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Abstract 
Hydrogenotrophic denitrification is a novel and sustainable process for nitrogen 

removal, which utilizes hydrogen as electron donor and carbon dioxide as carbon 

source. Recent studies have shown that nitrous oxide (N2O), a highly undesirable 

intermediate and potent greenhouse gas, can accumulate during this process. In this 

work, a new mathematical model is developed to describe nitrogen oxides dynamics, 

especially N2O, during hydrogenotrophic denitrification for the first time. The model 

describes electron competition among the four steps of hydrogenotrophic 

denitrification through decoupling hydrogen oxidation and nitrogen reduction 

processes using electron carriers, in contrast to the existing models that couple these 

two processes and also do not consider N2O accumulation. The developed model 

satisfactorily describes experimental data on nitrogen oxides dynamics obtained from 

two independent hydrogenotrophic denitrifying cultures under various hydrogen and 

nitrogen oxides supplying conditions, suggesting the validity and applicability of the 

model. The results indicated that N2O accumulation would not be intensified under 

hydrogen limiting conditions, due to the higher electron competition capacity of N2O 

reduction in comparison to nitrate and nitrite reduction during hydrogenotrophic 

denitrification. The model is expected to enhance our understanding of the process 

during hydrogenotrophic denitrification and the ability to predict N2O accumulation. 

This article is protected by copyright. All rights reserved 
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Introduction 

Biological denitrification is recognized as one of the most efficient methods for 

nitrate-contaminated water treatment, which can be achieved through both 

heterotrophic (with organic carbon sources as electron donors) and autotrophic (with 

inorganic carbon sources as electron donors) processes (Peng et al., 2016, Rivett et 

al., 2008, Wang et al., 2017b). Among them, autohydrogenotrophic denitrification, 

using hydrogen as electron donors and inorganic carbon species as carbon source, is a 

novel and sustainable process to achieve effective nitrate removal. Its advantages over 

heterotrophic denitrification include the lower operational cost (hydrogen compared 

to methanol or acetate) and lower sludge production rate (Karanasios et al., 2010, 

Rivett et al., 2008). As such, extensive work has been conducted on the promising 

hydrogenotrophic denitrification process in both bench and pilot scales, focusing on 

the reaction kinetics, effects of the ratio among hydrogen, nitrate and carbon dioxide, 

microbial ecology, reactor configurations for better hydrogen delivery, and other 

relevant operating parameters (Ghafari et al., 2009b, Kurt et al., 1987, Lee and 

Rittmann, 2003, Li et al., 2013, Nerenberg, 2016, Nerenberg et al., 2008, Rezania et 

al., 2005, Sahu et al., 2009, Smith et al., 2005, Zhao et al., 2013a, Zhao et al., 2013b, 

Zhao et al., 2011). 

The complete hydrogenotrophic denitrification is a four-step sequential reduction 

process from nitrate (NO3
-) to nitrogen gas (N2) via nitrite (NO2

-), nitric oxide (NO) 

and nitrous oxide (N2O), with four specific denitrifying enzymes, namely nitrate 

reductase (Nar), nitrite reductase (Nir), NO reductase (Nor) and N2O reductase (Nos), 

involved (Ghafari et al., 2009a, 2010).  N2O, a highly undesirable significant 

intermediate, can thus accumulate and subsequently emit to the atmosphere during 

hydrogenotrophic denitrification, which has raised increasing concerns due to its 
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potent greenhouse gas effect and ozone depleting ability (Liu et al., 2016, Liu et al., 

2017, Ravishankara et al., 2009). It has been reported that the amount of N2O 

accumulation in hydrogenotrophic denitrification system ranged from 0.05% to 15.2% 

of the influent nitrogen load (Li et al., 2017). Therefore, understanding N2O 

accumulation in hydrogenotrophic denitrification is of great importance. 

The accumulation of denitrification intermediates is often considered to be related 

to the electron competition among nitrogen oxides reductases responsible for the four-

step denitrification (Liu et al., 2015, Pan et al., 2013a, Pan et al., 2013b). Increasing 

evidence has shown that these key enzymes acquire electrons from a common 

electron supply source in the electron transport chain (Pan et al., 2015, Richardson et 

al., 2009), and the shortage of electron supply (i.e., the supply rate does not meet the 

demand for electron consumption rate by the four reduction steps) would induce the 

occurrence of the electron competition during hydrogenotrophic denitrification. 

Therefore, factors that could lower the hydrogen oxidation rate would lead to the 

accumulation of intermediates (e.g., N2O) during hydrogenotrophic denitrification, 

such as hydrogen/carbon dioxide supply rate (Li et al., 2017). 

Mathematical models have been widely used to predict nitrate and nitrite 

dynamics during hydrogenotrophic denitrification (Martin et al., 2013, Tang et al., 

2012a, b, Tang et al., 2011). In contrast, little effort has been dedicated to modeling 

the N2O dynamics during hydrogenotrophic denitrification despite of considerable 

amounts of N2O accumulation in this process and its detrimental impact on the 

atmosphere (Li et al., 2017). Current existing models have been proposed to describe 

hydrogenotrophic denitrification as one-step or two-step denitrification (Martin et al., 

2013, Rezania et al., 2005, Vasiliadou et al., 2006), without consideration of N2O 

production. Further, these models that couple the catabolic and anabolic processes do 
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not consider electron competition among different steps of hydrogenotrophic 

denitrification as well as the effect of carbon dioxide on denitrifier metabolism, and 

thus would not be able to predict N2O accumulation under hydrogen- or carbon 

dioxide-limiting conditions (Li et al., 2017). 

This study aims to develop a new hydrogenotrophic denitrification model for 

describing nitrogen oxides reduction and N2O accumulation that takes electron 

competition among four nitrogen oxides reduction steps into account, and can be used 

as a practical tool for predicting N2O accumulation during hydrogenotrophic 

denitrification. To this end, the complex biochemical reactions and electron transfer 

processes involved are lumped into two oxidation (catabolic and anabolic hydrogen 

oxidation) and four reduction reactions, by using the linkage of electron carriers. The 

validity and applicability of the developed model is tested with previous experimental 

data on nitrogen oxides and N2O dynamics from two hydrogenotrophic denitrifying 

cultures under different experimental conditions. The findings of this work are 

expected to provide first insight into understanding of intermediate accumulation (e.g. 

N2O) during hydrogenotrophic denitrification. 

Materials and methods 

Model development  

In this work, we proposed the first model satisfactorily describing nitrogen 

dynamics and N2O accumulation in hydrogenotrophic denitrification through 

employing an effective modeling approach previously reported for describing electron 

competition in such biological processes (Ni et al., 2014, Pan et al., 2013b). The 

model proposed in this work decouples and links the hydrogen oxidation (e.g., 

catabolic and anabolic) with nitrogen oxides compound reduction processes (from 

NO3
- to N2 via NO2

-, NO and N2O) through the introduction of electron carriers 
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during the electron transfer processes (Pan et al., 2013b), to describe all potential 

intermediate (e.g., N2O) accumulation steps during hydrogenotrophic denitrification. 

In particular, Mred and Mox are defined as the respective reduced and oxidized states 

of electron carriers in the model. Considering the relatively small size of electron 

carrier pool (Gyan et al., 2006), the continued availability of Mred and Mox depends 

on their concomitant regeneration, which is modeled by a recirculation loop between 

Mred and Mox (Mred ⇌ Mox + 2e− + 2H+), i.e., a decrease in Mred being offset by an 

increase in Mox and vice versa, with the total amount of electron carriers (Ctot) 

keeping constant (SMred + SMox = Ctot). This approach has also been widely applied for 

other biological systems with electron competition (Fisher et al., 2015). Further, the 

model parameters have become more unified, especially electron affinity constant 

during denitrification (Pan et al., 2015, Sabba et al., 2017). 

Specifically, the oxidation of hydrogen during hydrogenotrophic denitrification is 

modeled by the respective catabolic (Reaction 1) and anabolic (Reaction 2) hydrogen 

oxidation processes, where Mox is reduced to Mred by receiving electrons generated 

from hydrogen oxidation: 

Reaction 1: catabolic hydrogen oxidation 

H2 + Mox → Mred 

Reaction 2: anabolic hydrogen oxidation 

3H2 + CO2 + 1
5
 NH3 + Mox → 1

5
 C5H7O2N + Mred + 8

5
 H2O 

Nitrogen oxides reduction during hydrogenotrophic denitrification is modelled as 

four-step processes (Reactions 3 to 6), where Mred is oxidized to Mox by donating 

two electrons to a nitrogen oxide: 

Reaction 3: Nitrate reduction to nitrite 

NO3
- + Mred → NO2

- + Mox + H2O 
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Reaction 4: Nitrite reduction to nitric oxide 

NO2
- + 1

2
 Mred + H+→ NO + 1

2
 Mox + H2O 

Reaction 5: Nitric oxide reduction to nitrous oxide 

NO + 1
2
 Mred → 1

2
 N2O + 1

2
 Mox + 1

2
 H2O 

Reaction 6: Nitrous oxide reduction to nitrogen gas 

N2O + Mred → N2 + Mox + H2O 

The stoichiometry and kinetics of the above reaction equations are summarized in 

Table 1. The Michaelis-Menten equation is used to describe kinetics of these 

enzymatic reaction rates. Each reaction rate is described as a function of the 

concentration of substrates involved. Table S1 in the Supporting Information (SI) lists 

the definitions, values, units, and sources of all parameters used in the developed 

model. It should be noted that regeneration of Mred and Mox in the model represents 

a modeling concept and method, which may not reflect the complex biochemical 

reactions in reality (Ni et al., 2014, Pan et al., 2013b). 

Experimental data used for model evaluation 

Experimental data from Li et al. (2017) on N2O emission during 

hydrogenotrophic denitrification were used to calibrate and validate the model. Li et 

al. (2017) used a hydrogen gas- and nitrate-fed denitrifying culture, acclimated and 

cultivated for 54 months continuously in three parallel 2-L lab-scale continuous-flow 

reactors at pH 7.0 ± 0.5 at 30 ± 1 °C, with a cycle time of 12 h, to study the N2O 

accumulation during hydrogenotrophic denitrification. Several sets of batch tests were 

conducted in a 600-mL sealed reactor (a headspace of 450 mL) with the synthetic 

feed water and culture from the parent reactors: (1) effects of electron acceptors: 

nitrate or N2O was supplied at the beginning as the sole electron acceptor, at a mass 

inorganic carbon to nitrogen (IC/N) ratio of 1.8, a temperature of 30 ºC and a constant 
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dissolved hydrogen concentration of 0.40 mg/L; (2) effects of initial IC/N ratios: three 

batch tests were carried out with the initial mass IC/N ratio of  0, 0.18 and 1.8, using 

nitrate as the sole electron acceptor at a temperature of 30 ºC and a constant dissolved 

hydrogen concentration of 0.40 mg/L; (3) effects of dissolved hydrogen 

concentrations: three batch experiments were performed at a constant dissolved 

hydrogen concentration of 0.02, 0.17 and 0.40 mg/L, with nitrate as the sole electron 

acceptor at a temperature of 30 ºC and an initial mass IC/N ratio of 1.8; and (4) effects 

of temperatures: four batch tests were conducted at a temperature of 20, 25, 30 and 35 

ºC, with nitrate as the sole electron acceptor at an initial mass IC/N ratio of 1.8 and a 

constant dissolved hydrogen concentration of 0.40 mg/L. At the beginning of a batch 

test, 140 mL of the synthetic feedwater was added to each batch reactor, and then 10 

mL of the centrifugal stock culture taken from the parent reactors was inoculated. 

During the test, the initial nitrate or nitrite concentration was controlled at 

approximately 40 mg-N/L using KNO3 or KNO2. Pure N2O gas (99.99%) was 

supplied to the batch reactor to control an initial N2O concentration of 60 mg-N/L for 

the batch test with N2O as the sole electron acceptor. NaHCO3 was used as the 

inorganic carbon source. The pH was controlled at 7.0 during the tests by adding 0.2 

M HCl and 0.2 M NaOH solutions. The temperature was adjusted with a temperature 

adjustable incubator. The hydrogen gas produced by in-situ electrolysis and pure 

argon gas supplied were used to control that the volume percentage of the hydrogen in 

the headspace and thus ensure the dissolved hydrogen concentration in the liquid 

phase through gas-liquid transfer. Samples were taken periodically for NO3
−, NO2

− 

and N2O analysis. More details of the reactor operation and batch test can be found in 

Li et al. (2017). 
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Experimental data from Ghafari et al. (2009a and 2009b) by using a 

hydrogenotrophic denitrifying culture developed in bench-scale sequencing batch 

reactors were applied to further evaluate the model. Acclimatization was 

accomplished throughout multiple cycles with sequencing stages of settle, decant, fill, 

and react where complete nitrate and nitrite depletion was achieved. Each cycle lasted 

for 24 h while the reaction stage lasted for 23 h. Two types of batch experiments were 

carried out in a 2.5 or 4-L sealed reactor with the synthetic feed water and culture at 

the ambient temperature (25±5◦C): (1) effects of nitrate concentrations (20, 30 and 50 

mg-N/L) at an initial IC concentration of 2.5 g/L NaHCO3 and (2) effects of IC 

concentrations (0, 20, 200 and 1250 mg/L as NaHCO3) at an initial nitrate of 20 mg-

N/L. NaNO3 and NaHCO3 were used as nitrate and inorganic carbon source, 

respectively. The initial dissolved hydrogen concentration was controlled at a 

saturated level by sparging hydrogen gas to the liquid phase of the reactor. Samples 

were taken periodically for NO3
− and NO2

− analysis. More details of the reactor 

operation and batch test can be found in Ghafari et al. (2009a and 2009b). 

Testing the predictive power of the model 

The developed model includes 17 stoichiometric and kinetic parameters as 

summarized in Table S1 in SI. About 13 of these model parameter values are well 

established in previous studies (SI). Thus, literature values were directly adopted for 

these parameters (SI Table S1) to simplify the model calibration procedure. In this 

work, the hydrogenotrophic denitrifiers were acclimated, cultivated and studied in 

hydrogen-unlimiting conditions. Therefore, the concentration range applied would not 

affect half-saturation constant during simulation. The remaining four parameters, i.e., 

maximum hydrogen oxidation rate (rh2,max), maximum nitrate reduction rate (rNO3,max), 

maximum nitrite reduction rate (rNO2,max) and maximum N2O reduction rate (rN2O,max), 
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which are the key parameters governing the electron competition during 

hydrogenotrophic denitrification, are then calibrated using experimental data (SI 

Table S1). As the batch experiments were operated during short periods in batch 

mode, both biomass and decay were insignificant. The initial biomass concentrations 

were set based on convergence simulation of the continuous-flow of the parent 

reactor. Ctot (the sum of SMox and SMred) was set with a value of 0.01 mmol/g-VSS and 

SMox =SMred at the initial stage based on previously reported literature (Pan et al. 2013). 

This is acceptable as the absolute value of Ctot is not critical for model simulation 

calibration and prediction. 

Parameter values were estimated by minimizing the sum of squares of the 

deviations between the measured data and the model predictions using the secant 

method embedded in AQUASIM 2.1d (Reichert, 1998). Experimental data (NO3
−, 

NO2
− and N2O) from the batch test (1) – (3) of Li et al. (2017) were used to calibrate 

the model. Model validation was then carried out with the calibrated model 

parameters using the batch test (4) from Li et al. (2017) under different temperatures. 

The effect of temperate on a reaction rate was described by a modified Arrhenius 

equation according to Hao et al. (2002). To further verify the validity and 

applicability of the developed model, we also applied the model to evaluate two batch 

experimental data sets (NO3
− and NO2

−) from Ghafari et al. (2009a and 2009b) using 

a different hydrogenotrophic denitrifying culture.  

With the validated model, the model simulations were then conducted to provide 

insight into the electron competition between nitrogen oxides reductions under 

different conditions. The calculation of the electron consumption rates by each step of 

denitrification was according to Pan et al. (2013a). Specifically, the impact of electron 

acceptor combination (i.e., simultaneous addition of two or three among NO3
−, NO2

−, 
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and N2O) on nitrogen oxides reduction and the impact of hydrogen concentration 

levels on electron distribution pattern with two or three nitrogen oxides added were 

analysed using the model. 

Results 

Model Calibration 

The calibration of the new model was performed based on the optimization of the 

key model parameters values governing the electron competition during 

hydrogenotrophic denitrification (i.e., rh2,max, rNO3,max, rNO2,max and rN2O,max), by fitting the 

model predicted data to the results of batch test (1) – (3) from Li et al. (2017). The 

experimental data and model prediction of NO3
−, NO2

− and N2O are presented in 

Figure 1. The calibrated parameter values giving the optimum model fittings with the 

experimental data are listed in Table S1. The concentrations of initial electron 

acceptor (batch test 1, NO3
− or N2O) both display linear decrease. The N2O reduction 

rate (i.e., 1.44 mmol/L/h) with N2O as the sole initial electron acceptor (Figure 1b) 

was much higher than that of with nitrate (i.e., 0.51 mmol/L/h, Figure 1a). With the 

decrease of IC/N ratios from 1.8 to 0.18 and 0 (batch test 2, Figures 1a, 1c and 1d), 

the nitrate reduction rate decreased from 0.56 to 0.44 and 0.31 mmol/L/h, along with 

less nitrite accumulation. The N2O concentrations were all quite low and the reduction 

rates were similar, indicating the insignificant impact of the IC/N ratio on N2O 

accumulation during hydrogenotrophic denitrification. Similarly, the nitrate reduction 

rates decreased from 0.56 to 0.40 and 0.20 mmol/L/h while nitrite accumulation 

decreased, with the decrease of hydrogen concentrations from 0.40 to 0.17 and 0.02 

mg/L (batch test 3, Figures 1a, 1e and 1f). The N2O accumulation levels were also 

very low and similar, likely due to the continuous hydrogen supply even though the 

initial concentration of hydrogen decreased. The model predictions captured these 
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trends reasonably well. The agreement between the simulated and measured data 

supported that the developed model properly captures the relationships among 

nitrogen oxides reduction. Sensitivity analyses were conducted to evaluate the model 

structure and to investigate the most determinant biokinetic parameters on the system 

performance in terms of NO3
-, NO2

- and N2O accumulation using the AQUASIM 

built-in algorithms, with results shown in Figures S1 in SI. Specifically, the nitrate 

and nitrite variation of the system is most sensitive to maximum nitrite reduction rate 

(μNO2), maximum hydrogen oxidation rate (μH2) and maximum nitrate reduction rate 

(μNO3) under studied conditions. In contrast, the N2O variation is insensitive to 

biokinetic parameters under studied conditions. 

Model validation  

The developed model and calibrated parameter set (Table S1) were then further 

tested for their ability to predict nitrate, nitrite and N2O dynamics in batch test 4 of Li 

et al. (2017) under different temperature conditions (i.e., 20, 25 and 35 ºC). The 

model predictions and the experimental results are shown in Figure 2. As the 

temperature increased from 20 to 35 ºC, nitrate was consumed faster along with less 

nitrite and N2O accumulation (Figures 1a and 2), coincident with the dependency of 

biological reaction rates on moderate temperatures. The validation results showed that 

the model predictions well matched the measured data of nitrogen oxides reduction in 

the validation experiment, which supports the validity of the developed model. 

Model evaluation using a different hydrogenotrophic denitrifying culture  

The experimental results obtained from Ghafari et al. (2009a and 2009b) with a 

different hydrogenotrophic denitrifying culture were used to evaluate the developed 

model in terms of NO3
- and NO2

- dynamics. As expected in Figure 3 under the same 

initial NaHCO3 concentration, longer nitrate consumption period and higher nitrite 
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accumulation was observed with the increase of initial nitrate concentrations from 20 

to 50 mg-N/L. In Figure 4, the increase of the initial NaHCO3 dose from 0 to 1250 

mg/L at an initial nitrate concentration of 20 mg-N/L resulted in better denitrification 

rates due to the enhanced anabolic hydrogen oxidation. Nitrite accumulation was 

observed before complete nitrate reduction. Also, hydrogentrophic denitrification 

could be accomplished in the absence of IC (Figure 4a). The model captured these 

trends reasonably well, further suggesting the applicability of the developed model. 

Impact of electron acceptor combination on nitrogen oxides reduction  

Electron competition in the presence of multiple nitrogen oxides combinations 

(i.e., simultaneous addition of two or three among NO3
−, NO2

−, and N2O) may lead to 

decreased reduction rates of all nitrogen oxides compounds involved in comparison to 

the rate measured with a single nitrogen oxides present during denitrification (Pan et 

al., 2013b). Such profound impact of electron competition during hydrogenotrophic 

denitrification was analyzed with the model of this work (Figure 5a). As a validation, 

the simulated nitrogen oxides reduction rates closely match to the experimentally 

determined rates with a single nitrogen oxide present when hydrogen and IC are in 

excess. The nitrogen oxides reduction rates in the presence of multiple nitrogen 

oxides compounds were then predicted. It can be found that the highest nitrate, nitrite, 

or N2O reduction rates could be always achieved in the presence of the single 

respective nitrogen oxide as the electron acceptor during hydrogenotrophic 

denitrification. 

The electron consumption rates of each reductase under different scenarios of 

electron addition schemes (i.e., different nitrogen oxides combinations) were also 

simulated (Figure 5b). Similarly, the highest respective rates during hydrogenotrophic 

denitrification were attained with the addition of single nitrogen oxide. Also, the total 
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electron consumption rates (i.e., sum of the rates of four hydrogenotrophic 

denitrification reductases) were almost constant in the presence of multiple nitrogen 

oxides. Most electrons distributed to N2O reductase once it was added as one of the 

electron donors, due to the higher maximum reduction rate of N2O in comparison to 

NO3
− and NO2

− under non-hydrogen-and-IC-limiting conditions. 

Impact of hydrogen concentrations on electron distribution pattern with two or 

three nitrogen oxides added 

Six hydrogen addition schemes (i.e., C, H1, H2, H3, H4, and H5) were simulated 

to mimic the effect of the intensity of electron competition under hydrogen limiting 

conditions on electron distribution pattern in the presence of multiple nitrogen oxides 

(Figure 6). Hydrogen addition schemes C stands for hydrogen pulse feeding (12 

mmol/L), and H1, H2, H3, H4, and H5 stand for hydrogen slow feeding with loading 

rates of 12, 6, 2.4, 1.2, 0.6 mmol/(L × h)), respectively. The decrease of hydrogen 

supply (from C to H5) resulted in the decreased electron consumption rates (Figures 

6b, d, f and h). Also, it enhanced the intensity of electron competition. More electrons 

distributed to NO2
- reductase under hydrogen limiting conditions when NO2

− was 

added (Figures 6a, e and g) due to the lower SMred affinity constant for Nir (KMred,2). 

However, it was not evident when N2O was added (Figures 6 e and g), due to the 

higher maximum N2O reduction rate. Therefore, the electron distribution to N2O was 

almost constant (Figures 6c, e and g) with two or three nitrogen oxides added under 

hydrogen limiting conditions. 

Discussion 

Hydrogenotrophic denitrification is a promising and sustainable autotrophic 

nitrogen removal process. Recent studies have shown that N2O can accumulate during 

this process, which is a highly undesirable intermediate and potent greenhouse gas. It 
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should be noted that 1% increase in N2O emission would induce 30% increase in 

carbon footprint during the wastewater treatment (Law et al., 2012). Therefore, 

modeling of N2O dynamics is of great importance for understanding N2O emission 

from hydrogenotrophic denitrification (Nerenberg, 2014, Ni et al., 2011, Ni et al., 

2013, Wang et al., 2017a), which can serve as a powerful tool for guiding potential 

N2O mitigation strategies. However, modeling studies in denitrification to date have 

mainly focused on the N2O emission during heterotrophic denitrification in both 

wastewater (Ni et al., 2011, Pan et al., 2013) and soil systems (Ludwig et al., 2011, 

Zhang et al., 2011), with organic carbon sources as electron donors. The previously 

proposed hydrogenotrophic denitrification models completely overlook N2O 

production. Further, these models do not include a specific structure to describe the 

hydrogen oxidation process, thus are not able to predict the electron competition 

process among different steps of hydrogenotrophic denitrification and not applicable 

to predict N2O accumulation when the hydrogen oxidation rate limits the overall 

hydrogenotrophic denitrification rate. 

In this work, a new mathematical model decoupling the catabolic and anabolic 

hydrogen oxidation with four-step nitrogen oxides reduction processes through the 

introduction of electron carriers is developed to describe all potential intermediate 

(e.g., N2O) accumulation steps during hydrogenotrophic denitrification. Our model is 

the first model for describing the N2O dynamics and electron competition in the 

hydrogenotrophic denitrification system. In contrast to the previous model structure, 

the hydrogen oxidation process (Reactions 1 and 2) and the nitrogen reduction 

processes (Reactions 3 to 6) are modeled separately in our current model (Table 1), 

enabling the prediction of both the electron supply rate (i.e., hydrogen oxidation) and 

electron consumption rate (i.e., nitrogen reduction) particularly under a limited 
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electron supplying flux. The relative electron competition ability of each 

denitrification step is modeled with different affinity constants for reduced carriers, 

which are key parameters to determine the electron distribution (Pan et al., 2013b). 

The validity of the developed model was confirmed by two independent 

hydrogenotrophic denitrification studies. The set of best-fit parameter values are 

shown in Table S1. The parameter values obtained were robust in their ability to 

predict nitrate, nitrite and N2O dynamics under different operational conditions, 

indicating the potential applicability of the developed model for different 

hydrogenotrophic denitrification systems. A systematic experimental evaluation on 

the processes in this system would take extremely a long time because of the slow 

growth rate of autotrophic bacteria. Under such circumstances, a modeling study by 

employing the current available published data to describe various key biological 

processes in this autotrophic system would be acceptable as well as valuable. The 

model of this work might be useful for better understanding, accurate estimation and 

possible mitigation of N2O emission from hydrogenotrophic denitrification systems. 

It has been reported that nitrite reduction was prioritized over the other 

heterotrophic denitrification steps when electron supply (i.e., carbon) became the 

limiting step (Pan et al., 2013b). Also, the fractions of electrons distributed to N2O 

reductase decreased with the decrease of carbon loading rate, thus resulting in N2O 

accumulation. The reason could be attributed to a higher capacity of nitrite reduction 

for electron competition under electron limiting conditions (i.e., a low SMred 

concentration), i.e., KMred,2  (SMred affinity constant for Nir) has a value that is 

approximately ten times lower than KMred,1  (SMred affinity constant for Nar) and KMred,4 

(SMred affinity constant for Nos). In contrast, with the same values of affinity constants 

for reduced carriers, the electron distribution to N2O was almost constant even with 
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the substantial decrease of electron supply (i.e., hydrogen) during hydrogenotrophic 

denitrification in this work (Figure 6). This is likely due to the substantially higher 

rN2O,max (maximum N2O reduction rate) in comparison to rNO3,max (maximum nitrate 

reduction rate) and rNO2,max (maximum nitrite reduction rate) (Table 1). In fact, N2O 

accumulation depends on both maximum rate and substrate affinity constant. 

Parameters rN2O,max and KN2O/KMred,4 are highly correlated parameters. Higher rN2O,max 

would offset the higher KN2O/KMred,4, thus resulting a higher electron competition 

capacity of N2O reduction during hydrogenotrophic denitrification, as confirmed by 

the model simulation (Figure 6). Therefore, higher N2O accumulation would not 

occur even under hydrogen limiting conditions. Due to insufficient information of the 

electron competition process during hydrogenotrophic denitrification, the reaction 

kinetics were not well established. For instance, the maximum hydrogen oxidation 

rate (rH2,max), the key parameter to regulate the overall electron supply rate, is not 

available in literature. Also, the four electron affinity constants for different nitrogen 

reduction enzymes are adapted from the literature (Pan et al., 2013b) without 

calibration. Therefore, more efforts are required to collect more information on these 

key parameters for further model implementation. 

Conclusion 

In summary, a mathematical model is developed to describe N2O production 

during hydrogenotrophic denitrification for the first time. The complex biochemical 

reactions and electron transfer processes involved are lumped into two oxidation and 

four reduction reactions that are linked through electron carriers. The developed 

model has successfully reproduced the experimental data obtained from two 

independent hydrogenotrophic denitrifying cultures. Further model simulation results 

indicated that N2O accumulation would not be intensified even with the decrease of 
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electron supply rate, due to the higher electron competition capacity of N2O reduction. 
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Table Captions 
 
Table 1. Stoichiometric Matrix and Process Kinetic Rate Equations for the Developed 
Model 
 
 
Figure Captions 
 
Figure 1. Fits between the experimental and model simulated NO3

−, NO2
−, and N2O 

profiles at 30 ºC achieved in model calibration: (a) NO3
− as the initial electron 

acceptor, with an IC/N ratio of 1.8 and a constant dissolved hydrogen concentration of 
0.40 mg/L; (b) N2O as the initial electron acceptor, with an IC/N ratio of 1.8 and a 
constant dissolved hydrogen concentration of 0.40 mg/L; (c) NO3

− as the initial 
electron acceptor, with an IC/N ratio of 0.18 and a constant dissolved hydrogen 
concentration of 0.40 mg/L; (d) NO3

− as the initial electron acceptor, with an IC/N 
ratio of 0 and a constant dissolved hydrogen concentration of 0.40 mg/L; (e) NO3

− as 
the initial electron acceptor, with an IC/N ratio of 1.8 and a constant dissolved 
hydrogen concentration of 0.17 mg/L; and (f) NO3

− as the initial electron acceptor, 
with an IC/N ratio of 1.8 and a constant dissolved hydrogen concentration of 0.02 
mg/L. 
 
Figure 2. Fits between experimental and simulated NO3

−, NO2
−, and N2O profiles 

achieved in model validation with NO3
− as the initial electron acceptor under an IC/N 

ratio of 1.8 and a constant dissolved hydrogen concentration of 0.40 mg/L: (a) 20 ºC; 
(b) 25 ºC; and (c) 35 ºC. 
 
Figure 3. Fits between experimental and simulated NO3

− and NO2
− profiles achieved 

in model evaluation under a NaHCO3 concentration of 2.5 g/L with different initial 
nitrate concentrations: (a) 20; (b) 30; and (c) 50 mg-N/L. 
 
Figure 4. Fits between experimental and simulated NO3

− and NO2
− profiles achieved 

in model evaluation under an initial nitrate concentration of 20 mg-N/L with different 
initial NaHCO3 concentrations: (a) 0; (b) 20; (c) 200; and (d) 1250 mg-NaHCO3/L. 
 
Figure 5. (a) Experimental and simulated reduction rates of NO3

−, NO2
− or N2O with 

7 nitrogen oxides addition schemes that include: (1) NO3
−, (2) NO2

−, (3) N2O, (4) 
NO3

− and NO2
−, (5) NO3

− and N2O, (6) NO2
− and N2O, (7) NO3

−, NO2
−, and N2O; and 

(b) Electron consumption rates by Nar, Nir, Nor, and Nos under non-hydrogen-and-
IC-limiting conditions. 
 
Figure 6. Simulated electron distribution with two or three nitrogen oxides added in 
each test. Hydrogen addition schemes C, H1, H2, H3, H4, and H5 stand for hydrogen 
pulse feeding (12 mmol/L) and hydrogen slow feeding with loading rates of 12, 6, 
2.4, 1.2, 0.6 mmol/(L × h)), respectively: (a) NO3

− and NO2
− were added; (b) NO3

− 

and N2O were added; (c) NO2
− and N2O were added; and (d) NO3

−, NO2
−, and N2O 

were added. 
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Table 1. Stoichiometric Matrix and Process Kinetic Rate Equations for the Developed Model 

Reactio
n 

SNO3 

mmol/L 

SNO2 

mmol/L 
SNO 

mmol/L 
SN2O 

mmol/L 
SN2 

mmol/L 
SH2 

mmol/L 
SCO2 

mmol/L 
SMox 

mmol/g VSS 
SMred 

mmol/g VSS 

X 
g 

VSS/L 

Kinetics rate expressions 

1      −1  −1 1  𝑟𝑟ℎ2,𝑚𝑚𝑚𝑚𝑚𝑚 × (1 − 𝑌𝑌) ×
𝑆𝑆ℎ2

𝑆𝑆ℎ2 + 𝐾𝐾ℎ2
×

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐾𝐾𝑀𝑀𝑀𝑀𝑀𝑀

× 𝑋𝑋 

2      −3 −1 −1 1 
1
5

 
𝑟𝑟ℎ2,𝑚𝑚𝑚𝑚𝑚𝑚 × 𝑌𝑌 ×

𝑆𝑆ℎ2
𝑆𝑆ℎ2 + 𝐾𝐾ℎ2

×
𝑆𝑆𝐶𝐶𝐶𝐶2

𝑆𝑆𝐶𝐶𝐶𝐶2 + 𝐾𝐾𝐶𝐶𝐶𝐶2
×

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐾𝐾𝑀𝑀𝑀𝑀𝑀𝑀

× 𝑋𝑋 

3 −1 1      1 −1  𝑟𝑟𝑁𝑁𝑁𝑁3,𝑚𝑚𝑚𝑚𝑚𝑚 ×
𝑆𝑆𝑁𝑁𝑁𝑁3

𝑆𝑆𝑁𝑁𝑁𝑁3 + 𝐾𝐾𝑁𝑁𝑁𝑁3
×

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐾𝐾𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

× 𝑋𝑋 

4  −1 1     1
2

 −
1
2

  𝑟𝑟𝑁𝑁𝑁𝑁2,𝑚𝑚𝑚𝑚𝑚𝑚 ×
𝑆𝑆𝑁𝑁𝑁𝑁2

𝑆𝑆𝑁𝑁𝑂𝑂2 + 𝐾𝐾𝑁𝑁𝑁𝑁2
×

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐾𝐾𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

× 𝑋𝑋 

5   −1 
1
2

    1
2

 −
1
2

  𝑟𝑟𝑁𝑁𝑁𝑁,𝑚𝑚𝑚𝑚𝑚𝑚 ×
𝑆𝑆𝑁𝑁𝑁𝑁

𝑆𝑆𝑁𝑁𝑁𝑁 + 𝐾𝐾𝑁𝑁𝑁𝑁
×

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐾𝐾𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

× 𝑋𝑋 

6    −1 1   1 −1  𝑟𝑟𝑁𝑁2𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚 ×
𝑆𝑆𝑁𝑁2𝑂𝑂

𝑆𝑆𝑁𝑁2𝑂𝑂 + 𝐾𝐾𝑁𝑁2𝑂𝑂
×

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐾𝐾𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

× 𝑋𝑋 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 

 


	Acknowledgement

