cultures do not consider the role of the tumour microenvironment. The aim of this study was to determine the ability of CAP to reduce and control glioblastoma spheroid tumours in vitro . Three-dimensional glioblastoma spheroid tumours (U87-Red, U251-Red) were consecutively treated directly and indirectly with a CAP using dry He, He + 5% H 2 O or He + 20% H 2 O. The cytotoxicity and spheroid shrinkage were monitored using live imaging. The reactive oxygen and nitrogen species produced in phosphate buffered saline (PBS) were measured by electron paramagnetic resonance (EPR) and colourimetry. Cell migration was also assessed. Our results demonstrate that consecutive CAP treatments (He + 20% H 2 O) substantially shrank U87-Red spheroids and to a lesser degree, U251-Red spheroids. The cytotoxic effect was due to the short- and long-lived species delivered by CAP: they inhibited spheroid growth, reduced cell migration and decreased proliferation in CAP-treated spheroids. Direct treatments were more effective than indirect treatments, suggesting the importance of CAP-generated, short-lived species for the growth inhibition and cell cytotoxicity of solid glioblastoma tumours. We concluded that CAP treatment can effectively reduce glioblastoma tumour size and restrict cell migration, thus demonstrating the potential of CAP therapies for glioblastoma.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451307700001 Publication Date 2018-10-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes The authors thank Paul Cos (Department of Pharmaceutical Sciences, University of Antwerp) for providing EPR equipment and Christophe Hermans for his help with the immunohistochemical experiments. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:154871 Serial 5065  
Permanent link to this record
 

 
Author Aussems, D.U.B.; Bal, K.M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C. pdf  url
doi  openurl
  Title Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux Type A1 Journal article
  Year (down) 2018 Publication Carbon Abbreviated Journal Carbon  
  Volume 137 Issue Pages 527-532  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In order to optimize the plasma-synthesis and modification process of carbon nanomaterials for applications such as nanoelectronics and energy storage, a deeper understanding of fundamental hydrogengraphite/graphene interactions is required. Atomistic simulations by Molecular Dynamics have proven to be indispensable to illuminate these phenomena. However, severe time-scale limitations restrict them to very fast processes such as reflection, while slow thermal processes such as surface diffusion and molecular desorption are commonly inaccessible. In this work, we could however reach these thermal processes for the first time at time-scales and surface temperatures (1000 K) similar to high-flux plasma exposure experiments during the simulation of multilayer graphene etching by 5 eV H ions. This was achieved by applying the Collective Variable-Driven Hyperdynamics biasing technique, which extended the inter-impact time over a range of six orders of magnitude, down to a more realistic ion-flux of 1023m2s1. The results show that this not only causes a strong shift from predominant ion-to thermally induced interactions, but also significantly affects the hydrogen uptake and surface evolution. This study thus elucidates H ion-graphite/graphene interaction mechanisms and stresses the importance of including long time-scales in atomistic simulations at high surface temperatures to understand the dynamics of the ion-surface system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440661700056 Publication Date 2018-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 4 Open Access Not_Open_Access: Available from 25.05.2020  
  Notes DIFFER is part of the Netherlands Organisation for Scientific Research (NWO). K.M.B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientific Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government e department EWI. Approved Most recent IF: 6.337  
  Call Number PLASMANT @ plasmant @c:irua:152172 Serial 4993  
Permanent link to this record
 

 
Author Gao, M.; Zhang, Y.; Wang, H.; Guo, B.; Zhang, Q.; Bogaerts, A. pdf  url
doi  openurl
  Title Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges Type A1 Journal article
  Year (down) 2018 Publication Catalysts Abbreviated Journal Catalysts  
  Volume 8 Issue 6 Pages 248  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We investigated the mode transition from volume to surface discharge in a packed bed dielectric barrier discharge reactor by a two-dimensional particle-in-cell/Monte Carlo collision method. The calculations are performed at atmospheric pressure for various driving voltages and for gas mixtures with different N2 and O2 compositions. Our results reveal that both a change of the driving voltage and gas mixture can induce mode transition. Upon increasing voltage, a mode transition from hybrid (volume+surface) discharge to pure surface discharge occurs, because the charged species can escape much more easily to the beads and charge the bead surface due to the strong electric field at high driving voltage. This significant surface charging will further enhance the tangential component of the electric field along the dielectric bead surface, yielding surface ionization waves (SIWs). The SIWs will give rise to a high concentration of reactive species on the surface, and thus possibly enhance the surface activity of the beads, which might be of interest for plasma catalysis. Indeed, electron impact excitation and ionization mainly take place near the bead surface. In addition, the propagation speed of SIWs becomes faster with increasing N2 content in the gas mixture, and slower with increasing O2 content, due to the loss of electrons by attachment to O2

molecules. Indeed, the negative O-2 ion density produced by electron impact attachment is much higher than the electron and positive O+2 ion density. The different ionization rates between N2 and O2 gases will create different amounts of electrons and ions on the dielectric bead surface, which might also have effects in plasma catalysis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000436128600027 Publication Date 2018-06-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4344 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.082 Times cited 7 Open Access OpenAccess  
  Notes The authors are very grateful to Wei Jiang for the useful discussions on the particle-incell/ Monte-Carlo collision model. Approved Most recent IF: 3.082  
  Call Number PLASMANT @ plasmant @c:irua:152171 Serial 4991  
Permanent link to this record
 

 
Author Wang, W.; Kim, H.-H.; Van Laer, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Streamer propagation in a packed bed plasma reactor for plasma catalysis applications Type A1 Journal article
  Year (down) 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 334 Issue Pages 2467-2479  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A packed bed dielectric barrier discharge (DBD) is widely used for plasma catalysis applications, but the exact plasma characteristics in between the packing beads are far from understood. Therefore, we study here these plasma characteristics by means of fluid modelling and experimental observations using ICCD imaging, for packing materials with different dielectric constants. Our study reveals that a packed bed DBD reactor in dry air at atmospheric pressure may show three types of discharges, i.e. positive restrikes, filamentary microdischarges, which can also be localized between two packing beads, and surface discharges (so-called surface ionization

waves). Restrikes between the dielectric surfaces result in the formation of filamentary microdischarges, while surface charging creates electric field components parallel to the dielectric surfaces, leading to the formation of surface discharges. A transition in discharge mode occurs from surface discharges to local filamentary discharges between the packing beads when the dielectric constant of the packing rises from 5 to 1000. This may have implications for the efficiency of plasma catalytic gas treatment, because the catalyst activation may be limited by constraining the discharge to the contact points of the beads. The production of reactive species occurs most in the positive restrikes, the surface discharges and the local microdischarges in between the beads, and is less significant in the longer filamentary microdischarges. The faster streamer propagation and discharge development with higher dielectric constant of the packing beads leads to a faster production of reactive species. This study is of great interest for plasma catalysis, where packing beads with different dielectric constants are often used as supports for the catalytic materials. It allows us to better understand how different packing materials can influence the performance of packed bed plasma reactors for environmental applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418533400246 Publication Date 2017-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 36 Open Access Not_Open_Access: Available from 10.01.2020  
  Notes We acknowledge financial support from the Fund for Scientific Research Flanders (FWO) (grant nos G.0217.14 N, G.0254.14 N and G.0383.16 N), the TOP-BOF project of the University of Antwerp, the European Marie Skłodowska-Curie Individual Fellowship “GlidArc” within Horizon2020 (Grant No. 657304) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). This research was carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions – Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb.ac.be/), and supported by the Belgian Science Policy Office (BELSPO). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:147864 Serial 4800  
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Van Alphen, S.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A. pdf  url
doi  openurl
  Title A packed-bed DBD micro plasma reactor for CO 2 dissociation: Does size matter? Type A1 Journal article
  Year (down) 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 348 Issue Pages 557-568  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract DBD plasma reactors are of great interest for environmental and energy applications, such as CO2 conversion, but they suffer from limited conversion and especially energy efficiency. The introduction of packing materials has been a popular subject of investigation in order to increase the reactor performance. Reducing the discharge gap of the reactor below one millimetre can enhance the plasma performance as well. In this work, we combine both effects and use a packed-bed DBD micro plasma reactor to investigate the influence of gap size reduction, in combination with a packing material, on the conversion and efficiency of CO2 dissociation. Packing materials used in this work were SiO2, ZrO2, and Al2O3 spheres as well as glass wool. The results are compared to a regular size reactor as a benchmark. Reducing the discharge gap can greatly increase the CO2 conversion, although at a lower energy efficiency. Adding a packing material further increases the conversion when keeping a constant residence time, but is greatly dependent on the material composition, gap and sphere size used. Maximum conversions of 50–55% are obtained for very long residence times (30 s and higher) in an empty reactor or with certain packing material combinations, suggesting a balance in CO2 dissociation and recombination reactions. The maximum energy efficiency achieved is 4.3%, but this is for the regular sized reactor at a short residence time (7.5 s). Electrical characterization is performed to reveal some trends in the electrical behaviour of the plasma upon reduction of the discharge gap and addition of a packing material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434467000055 Publication Date 2018-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 22 Open Access Not_Open_Access: Available from 03.05.2020  
  Notes We acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; Grant Number: G.0254.14N) and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:151238 Serial 4956  
Permanent link to this record
 

 
Author Zhang, H.; Wang, W.; Li, X.; Han, L.; Yan, M.; Zhong, Y.; Tu, X. pdf  url
doi  openurl
  Title Plasma activation of methane for hydrogen production in a N2 rotating gliding arc warm plasma : a chemical kinetics study Type A1 Journal article
  Year (down) 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 345 Issue 345 Pages 67-78  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this work, a chemical kinetics study on methane activation for hydrogen production in a warm plasma, i.e., N-2 rotating gliding arc (RGA), was performed for the first time to get new insights into the underlying reaction mechanisms and pathways. A zero-dimensional chemical kinetics model was developed, which showed a good agreement with the experimental results in terms of the conversion of CH4 and product selectivities, allowing us to get a better understanding of the relative significance of various important species and their related reactions to the formation and loss of CH4, H-2, and C2H2 etc. An overall reaction scheme was obtained to provide a realistic picture of the plasma chemistry. The results reveal that the electrons and excited nitrogen species (mainly N-2(A)) play a dominant role in the initial dissociation of CH4. However, the H atom induced reaction CH4+ H -> CH3+ H-2, which has an enhanced reaction rate due to the high gas temperature (over 1200 K), is the major contributor to both the conversion of CH4 and H-2 production, with its relative contributions of > 90% and > 85%, respectively, when only considering the forward reactions. The coexistence and interaction of thermochemical and plasma chemical processes in the rotating gliding arc warm plasma significantly enhance the process performance. The formation of C-2 hydrocarbons follows a nearly one-way path of C2H6 -> C2H4 -> C2H2, explaining why the selectivities of C-2 products decreased in the order of C2H2 > C2H4 > C2H6.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Sequoia Place of Publication Lausanne Editor  
  Language Wos 000430696500008 Publication Date 2018-03-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 25 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ lucian @ c:irua:151450 Serial 5036  
Permanent link to this record
 

 
Author Li, K.; Liu, J.-L.; Li, X.-S.; Lian, H.-Y.; Zhu, X.; Bogaerts, A.; Zhu, A.-M. pdf  url
doi  openurl
  Title Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis Type A1 Journal article
  Year (down) 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 353 Issue Pages 297-304  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We propose a novel Power to Synthesis Gas (P2SG) approach, composed of two high-efficiency and renewable electricity-driven units, i.e., plasma catalytic reforming (PCR) and water electrolysis (WE), to produce high quality syngas from CH4, CO2 and H2O. As WE technology is already commercial, we mainly focus on the PCR unit, consisting of gliding arc plasma and Ni-based catalyst, for oxidative dry reforming of methane. An energy efficiency of 78.9% and energy cost of 1.0 kWh/Nm3 at a CH4 conversion of 99% and a CO2 conversion of 79% are obtained. Considering an energy efficiency of 80% for WE, the P2SG system yields an overall energy efficiency of 79.3% and energy cost of 1.8 kWh/Nm3. High-quality syngas is produced without the need for posttreatment units, featuring the ideal stoichiometric number of 2, with concentration of 94.6 vol%, and a desired CO2 fraction of 1.9 vol% for methanol synthesis. The PCR unit has the advantage of fast response to adapting to fluctuation of renewable electricity, avoiding local hot spots in the catalyst bed and coking, in contrast to conventional catalytic processes. Moreover, pure O2 from the WE unit is directly utilized by the PCR unit for oxidative dry reforming of methane, and thus, no air separation unit, like in conventional processes, is required. This work demonstrates the viability of the P2SG approach for large-scale energy storage of renewable electricity via electricity-to-fuel conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441527900029 Publication Date 2018-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 7 Open Access OpenAccess  
  Notes This project is supported by the National Natural Science Foundation of China (11705019, 11475041), the Fundamental Research Funds for the Central Universities (DUT16QY49, DUT16LK16) and the Fund for Scientific Research Flanders (FWO; grant G.0383.16N). Approved Most recent IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:153059 Serial 5049  
Permanent link to this record
 

 
Author van Walsem, J.; Roegiers, J.; Modde, B.; Lenaerts, S.; Denys, S. pdf  url
doi  openurl
  Title Determination of intrinsic kinetic parameters in photocatalytic multi-tube reactors by combining the NTUm-method with radiation field modelling Type A1 Journal article
  Year (down) 2018 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 354 Issue 354 Pages 1042-1049  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, we propose an adapted Number of Transfer Units (NTUm)-method as an effective tool to determine the Langmuir-Hinshelwood kinetic parameters for a photocatalytic multi-tube reactor. The Langmuir-Hinshelwood rate constant kLH and the Langmuir adsorption constant KL were determined from several experiments under different UV-irradiance conditions, resulting in irradiance depending values for kLH. In order to determine a unique, intrinsic empirical constant k0, valid for all irradiation conditions, we coupled the adapted NTUm-method with a radiation field model to predict UV-irradiance distribution inside the reactor. The final set of kinetic parameters were derived using a Generalized Reduced Gradient (GRG) nonlinear solving method in Matlab which minimizes the differences between model and experimental reactor outlet concentrations of acetaldehyde for various photocatalytic experiments under varying operating conditions, including inlet concentration, flow rate and UV-irradiance. An excellent agreement of the intrinsic empirical constant k0, derived from the coupled NTUm-radiation field model and an earlier published CFD approach was found, emphasizing its validity and reliability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445413900099 Publication Date 2018-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 2 Open Access  
  Notes ; J.V.W. acknowledges the Agentschap Innoveren & Ondernemen for a PhD fellowship. ; Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:154845 Serial 5940  
Permanent link to this record
 

 
Author Roegiers, J.; van Walsem, J.; Denys, S. pdf  url
doi  openurl
  Title CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor Type A1 Journal article
  Year (down) 2018 Publication Chemical engineering journal Abbreviated Journal  
  Volume 338 Issue Pages 287-299  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This paper focusses on the development of a Multiphysics model as a tool for assessing the performance of a multi-tube photoreactor. The model predicts the transient behavior of acetaldehyde concentration, as a model compound for the organic fraction of the indoor air pollutants, under varying sets of conditions. A 3D-model couples radiation field modeling with reaction kinetics and fluid dynamics in order to simulate the transport of the pollutant as it progresses through the reactor. A model-based approach is proposed to determine the layer thickness and refractive index of different P25-powder modified solgel coatings, using an optimization procedure to estimate these parameters based on UV-irradiance measurements. The radiation field model was able to accurately predict the irradiance on the catalytic surface within the reactor. Consequently, the radiation field model was used to define an irradiance dependent reaction rate constant in a coupled Multiphysics model. An optimization routine was deployed to estimate the adsorption, desorption- and photocatalytic reaction rate constants on the TiO2-surface, using experimentally determined, transient outlet concentrations of acetaldehyde. Additionally, a validation test was performed in an air-tight climate chamber at much higher flow rates, higher irradiance and realistic indoor pollutant concentrations to emphasize the reliability and accuracy of the parameters for adsorption, desorption and photocatalytic reaction. The developed model makes it possible to optimize the reactor design and scale-up for commercial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000427618400031 Publication Date 2018-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149115 Serial 7589  
Permanent link to this record
 

 
Author Chen, Y.; Wu, Y.; Wang, D.; Li, H.; Wang, Q.; Liu, Y.; Peng, L.; Yang, Q.; Li, X.; Zeng, G.; Chen, Y. pdf  url
doi  openurl
  Title Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge Type A1 Journal article
  Year (down) 2018 Publication Chemical engineering journal Abbreviated Journal  
  Volume 334 Issue Pages 1351-1360  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Poly aluminum chloride (PAC) is accumulated in waste activated sludge at high levels. However, details of how PAC affects short-chain fatty acids (SCFA) production from anaerobic sludge fermentation has not been documented. This work therefore aims to fill this knowledge gap by analyzing the impact of PAC on the aggregate of sludge flocs, disruption of extracellular polymeric substances (EPS), and the bio-processes of hydrolysis, acid-ogenesis, and methanogenesis. The relationship between SCFA production and different aluminum species (i.e., Ala, Alb, and Alc) was also identified by controlling different OH/Al ratio and pH in different fermentation systems. Experimental results showed that with the increase of PAC addition from 0 to 40 mg Al per gram of total suspended solids, SCFA yield decreased from 212.2 to 138.4 mg COD/g volatile suspended solids. Mechanism exploration revealed that PAC benefited the aggregates of sludge flocs and caused more loosely-and tightly-bound extracellular polymeric substances remained in sludge cells. Besides, it was found that the hydrolysis, acidiogenesis, and methanogenesis processes were all inhibited by PAC. Although three types of Al species, i.e., Ala (Al monomers, dimer, and trimer), Alb (Al-13(AlO4Al12(OH)(24)(H2O) 7+ 12), and Alc (Al polymer molecular weight normally larger than 3000 Da), were co-existed in fermentation systems, their impacts on SCFA production were different. No correlation was found between SCFA and Ala, whereas SCFA production decreased with the contents of Alb and Alc. Compared with Alb, Alc was the major contributor to the decreased SCFA production ( R-2 = 0.5132 vs R-2 = 0.98). This is the first report revealing the underlying mechanism of how PAC affects SCFA production and identifying the contribution of different Al species to SCFA inhibition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000418533400135 Publication Date 2017-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:148413 Serial 8708  
Permanent link to this record
 

 
Author Kuckova, S.; Hamidi-Asl, E.; Matulkova, I.; Hynek, R.; De Wael, K.; Sanyova, J.; Janssens, K. openurl 
  Title Technoques and applications of Surface-Enhanced Raman Scattering Spectroscopy (SERSS) focused on cultural heritage Type A1 Journal article
  Year (down) 2018 Publication Chemické listy Abbreviated Journal Chem Listy  
  Volume 112 Issue 5 Pages 312-316  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The review is devoted to a modern method of vibrational spectroscopy – surface enhanced Raman spectroscopy Its principle and some of its special variants (imunnoSERS and TERS (Tip-Enhanced Raman Spectroscopy)) are described m a simpinified manner Wide application possibilities are demonstrated on selected examples from its application m culturinl heritage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2770; 1213-7103 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.387 Times cited Open Access  
  Notes ; ; Approved Most recent IF: 0.387  
  Call Number UA @ admin @ c:irua:151616 Serial 5869  
Permanent link to this record
 

 
Author Berends, A.C.; van der Stam, W.; Hofmann, J.P.; Bladt, E.; Meeldijk, J.D.; Bals, S.; de Donega, C.M. url  doi
openurl 
  Title Interplay between surface chemistry, precursor reactivity, and temperature determines outcome of ZnS shelling reactions on CuInS2 nanocrystals Type A1 Journal article
  Year (down) 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 2400-2413  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract ZnS shelling of I-III-VI(2 )nanocrystals (NCs) invariably leads to blue-shifts in both the absorption and photoluminescence spectra. These observations imply that the outcome of ZnS shelling reactions on I-III-VI2 colloidal NCs results from a complex interplay between several processes taking place in solution, at the surface of, and within the seed NC. However, a fundamental understanding of the factors determining the balance between these different processes is still lacking. In this work, we address this need by investigating the impact of precursor reactivity, reaction temperature, and surface chemistry (due to the washing procedure) on the outcome of ZnS shelling reactions on CuInS2 NCs using a seeded growth approach. We demonstrate that low reaction temperatures (150 degrees C) favor etching, cation exchange, and alloying regardless of the precursors used. Heteroepitaxial shell overgrowth becomes the dominant process only if reactive S- and Zn-precursors (S-ODE/OLAM and ZnI2 ) and high reaction temperatures (210 degrees C) are used, although a certain degree of heterointerfacial alloying still occurs. Remarkably, the presence of residual acetate at the surface of CIS seed NCs washed with ethanol is shown to facilitate heteroepitaxial shell overgrowth, yielding for the first time CIS/ZnS core/shell NCs displaying red-shifted absorption spectra, in agreement with the spectral shifts expected for a type-I band alignment. The insights provided by this work pave the way toward the design of improved synthesis strategies to CIS/ZnS core/shell and alloy NCs with tailored elemental distribution profiles, allowing precise tuning of the optoelectronic properties of the resulting materials.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000430023700027 Publication Date 2018-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 85 Open Access OpenAccess  
  Notes ; Annelies van der Bok is gratefully acknowledged for performing the ICP measurements. A.C.B. and C.d.M.D. acknowledge financial support from the division of Chemical Sciences (CW) of The Netherlands Organization for Scientific Research (NWO) under Grant No. ECHO.712.014.001. S.B. and E.B. acknowledge financial support from European Research Council (ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:150772UA @ admin @ c:irua:150772 Serial 4972  
Permanent link to this record
 

 
Author Pearce, P.E.; Rousse, G.; Karakulina, O.M.; Hadermann, J.; Van Tendeloo, G.; Foix, D.; Fauth, F.; Abakumov, A.M.; Tarascon, J.-M. pdf  url
doi  openurl
  Title β-Na1.7IrO3: A Tridimensional Na-Ion Insertion Material with a Redox Active Oxygen Network Type A1 Journal article
  Year (down) 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 10 Pages 3285-3293  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The revival of the Na-ion battery concept has prompted an intense search for new high capacity Na-based positive electrodes. Recently, emphasis has been placed on manipulating Na-based layered compounds to trigger the participation of the anionic network. We further explored this direction and show the feasibility of achieving anionic-redox activity in three-dimensional Na-based compounds. A new 3D β-Na1.7IrO3 phase was synthesized in a two-step process, which involves first the electrochemical removal of Li from β-Li2IrO3 to produce β-IrO3, which is subsequently reduced by electrochemical Na insertion. We show that β-Na1.7IrO3 can reversibly uptake nearly 1.3 Na+ per formula unit through an uneven voltage profile characterized by the presence of four plateaus related to structural transitions. Surprisingly, the β-Na1.7IrO3 phase was found to be stable up to 600 °C, while it could not be directly synthesized via conventional synthetic methods. Although these Na-based iridate phases are of limited practical interest, they help to understand how introducing highly polarizable guest ions (Na+) into host rocksalt-derived oxide structures affects the anionic redox mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000433403800014 Publication Date 2018-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access OpenAccess  
  Notes The authors thank A. Perez for fruitful discussions and his valuable help in synchrotron XRD experiment and Matthieu Courty for carrying out the DSC measurements. The authors also greatly thank Matthieu Saubanère and Marie-Liesse Doublet for valuable discussions on theoretical aspects of this work. This work is based on experiments performed on the Materials Science and Powder Diffraction Beamline at ALBA synchrotron (Proposal 2016091814), Cerdanyola del Vallès, E- 08290 Barcelona, Spain. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant- Project 670116-ARPEMA. G.R. acknowledges funding from ANR DeliRedox. O.M.K., J.H., and A.M.A. are grateful to FWO Vlaanderen for financial support under Grant G040116N. Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:152048 Serial 4996  
Permanent link to this record
 

 
Author Peters, J.L.; Altantzis, T.; Lobato, I.; Jazi, M.A.; van Overbeek, C.; Bals, S.; Vanmaekelbergh, D.; Sinai, S.B. url  doi
openurl 
  Title Mono- and Multilayer Silicene-Type Honeycomb Lattices by Oriented Attachment of PbSe Nanocrystals: Synthesis, Structural Characterization, and Analysis of the Disorder Type A1 Journal article
  Year (down) 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 4831-4837  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystal (NC) solids are commonly prepared from nonpolar organic NC suspensions. In many cases, the capping on the NC surface is preserved and forms a barrier between the NCs. More recently, superstructures with crystalline connections between the NCs, implying the removal of the capping, have been reported, too. Here, we present large-scale uniform superstructures of attached PbSe NCs with a silicene-type honeycomb geometry, resulting from solvent evaporation under nearly reversible conditions. We also prepared multilayered silicene honeycomb structures by using larger amounts of PbSe NCs. We show that the two-dimensional silicene superstructures can be seen as a crystallographic slice from a 3-D simple cubic structure. We describe the disorder in the silicene lattices in terms of the nanocrystals position and their atomic alignment. The silicene honeycomb sheets are large enough to be used in transistors and optoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000440105500042 Publication Date 2018-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 33 Open Access OpenAccess  
  Notes The authors acknowledge funding from the European Commission (Grant EUSMI 731019). S.B. acknowledges funding from the European Research Council (Grant 335078 COLOURATOM). T.A. acknowledges a postdoctoral grant from the Research Foundation Flanders (FWO). The authors acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the Grant Agreement No. 731019 EUSMI. (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ecas_sara Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:152997UA @ admin @ c:irua:152997 Serial 5011  
Permanent link to this record
 

 
Author Grimaud, A.; Iadecola, A.; Batuk, D.; Saubanere, M.; Abakumov, A.M.; Freeland, J.W.; Cabana, J.; Li, H.; Doublet, M.-L.; Rousse, G.; Tarascon, J.-M. pdf  doi
openurl 
  Title Chemical activity of the peroxide/oxide redox couple : case study of Ba5Ru2O11 in aqueous and organic solvents Type A1 Journal article
  Year (down) 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 11 Pages 3882-3893  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The finding that triggering the redox activity of oxygen ions within the lattice of transition metal oxides can boost the performances of materials used in energy storage and conversion devices such as Li-ion batteries or oxygen evolution electrocatalysts has recently spurred intensive and innovative research in the field of energy. While experimental and theoretical efforts have been critical in understanding the role of oxygen nonbonding states in the redox activity of oxygen ions, a clear picture of the redox chemistry of the oxygen species formed upon this oxidation process is still missing. This can be, in part, explained by the complexity in stabilizing and studying these species once electrochemically formed. In this work, we alleviate this difficulty by studying the phase Ba5Ru2O11, which contains peroxide O-2(2-) groups, as oxygen evolution reaction electrocatalyst and Li-ion battery material. Combining physical characterization and electrochemical measurements, we demonstrate that peroxide groups can easily be oxidized at relatively low potential, leading to the formation of gaseous dioxygen and to the instability of the oxide. Furthermore, we demonstrate that, owing to the stabilization at high energy of peroxide, the high-lying energy of the empty sigma* antibonding O-O states limits the reversibility of the electrochemical reactions when the O-2(2-)/O2- redox couple is used as redox center for Li-ion battery materials or as OER redox active sites. Overall, this work suggests that the formation of true peroxide O-2(2-) states are detrimental for transition metal oxides used as OER catalysts and Li-ion battery materials. Rather, oxygen species with O-O bond order lower than 1 would be preferred for these applications.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000435416600038 Publication Date 2018-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 2 Open Access Not_Open_Access  
  Notes ; We thank S. Belin of the ROCK beamline (financed by the French National Research Agency (ANR) as a part of the “Investissements d'Avenir” program, reference: ANR-10-EQPX-45; proposal no. 20160095) of synchrotron SOLEIL for her assistance during XAS measurements. Authors would also like to thank V. Nassif for her assistance on the D1B beamline. A.G, G.R, and J.-M.T. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant Project 670116-ARPEMA. ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:151980 Serial 5016  
Permanent link to this record
 

 
Author Quintanilla, M.; Zhang, Y.; Liz-Marzan, L.M. pdf  doi
openurl 
  Title Subtissue plasmonic heating monitored with CaF2:Nd3+,Y3+ nanothermometers in the second biological window Type A1 Journal article
  Year (down) 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 8 Pages 2819-2828  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Measuring temperature in biological environments is an ambitious goal toward supporting medical treatment and diagnosis. Minimally invasive techniques based on optical probes require very specific properties that are difficult to combine within a single material. These include high chemical stability in aqueous environments, optical signal stability, low toxicity, high emission intensity, and, essential, working at wavelengths within the biological transparency windows so as to minimize invasiveness while maximizing penetration depth. We propose CaF2:Nd3+,Y3+ as a candidate for thermometry based on an intraband ratiometric approach, fully working within the biological windows (excitation at 808 nm; emission around 1050 nm). We optimized the thermal probes through the addition of Y3+ as a dopant to improve both emission intensity and thermal sensitivity. To define the conditions under which the proposed technique can be applied, gold nanorods were used to optically generate subtissue hot areas, while the resulting temperature variation was monitored with the new nanothermometers.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000431088400038 Publication Date 2018-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 28 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Dr. Guillermo Gonzalez Rubio for the kind support with the synthesis of gold nanorods. M.Q and L.M.L.-M. acknowledge financial support from the European Commission under the Marie Sklodowska-Curie program (H2020-MSCA-IF-2014_659021 – PHELLINI). Y.Z. acknowledges financial support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 665501 through a FWO [PEGASUS]^2 Marie Sklodowska-Curie fellowship (12U4917N). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:151576 Serial 5042  
Permanent link to this record
 

 
Author Tessier, M.D.; Baquero, E.A.; Dupont, D.; Grigel, V.; Bladt, E.; Bals, S.; Coppel, Y.; Hens, Z.; Nayral, C.; Delpech, F. url  doi
openurl 
  Title Interfacial oxidation and photoluminescence of InP-Based core/shell quantum dots Type A1 Journal article
  Year (down) 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 30 Pages 6877-6883  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Indium phosphide colloidal quantum dots (QDs) are emerging as an efficient cadmium-free alternative for optoelectronic applications. Recently, syntheses based on easy-to-implement aminophosphine precursors have been developed. We show by solid-state nuclear magnetic resonance spectroscopy that this new approach allows oxide-free indium phosphide core or core/shell quantum dots to be made. Importantly, the oxide-free core/shell interface does not help in achieving higher luminescence efficiencies. We demonstrate that in the case of InP/ZnS and InP/ZnSe QDs, a more pronounced oxidation concurs with a higher photoluminescence efficiency. This study suggests that a II-VI shell on a III-V core generates an interface prone to defects. The most efficient InP/ZnS or InP/ZnSe QDs are therefore made with an oxide buffer layer between the core and the shell: it passivates these interface defects but also results in a somewhat broader emission line width.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000447237800031 Publication Date 2018-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 74 Open Access OpenAccess  
  Notes ; The authors thank L. Biadala and C. Delerue for fruitful discussion. Z.H. acknowledges support by the European Commission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656), by Research Foundation Flanders (Project 17006602), and by Ghent University (GOA No. 01G01513). Z.H., M.D.T., and D.D. acknowledge the Strategisch Initiatief Materialen in Vlaanderen of Agentschap Innoveren en Ondernemen (SIM VLAIO), vzw (SBO-QDOCCO, ICON-QUALIDI). This work was supported by the Universite Paul Sabatier, the Region Midi-Pyrenees, the CNRS, the Institut National des Sciences Appliquees of Toulouse, and the Agence Nationale pour la Recherche (Project ANR-13-IS10-0004-01). E.A.B. is grateful to Marie Curie Actions and Campus France for a PRESTIGE postdoc fellowship (FP7 /2007-2013) under REA Grant Agreement PCOFUND-GA-2013-609102. E.B. acknowledges financial support from Research Foundation Flanders (FWO). ; Approved Most recent IF: 9.466  
  Call Number UA @ lucian @ c:irua:154732UA @ admin @ c:irua:154732 Serial 5109  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: