|
Record |
Links |
|
Author |
Aussems, D.U.B.; Bal, K.M.; Morgan, T.W.; van de Sanden, M.C.M.; Neyts, E.C. |
|
|
Title |
Mechanisms of elementary hydrogen ion-surface interactions during multilayer graphene etching at high surface temperature as a function of flux |
Type |
A1 Journal article |
|
Year |
2018 |
Publication |
Carbon |
Abbreviated Journal |
Carbon |
|
|
Volume |
137 |
Issue |
|
Pages |
527-532 |
|
|
Keywords |
A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT) |
|
|
Abstract |
In order to optimize the plasma-synthesis and modification process of carbon nanomaterials for applications such as nanoelectronics and energy storage, a deeper understanding of fundamental hydrogengraphite/graphene interactions is required. Atomistic simulations by Molecular Dynamics have proven to be indispensable to illuminate these phenomena. However, severe time-scale limitations restrict them to very fast processes such as reflection, while slow thermal processes such as surface diffusion and molecular desorption are commonly inaccessible. In this work, we could however reach these thermal processes for the first time at time-scales and surface temperatures (1000 K) similar to high-flux plasma exposure experiments during the simulation of multilayer graphene etching by 5 eV H ions. This was achieved by applying the Collective Variable-Driven Hyperdynamics biasing technique, which extended the inter-impact time over a range of six orders of magnitude, down to a more realistic ion-flux of 1023m2s1. The results show that this not only causes a strong shift from predominant ion-to thermally induced interactions, but also significantly affects the hydrogen uptake and surface evolution. This study thus elucidates H ion-graphite/graphene interaction mechanisms and stresses the importance of including long time-scales in atomistic simulations at high surface temperatures to understand the dynamics of the ion-surface system. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000440661700056 |
Publication Date |
2018-05-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0008-6223 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
6.337 |
Times cited |
4 |
Open Access |
Not_Open_Access: Available from 25.05.2020
|
|
|
Notes |
DIFFER is part of the Netherlands Organisation for Scientific Research (NWO). K.M.B. is funded as PhD fellow (aspirant) of the FWO-Flanders (Fund for Scientific Research-Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government e department EWI. |
Approved |
Most recent IF: 6.337 |
|
|
Call Number |
PLASMANT @ plasmant @c:irua:152172 |
Serial |
4993 |
|
Permanent link to this record |